bevy/crates/bevy_pbr/src/pbr_material.rs
Carter Anderson 747b0c69b0 Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053)
# Objective

This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired:
* Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan.
* There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss.
* Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. 

## Solution

Say hello to the new `Material` system:

```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
impl Material for CoolMaterial {
    fn fragment_shader() -> ShaderRef {
        "cool_material.wgsl".into()
    }
}
```

Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code.

This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive.

### The new `Material` trait

The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional.

The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity:

```rust
// Old
impl Material for CustomMaterial {
    fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
        Some(asset_server.load("custom_material.wgsl"))
    }

    fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
        render_asset.alpha_mode
    }
}

// New
impl Material for CustomMaterial {
    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn alpha_mode(&self) -> AlphaMode {
        self.alpha_mode
    }
}
```

Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later).

### The `AsBindGroup` trait / derive

The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. 

Field attributes like `uniform` and `texture` are used to define which fields should be bindings,
what their binding type is, and what index they should be bound at:

```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
```

In WGSL shaders, the binding looks like this:

```wgsl
struct CoolMaterial {
    color: vec4<f32>;
};

[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
[[group(1), binding(1)]]
var color_texture: texture_2d<f32>;
[[group(1), binding(2)]]
var color_sampler: sampler;
```

Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1.

The following field-level attributes are supported:
* `uniform(BINDING_INDEX)`
    * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs.
* `texture(BINDING_INDEX)`
    * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index).
* `sampler(BINDING_INDEX)`
    * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. 

Note that fields without field-level binding attributes will be ignored.
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    this_field_is_ignored: String,
}
```

As mentioned above, `Option<Handle<Image>>` is also supported:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Option<Handle<Image>>,
}
```
This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white".

Field uniforms with the same binding index will be combined into a single binding:
```rust
#[derive(AsBindGroup)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    #[uniform(0)]
    roughness: f32,
}
```

In WGSL shaders, the binding would look like this:
```wgsl
struct CoolMaterial {
    color: vec4<f32>;
    roughness: f32;
};

[[group(1), binding(0)]]
var<uniform> material: CoolMaterial;
```

Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes:
* `uniform(BINDING_INDEX, ConvertedShaderType)`
    * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required.
* `bind_group_data(DataType)`
    * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization".

The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can
also be equivalently represented with a single struct-level uniform attribute:
```rust
#[derive(AsBindGroup)]
#[uniform(0, CoolMaterialUniform)]
struct CoolMaterial {
    color: Color,
    roughness: f32,
}

#[derive(ShaderType)]
struct CoolMaterialUniform {
    color: Color,
    roughness: f32,
}

impl From<&CoolMaterial> for CoolMaterialUniform {
    fn from(material: &CoolMaterial) -> CoolMaterialUniform {
        CoolMaterialUniform {
            color: material.color,
            roughness: material.roughness,
        }
    }
}
```

### Material Specialization

Material shader specialization is now _much_ simpler:

```rust
#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
#[bind_group_data(CoolMaterialKey)]
struct CoolMaterial {
    #[uniform(0)]
    color: Color,
    is_red: bool,
}

#[derive(Copy, Clone, Hash, Eq, PartialEq)]
struct CoolMaterialKey {
    is_red: bool,
}

impl From<&CoolMaterial> for CoolMaterialKey {
    fn from(material: &CoolMaterial) -> CoolMaterialKey {
        CoolMaterialKey {
            is_red: material.is_red,
        }
    }
}

impl Material for CoolMaterial {
    fn fragment_shader() -> ShaderRef {
        "cool_material.wgsl".into()
    }

    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        if key.bind_group_data.is_red {
            let fragment = descriptor.fragment.as_mut().unwrap();
            fragment.shader_defs.push("IS_RED".to_string());
        }
        Ok(())
    }
}
```

Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system:
```rust
impl Material for CustomMaterial {
    fn vertex_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }

    fn specialize(
        pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        let vertex_layout = layout.get_layout(&[
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            ATTRIBUTE_BLEND_COLOR.at_shader_location(1),
        ])?;
        descriptor.vertex.buffers = vec![vertex_layout];
        Ok(())
    }
}
```

### Ported `StandardMaterial` to the new `Material` system

Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive):

```rust
#[derive(AsBindGroup, Debug, Clone, TypeUuid)]
#[uuid = "7494888b-c082-457b-aacf-517228cc0c22"]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
pub struct StandardMaterial {
    pub base_color: Color,
    #[texture(1)]
    #[sampler(2)]
    pub base_color_texture: Option<Handle<Image>>,
    /* other fields omitted for brevity */
```

### Ported Bevy examples to the new `Material` system

The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike.

Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction
in the overall complexity of the code (even accounting for the new derive logic).

---

## Changelog

### Added

* `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type.

### Changed

* The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`.
* `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`.

## Migration Guide
The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well!

### Bevy 0.7 (old)

```rust
#[derive(Debug, Clone, TypeUuid)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
    color: Color,
    color_texture: Handle<Image>,
}

#[derive(Clone)]
pub struct GpuCustomMaterial {
    _buffer: Buffer,
    bind_group: BindGroup,
}

impl RenderAsset for CustomMaterial {
    type ExtractedAsset = CustomMaterial;
    type PreparedAsset = GpuCustomMaterial;
    type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>);
    fn extract_asset(&self) -> Self::ExtractedAsset {
        self.clone()
    }

    fn prepare_asset(
        extracted_asset: Self::ExtractedAsset,
        (render_device, material_pipeline): &mut SystemParamItem<Self::Param>,
    ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> {
        let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32());

        let byte_buffer = [0u8; Vec4::SIZE.get() as usize];
        let mut buffer = encase::UniformBuffer::new(byte_buffer);
        buffer.write(&color).unwrap();

        let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor {
            contents: buffer.as_ref(),
            label: None,
            usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
        });

        let (texture_view, texture_sampler) = if let Some(result) = material_pipeline
            .mesh_pipeline
            .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone()))
        {
            result
        } else {
            return Err(PrepareAssetError::RetryNextUpdate(extracted_asset));
        };
        let bind_group = render_device.create_bind_group(&BindGroupDescriptor {
            entries: &[
                BindGroupEntry {
                    binding: 0,
                    resource: buffer.as_entire_binding(),
                },
                BindGroupEntry {
                    binding: 0,
                    resource: BindingResource::TextureView(texture_view),
                },
                BindGroupEntry {
                    binding: 1,
                    resource: BindingResource::Sampler(texture_sampler),
                },
            ],
            label: None,
            layout: &material_pipeline.material_layout,
        });

        Ok(GpuCustomMaterial {
            _buffer: buffer,
            bind_group,
        })
    }
}

impl Material for CustomMaterial {
    fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
        Some(asset_server.load("custom_material.wgsl"))
    }

    fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
        &render_asset.bind_group
    }

    fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
        render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
            entries: &[
                BindGroupLayoutEntry {
                    binding: 0,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Buffer {
                        ty: BufferBindingType::Uniform,
                        has_dynamic_offset: false,
                        min_binding_size: Some(Vec4::min_size()),
                    },
                    count: None,
                },
                BindGroupLayoutEntry {
                    binding: 1,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Texture {
                        multisampled: false,
                        sample_type: TextureSampleType::Float { filterable: true },
                        view_dimension: TextureViewDimension::D2Array,
                    },
                    count: None,
                },
                BindGroupLayoutEntry {
                    binding: 2,
                    visibility: ShaderStages::FRAGMENT,
                    ty: BindingType::Sampler(SamplerBindingType::Filtering),
                    count: None,
                },
            ],
            label: None,
        })
    }
}
```

### Bevy 0.8 (new)

```rust
impl Material for CustomMaterial {
    fn fragment_shader() -> ShaderRef {
        "custom_material.wgsl".into()
    }
}

#[derive(AsBindGroup, TypeUuid, Debug, Clone)]
#[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
pub struct CustomMaterial {
    #[uniform(0)]
    color: Color,
    #[texture(1)]
    #[sampler(2)]
    color_texture: Handle<Image>,
}
```

## Future Work

* Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check.
* Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint".
    * This would make it possible for the derive to do this:
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            #[uniform]
            color: Color,
            #[texture]
            #[sampler]
            color_texture: Option<Handle<Image>>,
            alpha_mode: AlphaMode,
        }
        ```
    * Or this
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            #[binding]
            color: Color,
            #[binding]
            color_texture: Option<Handle<Image>>,
            alpha_mode: AlphaMode,
        }
        ```
    * Or even this (if we flip to "include bindings by default")
        ```rust
        #[derive(AsBindGroup)]
        pub struct CustomMaterial {
            color: Color,
            color_texture: Option<Handle<Image>>,
            #[binding(ignore)]
            alpha_mode: AlphaMode,
        }
        ```
* If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering!
2022-06-30 23:48:46 +00:00

