713b1d8fa4
(This is my first PR here, so I've probably missed some things. Please let me know what else I should do to help you as a reviewer!) # Objective Due to https://github.com/rust-lang/rust/issues/117800, the `derive`'d `PartialEq::eq` on `Entity` isn't as good as it could be. Since that's used in hashtable lookup, let's improve it. ## Solution The derived `PartialEq::eq` short-circuits if the generation doesn't match. However, having a branch there is sub-optimal, especially on 64-bit systems like x64 that could just load the whole `Entity` in one load anyway. Due to complications around `poison` in LLVM and the exact details of what unsafe code is allowed to do with reference in Rust (https://github.com/rust-lang/unsafe-code-guidelines/issues/346), LLVM isn't allowed to completely remove the short-circuiting. `&Entity` is marked `dereferencable(8)` so LLVM knows it's allowed to *load* all 8 bytes -- and does so -- but it has to assume that the `index` might be undef/poison if the `generation` doesn't match, and thus while it finds a way to do it without needing a branch, it has to do something slightly more complicated than optimal to combine the results. (LLVM is allowed to change non-short-circuiting code to use branches, but not the other way around.) Here's a link showing the codegen today: <https://rust.godbolt.org/z/9WzjxrY7c> ```rust #[no_mangle] pub fn demo_eq_ref(a: &Entity, b: &Entity) -> bool { a == b } ``` ends up generating the following assembly: ```asm demo_eq_ref: movq xmm0, qword ptr [rdi] movq xmm1, qword ptr [rsi] pcmpeqd xmm1, xmm0 pshufd xmm0, xmm1, 80 movmskpd eax, xmm0 cmp eax, 3 sete al ret ``` (It's usually not this bad in real uses after inlining and LTO, but it makes a strong demo.) This PR manually implements `PartialEq::eq` *without* short-circuiting, and because that tells LLVM that neither the generations nor the index can be poison, it doesn't need to be so careful and can generate the "just compare the two 64-bit values" code you'd have probably already expected: ```asm demo_eq_ref: mov rax, qword ptr [rsi] cmp qword ptr [rdi], rax sete al ret ``` Since this doesn't change the representation of `Entity`, if it's instead passed by *value*, then each `Entity` is two `u32` registers, and the old and the new code do exactly the same thing. (Other approaches, like changing `Entity` to be `[u32; 2]` or `u64`, affect this case.) This should hopefully merge easily with changes like https://github.com/bevyengine/bevy/pull/9907 that also want to change `Entity`. ## Benchmarks I'm not super-confident that I got my machine fully consistent for benchmarking, but whether I run the old or the new one first I get reasonably consistent results. Here's a fairly typical example of the benchmarks I added in this PR: ![image](https://github.com/bevyengine/bevy/assets/18526288/24226308-4616-4082-b0ff-88fc06285ef1) Building the sets seems to be basically the same. It's usually reported as noise, but sometimes I see a few percent slower or faster. But lookup hits in particular -- since a hit checks that the key is equal -- consistently shows around 10% improvement. `cargo run --example many_cubes --features bevy/trace_tracy --release -- --benchmark` showed as slightly faster with this change, though if I had to bet I'd probably say it's more noise than meaningful (but at least it's not worse either): ![image](https://github.com/bevyengine/bevy/assets/18526288/58bb8c96-9c45-487f-a5ab-544bbfe9fba0) This is my first PR here -- and my first time running Tracy -- so please let me know what else I should run, or run things on your own more reliable machines to double-check. --- ## Changelog (probably not worth including) Changed: micro-optimized `Entity::eq` to help LLVM slightly. ## Migration Guide (I really hope nobody was using this on uninitialized entities where sufficiently tortured `unsafe` could could technically notice that this has changed.) |
||
---|---|---|
.cargo | ||
.github | ||
assets | ||
benches | ||
crates | ||
docs | ||
docs-template | ||
errors | ||
examples | ||
src | ||
tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
Cargo.toml | ||
CHANGELOG.md | ||
clippy.toml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
CREDITS.md | ||
deny.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
rustfmt.toml |
What is Bevy?
Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!
WARNING
Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.
MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.
Design Goals
- Capable: Offer a complete 2D and 3D feature set
- Simple: Easy for newbies to pick up, but infinitely flexible for power users
- Data Focused: Data-oriented architecture using the Entity Component System paradigm
- Modular: Use only what you need. Replace what you don't like
- Fast: App logic should run quickly, and when possible, in parallel
- Productive: Changes should compile quickly ... waiting isn't fun
About
- Features: A quick overview of Bevy's features.
- News: A development blog that covers our progress, plans and shiny new features.
Docs
- The Bevy Book: Bevy's official documentation. The best place to start learning Bevy.
- Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
- Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
- Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.
Community
Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.
- Discord: Bevy's official discord server.
- Reddit: Bevy's official subreddit.
- GitHub Discussions: The best place for questions about Bevy, answered right here!
- Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.
Contributing
If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!
For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!
Getting Started
We recommend checking out The Bevy Book for a full tutorial.
Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:
# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout
To draw a window with standard functionality enabled, use:
use bevy::prelude::*;
fn main(){
App::new()
.add_plugins(DefaultPlugins)
.run();
}
Fast Compiles
Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.
Libraries Used
Bevy is only possible because of the hard work put into these foundational technologies:
- wgpu: modern / low-level / cross-platform graphics library based on the WebGPU API.
- glam-rs: a simple and fast 3D math library for games and graphics
- winit: cross-platform window creation and management in Rust
Bevy Cargo Features
This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.
Third Party Plugins
Plugins are very welcome to extend Bevy's features. Guidelines are available to help integration and usage.
Thanks and Alternatives
Additionally, we would like to thank the Amethyst, macroquad, coffee, ggez, Fyrox, and Piston projects for providing solid examples of game engine development in Rust. If you are looking for a Rust game engine, it is worth considering all of your options. Each engine has different design goals, and some will likely resonate with you more than others.
This project is tested with BrowserStack.
License
Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:
- MIT License (LICENSE-MIT or http://opensource.org/licenses/MIT)
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.
Some of the engine's code carries additional copyright notices and license terms due to their external origins.
These are generally BSD-like, but exact details vary by crate:
If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed.
The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms.
The license field of each crate will also reflect this.
For example, bevy_mikktspace
has code under the Zlib license (as well as a copyright notice when choosing the MIT license).
The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.
Your contributions
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.