mirror of
https://github.com/bevyengine/bevy
synced 2024-12-21 18:43:07 +00:00
aefe1f0739
Co-authored-by: Mike <mike.hsu@gmail.com>
350 lines
12 KiB
Rust
350 lines
12 KiB
Rust
use std::fmt::Debug;
|
|
|
|
use bevy_utils::{
|
|
petgraph::{algo::TarjanScc, graphmap::NodeTrait, prelude::*},
|
|
HashMap, HashSet,
|
|
};
|
|
use fixedbitset::FixedBitSet;
|
|
|
|
use crate::schedule::set::*;
|
|
|
|
/// Unique identifier for a system or system set.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
|
pub enum NodeId {
|
|
System(usize),
|
|
Set(usize),
|
|
}
|
|
|
|
impl NodeId {
|
|
/// Returns the internal integer value.
|
|
pub(crate) fn index(&self) -> usize {
|
|
match self {
|
|
NodeId::System(index) | NodeId::Set(index) => *index,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the identified node is a system.
|
|
pub const fn is_system(&self) -> bool {
|
|
matches!(self, NodeId::System(_))
|
|
}
|
|
|
|
/// Returns `true` if the identified node is a system set.
|
|
pub const fn is_set(&self) -> bool {
|
|
matches!(self, NodeId::Set(_))
|
|
}
|
|
}
|
|
|
|
/// Specifies what kind of edge should be added to the dependency graph.
|
|
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Hash)]
|
|
pub(crate) enum DependencyKind {
|
|
/// A node that should be preceded.
|
|
Before,
|
|
/// A node that should be succeeded.
|
|
After,
|
|
}
|
|
|
|
/// An edge to be added to the dependency graph.
|
|
#[derive(Clone)]
|
|
pub(crate) struct Dependency {
|
|
pub(crate) kind: DependencyKind,
|
|
pub(crate) set: BoxedSystemSet,
|
|
}
|
|
|
|
impl Dependency {
|
|
pub fn new(kind: DependencyKind, set: BoxedSystemSet) -> Self {
|
|
Self { kind, set }
|
|
}
|
|
}
|
|
|
|
/// Configures ambiguity detection for a single system.
|
|
#[derive(Clone, Debug, Default)]
|
|
pub(crate) enum Ambiguity {
|
|
#[default]
|
|
Check,
|
|
/// Ignore warnings with systems in any of these system sets. May contain duplicates.
|
|
IgnoreWithSet(Vec<BoxedSystemSet>),
|
|
/// Ignore all warnings.
|
|
IgnoreAll,
|
|
}
|
|
|
|
#[derive(Clone, Default)]
|
|
pub(crate) struct GraphInfo {
|
|
pub(crate) sets: Vec<BoxedSystemSet>,
|
|
pub(crate) dependencies: Vec<Dependency>,
|
|
pub(crate) ambiguous_with: Ambiguity,
|
|
pub(crate) base_set: Option<BoxedSystemSet>,
|
|
}
|
|
|
|
/// Converts 2D row-major pair of indices into a 1D array index.
|
|
pub(crate) fn index(row: usize, col: usize, num_cols: usize) -> usize {
|
|
debug_assert!(col < num_cols);
|
|
(row * num_cols) + col
|
|
}
|
|
|
|
/// Converts a 1D array index into a 2D row-major pair of indices.
|
|
pub(crate) fn row_col(index: usize, num_cols: usize) -> (usize, usize) {
|
|
(index / num_cols, index % num_cols)
|
|
}
|
|
|
|
/// Stores the results of the graph analysis.
|
|
pub(crate) struct CheckGraphResults<V> {
|
|
/// Boolean reachability matrix for the graph.
|
|
pub(crate) reachable: FixedBitSet,
|
|
/// Pairs of nodes that have a path connecting them.
|
|
pub(crate) connected: HashSet<(V, V)>,
|
|
/// Pairs of nodes that don't have a path connecting them.
|
|
pub(crate) disconnected: Vec<(V, V)>,
|
|
/// Edges that are redundant because a longer path exists.
|
|
pub(crate) transitive_edges: Vec<(V, V)>,
|
|
/// Variant of the graph with no transitive edges.
|
|
pub(crate) transitive_reduction: DiGraphMap<V, ()>,
|
|
/// Variant of the graph with all possible transitive edges.