284 lines
11 KiB
Rust

use crate::{AlphaMode, Material, MaterialPipeline, MaterialPipelineKey, PBR_SHADER_HANDLE};
use bevy_asset::Handle;
use bevy_math::Vec4;
use bevy_reflect::TypeUuid;
use bevy_render::{
color::Color, mesh::MeshVertexBufferLayout, render_asset::RenderAssets, render_resource::*,
texture::Image,
};
/// A material with "standard" properties used in PBR lighting
/// Standard property values with pictures here
/// <https://google.github.io/filament/Material%20Properties.pdf>.
///
/// May be created directly from a [`Color`] or an [`Image`].
#[derive(AsBindGroup, Debug, Clone, TypeUuid)]
#[uuid = "7494888b-c082-457b-aacf-517228cc0c22"]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
pub struct StandardMaterial {
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
/// in between. If used together with a base_color_texture, this is factored into the final
/// base color as `base_color * base_color_texture_value`
pub base_color: Color,
#[texture(1)]
#[sampler(2)]
pub base_color_texture: Option<Handle<Image>>,
// Use a color for user friendliness even though we technically don't use the alpha channel
// Might be used in the future for exposure correction in HDR
pub emissive: Color,
#[texture(3)]
#[sampler(4)]
pub emissive_texture: Option<Handle<Image>>,
/// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
/// Defaults to minimum of 0.089
/// If used together with a roughness/metallic texture, this is factored into the final base
/// color as `roughness * roughness_texture_value`
pub perceptual_roughness: f32,
/// From [0.0, 1.0], dielectric to pure metallic
/// If used together with a roughness/metallic texture, this is factored into the final base
/// color as `metallic * metallic_texture_value`
pub metallic: f32,
#[texture(5)]
#[sampler(6)]
pub metallic_roughness_texture: Option<Handle<Image>>,
/// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
/// defaults to 0.5 which is mapped to 4% reflectance in the shader
pub reflectance: f32,
#[texture(9)]
#[sampler(10)]
pub normal_map_texture: Option<Handle<Image>>,
/// Normal map textures authored for DirectX have their y-component flipped. Set this to flip
/// it to right-handed conventions.
pub flip_normal_map_y: bool,
#[texture(7)]
#[sampler(8)]
pub occlusion_texture: Option<Handle<Image>>,
/// Support two-sided lighting by automatically flipping the normals for "back" faces
/// within the PBR lighting shader.
/// Defaults to false.
/// This does not automatically configure backface culling, which can be done via
/// `cull_mode`.
pub double_sided: bool,
/// Whether to cull the "front", "back" or neither side of a mesh
/// defaults to `Face::Back`
pub cull_mode: Option<Face>,
pub unlit: bool,
pub alpha_mode: AlphaMode,
pub depth_bias: f32,
}
impl Default for StandardMaterial {
fn default() -> Self {
StandardMaterial {
base_color: Color::rgb(1.0, 1.0, 1.0),
base_color_texture: None,
emissive: Color::BLACK,
emissive_texture: None,
// This is the minimum the roughness is clamped to in shader code
// See <https://google.github.io/filament/Filament.html#materialsystem/parameterization/>
// It's the minimum floating point value that won't be rounded down to 0 in the
// calculations used. Although technically for 32-bit floats, 0.045 could be
// used.
perceptual_roughness: 0.089,
// Few materials are purely dielectric or metallic
// This is just a default for mostly-dielectric
metallic: 0.01,
metallic_roughness_texture: None,
// Minimum real-world reflectance is 2%, most materials between 2-5%
// Expressed in a linear scale and equivalent to 4% reflectance see
// <https://google.github.io/filament/Material%20Properties.pdf>
reflectance: 0.5,
occlusion_texture: None,
normal_map_texture: None,
flip_normal_map_y: false,
double_sided: false,
cull_mode: Some(Face::Back),
unlit: false,
alpha_mode: AlphaMode::Opaque,
depth_bias: 0.0,
}
}
}
impl From<Color> for StandardMaterial {
fn from(color: Color) -> Self {
StandardMaterial {
base_color: color,
alpha_mode: if color.a() < 1.0 {
AlphaMode::Blend
} else {
AlphaMode::Opaque
},
..Default::default()
}
}
}
impl From<Handle<Image>> for StandardMaterial {
fn from(texture: Handle<Image>) -> Self {
StandardMaterial {
base_color_texture: Some(texture),
..Default::default()
}
}
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/pbr_types.wgsl!