|
|
// TODO: this will very likely be used by "if-needed" ordering
|
|
#[allow(dead_code)]
|
|
pub(crate) transitive_closure: DiGraphMap<V, ()>,
|
|
}
|
|
|
|
impl<V: NodeTrait + Debug> Default for CheckGraphResults<V> {
|
|
fn default() -> Self {
|
|
Self {
|
|
reachable: FixedBitSet::new(),
|
|
connected: HashSet::new(),
|
|
disconnected: Vec::new(),
|
|
transitive_edges: Vec::new(),
|
|
transitive_reduction: DiGraphMap::new(),
|
|
transitive_closure: DiGraphMap::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Processes a DAG and computes its:
|
|
/// - transitive reduction (along with the set of removed edges)
|
|
/// - transitive closure
|
|
/// - reachability matrix (as a bitset)
|
|
/// - pairs of nodes connected by a path
|
|
/// - pairs of nodes not connected by a path
|
|
///
|
|
/// The algorithm implemented comes from
|
|
/// ["On the calculation of transitive reduction-closure of orders"][1] by Habib, Morvan and Rampon.
|
|
///
|
|
/// [1]: https://doi.org/10.1016/0012-365X(93)90164-O
|
|
pub(crate) fn check_graph<V>(
|
|
graph: &DiGraphMap<V, ()>,
|
|
topological_order: &[V],
|
|
) -> CheckGraphResults<V>
|
|
where
|
|
V: NodeTrait + Debug,
|
|
{
|
|
if graph.node_count() == 0 {
|
|
return CheckGraphResults::default();
|
|
}
|
|
|
|
let n = graph.node_count();
|
|
|
|
// build a copy of the graph where the nodes and edges appear in topsorted order
|
|
let mut map = HashMap::with_capacity(n);
|
|
let mut topsorted = DiGraphMap::<V, ()>::new();
|
|
// iterate nodes in topological order
|
|
for (i, &node) in topological_order.iter().enumerate() {
|
|
map.insert(node, i);
|
|
topsorted.add_node(node);
|
|
// insert nodes as successors to their predecessors
|
|
for pred in graph.neighbors_directed(node, Direction::Incoming) {
|
|
topsorted.add_edge(pred, node, ());
|
|
}
|
|
}
|
|
|
|
let mut reachable = FixedBitSet::with_capacity(n * n);
|
|
let mut connected = HashSet::new();
|
|
let mut disconnected = Vec::new();
|
|
|
|
let mut transitive_edges = Vec::new();
|
|
let mut transitive_reduction = DiGraphMap::<V, ()>::new();
|
|
let mut transitive_closure = DiGraphMap::<V, ()>::new();
|
|
|
|
let mut visited = FixedBitSet::with_capacity(n);
|
|
|
|
// iterate nodes in topological order
|
|
for node in topsorted.nodes() {
|
|
transitive_reduction.add_node(node);
|
|
transitive_closure.add_node(node);
|
|
}
|
|
|
|
// iterate nodes in reverse topological order
|
|
for a in topsorted.nodes().rev() {
|
|
let index_a = *map.get(&a).unwrap();
|
|
// iterate their successors in topological order
|
|
for b in topsorted.neighbors_directed(a, Direction::Outgoing) {
|
|
let index_b = *map.get(&b).unwrap();
|
|
debug_assert!(index_a < index_b);
|
|
if !visited[index_b] {
|
|
// edge <a, b> is not redundant
|
|
transitive_reduction.add_edge(a, b, ());
|
|
transitive_closure.add_edge(a, b, ());
|
|
reachable.insert(index(index_a, index_b, n));
|
|
|
|
let successors = transitive_closure
|
|
.neighbors_directed(b, Direction::Outgoing)
|
|
.collect::<Vec<_>>();
|
|
for c in successors {
|
|
let index_c = *map.get(&c).unwrap();
|
|
debug_assert!(index_b < index_c);
|
|
if !visited[index_c] {
|
|
visited.insert(index_c);
|
|
transitive_closure.add_edge(a, c, ());
|
|
reachable.insert(index(index_a, index_c, n));
|
|
}
|
|
}
|
|
} else {
|
|
// edge <a, b> is redundant
|
|
transitive_edges.push((a, b));
|
|
}
|
|
}
|
|
|
|
visited.clear();
|
|
}
|
|
|
|
// partition pairs of nodes into "connected by path" and "not connected by path"
|
|
for i in 0..(n - 1) {
|
|
// reachable is upper triangular because the nodes were topsorted
|
|
for index in index(i, i + 1, n)..=index(i, n - 1, n) {
|
|
let (a, b) = row_col(index, n);
|
|
let pair = (topological_order[a], topological_order[b]);
|
|
if reachable[index] {
|
|
connected.insert(pair);
|
|
} else {
|
|
disconnected.push(pair);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fill diagonal (nodes reach themselves)
|
|
// for i in 0..n {
|
|
// reachable.set(index(i, i, n), true);
|
|
// }
|
|
|
|
CheckGraphResults {
|
|
reachable,
|
|
connected,
|
|
disconnected,
|
|
transitive_edges,
|
|
transitive_reduction,
|
|
transitive_closure,
|
|
}
|
|
}
|
|
|
|
/// Returns the simple cycles in a strongly-connected component of a directed graph.