bitflags::bitflags! {
#[repr(transparent)]
pub struct StandardMaterialFlags: u32 {
const BASE_COLOR_TEXTURE = (1 << 0);
const EMISSIVE_TEXTURE = (1 << 1);
const METALLIC_ROUGHNESS_TEXTURE = (1 << 2);
const OCCLUSION_TEXTURE = (1 << 3);
const DOUBLE_SIDED = (1 << 4);
const UNLIT = (1 << 5);
const ALPHA_MODE_OPAQUE = (1 << 6);
const ALPHA_MODE_MASK = (1 << 7);
const ALPHA_MODE_BLEND = (1 << 8);
const TWO_COMPONENT_NORMAL_MAP = (1 << 9);
const FLIP_NORMAL_MAP_Y = (1 << 10);
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
/// The GPU representation of the uniform data of a [`StandardMaterial`].
#[derive(Clone, Default, ShaderType)]
pub struct StandardMaterialUniform {
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
/// in between.
pub base_color: Vec4,
// Use a color for user friendliness even though we technically don't use the alpha channel
// Might be used in the future for exposure correction in HDR
pub emissive: Vec4,
/// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
/// Defaults to minimum of 0.089
pub roughness: f32,
/// From [0.0, 1.0], dielectric to pure metallic
pub metallic: f32,
/// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
/// defaults to 0.5 which is mapped to 4% reflectance in the shader
pub reflectance: f32,
pub flags: u32,
/// When the alpha mode mask flag is set, any base color alpha above this cutoff means fully opaque,
/// and any below means fully transparent.
pub alpha_cutoff: f32,
}
impl AsBindGroupShaderType<StandardMaterialUniform> for StandardMaterial {
fn as_bind_group_shader_type(&self, images: &RenderAssets<Image>) -> StandardMaterialUniform {
let mut flags = StandardMaterialFlags::NONE;
if self.base_color_texture.is_some() {
flags |= StandardMaterialFlags::BASE_COLOR_TEXTURE;
}
if self.emissive_texture.is_some() {
flags |= StandardMaterialFlags::EMISSIVE_TEXTURE;
}
if self.metallic_roughness_texture.is_some() {
flags |= StandardMaterialFlags::METALLIC_ROUGHNESS_TEXTURE;
}
if self.occlusion_texture.is_some() {
flags |= StandardMaterialFlags::OCCLUSION_TEXTURE;
}
if self.double_sided {
flags |= StandardMaterialFlags::DOUBLE_SIDED;
}
if self.unlit {
flags |= StandardMaterialFlags::UNLIT;
}
let has_normal_map = self.normal_map_texture.is_some();
if has_normal_map {
match images
.get(self.normal_map_texture.as_ref().unwrap())
.unwrap()
.texture_format
{
// All 2-component unorm formats
TextureFormat::Rg8Unorm
| TextureFormat::Rg16Unorm
| TextureFormat::Bc5RgUnorm
| TextureFormat::EacRg11Unorm => {
flags |= StandardMaterialFlags::TWO_COMPONENT_NORMAL_MAP;
}
_ => {}
}
if self.flip_normal_map_y {
flags |= StandardMaterialFlags::FLIP_NORMAL_MAP_Y;
}
}
// NOTE: 0.5 is from the glTF default - do we want this?
let mut alpha_cutoff = 0.5;
match self.alpha_mode {
AlphaMode::Opaque => flags |= StandardMaterialFlags::ALPHA_MODE_OPAQUE,
AlphaMode::Mask(c) => {
alpha_cutoff = c;
flags |= StandardMaterialFlags::ALPHA_MODE_MASK;
}
AlphaMode::Blend => flags |= StandardMaterialFlags::ALPHA_MODE_BLEND,
};
StandardMaterialUniform {
base_color: self.base_color.as_linear_rgba_f32().into(),
emissive: self.emissive.into(),
roughness: self.perceptual_roughness,
metallic: self.metallic,
reflectance: self.reflectance,
flags: flags.bits(),
alpha_cutoff,
}
}
}
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct StandardMaterialKey {
normal_map: bool,
cull_mode: Option<Face>,
}
impl From<&StandardMaterial> for StandardMaterialKey {
fn from(material: &StandardMaterial) -> Self {
StandardMaterialKey {
normal_map: material.normal_map_texture.is_some(),
cull_mode: material.cull_mode,
}
}
}
impl Material for StandardMaterial {
fn specialize(
_pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
_layout: &MeshVertexBufferLayout,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
if key.bind_group_data.normal_map {
descriptor
.fragment
.as_mut()
.unwrap()
.shader_defs
.push(String::from("STANDARDMATERIAL_NORMAL_MAP"));
}
descriptor.primitive.cull_mode = key.bind_group_data.cull_mode;
if let Some(label) = &mut descriptor.label {
*label = format!("pbr_{}", *label).into();
}
Ok(())
}
fn fragment_shader() -> ShaderRef {
PBR_SHADER_HANDLE.typed().into()
}
#[inline]
fn alpha_mode(&self) -> AlphaMode {
self.alpha_mode
}
#[inline]
fn depth_bias(&self) -> f32 {
self.depth_bias
}
}