|
|
///
|
|
/// The algorithm implemented comes from
|
|
/// ["Finding all the elementary circuits of a directed graph"][1] by D. B. Johnson.
|
|
///
|
|
/// [1]: https://doi.org/10.1137/0204007
|
|
pub fn simple_cycles_in_component<N>(graph: &DiGraphMap<N, ()>, scc: &[N]) -> Vec<Vec<N>>
|
|
where
|
|
N: NodeTrait + Debug,
|
|
{
|
|
let mut cycles = vec![];
|
|
let mut sccs = vec![scc.to_vec()];
|
|
|
|
while let Some(mut scc) = sccs.pop() {
|
|
// only look at nodes and edges in this strongly-connected component
|
|
let mut subgraph = DiGraphMap::new();
|
|
for &node in &scc {
|
|
subgraph.add_node(node);
|
|
}
|
|
|
|
for &node in &scc {
|
|
for successor in graph.neighbors(node) {
|
|
if subgraph.contains_node(successor) {
|
|
subgraph.add_edge(node, successor, ());
|
|
}
|
|
}
|
|
}
|
|
|
|
// path of nodes that may form a cycle
|
|
let mut path = Vec::with_capacity(subgraph.node_count());
|
|
// we mark nodes as "blocked" to avoid finding permutations of the same cycles
|
|
let mut blocked = HashSet::with_capacity(subgraph.node_count());
|
|
// connects nodes along path segments that can't be part of a cycle (given current root)
|
|
// those nodes can be unblocked at the same time
|
|
let mut unblock_together: HashMap<N, HashSet<N>> =
|
|
HashMap::with_capacity(subgraph.node_count());
|
|
// stack for unblocking nodes
|
|
let mut unblock_stack = Vec::with_capacity(subgraph.node_count());
|
|
// nodes can be involved in multiple cycles
|
|
let mut maybe_in_more_cycles: HashSet<N> = HashSet::with_capacity(subgraph.node_count());
|
|
// stack for DFS
|
|
let mut stack = Vec::with_capacity(subgraph.node_count());
|
|
|
|
// we're going to look for all cycles that begin and end at this node
|
|
let root = scc.pop().unwrap();
|
|
// start a path at the root
|
|
path.clear();
|
|
path.push(root);
|
|
// mark this node as blocked
|
|
blocked.insert(root);
|
|
|
|
// DFS
|
|
stack.clear();
|
|
stack.push((root, subgraph.neighbors(root)));
|
|
while !stack.is_empty() {
|
|
let (ref node, successors) = stack.last_mut().unwrap();
|
|
if let Some(next) = successors.next() {
|
|
if next == root {
|
|
// found a cycle
|
|
maybe_in_more_cycles.extend(path.iter());
|
|
cycles.push(path.clone());
|
|
} else if !blocked.contains(&next) {
|
|
// first time seeing `next` on this path
|
|
maybe_in_more_cycles.remove(&next);
|
|
path.push(next);
|
|
blocked.insert(next);
|
|
stack.push((next, subgraph.neighbors(next)));
|
|
continue;
|
|
} else {
|
|
// not first time seeing `next` on this path
|
|
}
|
|
}
|
|
|
|
if successors.peekable().peek().is_none() {
|
|
if maybe_in_more_cycles.contains(node) {
|
|
unblock_stack.push(*node);
|
|
// unblock this node's ancestors
|
|
while let Some(n) = unblock_stack.pop() {
|
|
if blocked.remove(&n) {
|
|
let unblock_predecessors =
|
|
unblock_together.entry(n).or_insert_with(HashSet::new);
|
|
unblock_stack.extend(unblock_predecessors.iter());
|
|
unblock_predecessors.clear();
|
|
}
|
|
}
|
|
} else {
|
|
// if its descendants can be unblocked later, this node will be too
|
|
for successor in subgraph.neighbors(*node) {
|
|
unblock_together
|
|
.entry(successor)
|
|
.or_insert_with(HashSet::new)
|
|
.insert(*node);
|
|
}
|
|
}
|
|
|
|
// remove node from path and DFS stack
|
|
path.pop();
|
|
stack.pop();
|
|
}
|
|
}
|
|
|
|
// remove node from subgraph
|
|
subgraph.remove_node(root);
|
|
|
|
// divide remainder into smaller SCCs
|
|
let mut tarjan_scc = TarjanScc::new();
|
|
tarjan_scc.run(&subgraph, |scc| {
|
|
if scc.len() > 1 {
|
|
sccs.push(scc.to_vec());
|
|
}
|
|
});
|
|
}
|
|
|
|
cycles
|
|
}
|