bevy/crates/bevy_sprite/src/mesh2d/material.rs
lelo 42e6dc8987
Refactor EventReader::iter to read (#9631)
# Objective

- The current `EventReader::iter` has been determined to cause confusion
among new Bevy users. It was suggested by @JoJoJet to rename the method
to better clarify its usage.
- Solves #9624 

## Solution

- Rename `EventReader::iter` to `EventReader::read`.
- Rename `EventReader::iter_with_id` to `EventReader::read_with_id`.
- Rename `ManualEventReader::iter` to `ManualEventReader::read`.
- Rename `ManualEventReader::iter_with_id` to
`ManualEventReader::read_with_id`.

---

## Changelog

- `EventReader::iter` has been renamed to `EventReader::read`.
- `EventReader::iter_with_id` has been renamed to
`EventReader::read_with_id`.
- `ManualEventReader::iter` has been renamed to
`ManualEventReader::read`.
- `ManualEventReader::iter_with_id` has been renamed to
`ManualEventReader::read_with_id`.
- Deprecated `EventReader::iter`
- Deprecated `EventReader::iter_with_id`
- Deprecated `ManualEventReader::iter`
- Deprecated `ManualEventReader::iter_with_id`

## Migration Guide

- Existing usages of `EventReader::iter` and `EventReader::iter_with_id`
will have to be changed to `EventReader::read` and
`EventReader::read_with_id` respectively.
- Existing usages of `ManualEventReader::iter` and
`ManualEventReader::iter_with_id` will have to be changed to
`ManualEventReader::read` and `ManualEventReader::read_with_id`
respectively.
2023-08-30 14:20:03 +00:00

603 lines
21 KiB
Rust

use bevy_app::{App, Plugin};
use bevy_asset::{AddAsset, AssetEvent, AssetServer, Assets, Handle};
use bevy_core_pipeline::{
core_2d::Transparent2d,
tonemapping::{DebandDither, Tonemapping},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::*,
query::ROQueryItem,
system::{
lifetimeless::{Read, SRes},
SystemParamItem,
},
};
use bevy_log::error;
use bevy_reflect::{TypePath, TypeUuid};
use bevy_render::{
extract_component::ExtractComponentPlugin,
mesh::{Mesh, MeshVertexBufferLayout},
prelude::Image,
render_asset::{prepare_assets, RenderAssets},
render_phase::{
AddRenderCommand, DrawFunctions, PhaseItem, RenderCommand, RenderCommandResult,
RenderPhase, SetItemPipeline, TrackedRenderPass,
},
render_resource::{
AsBindGroup, AsBindGroupError, BindGroup, BindGroupLayout, OwnedBindingResource,
PipelineCache, RenderPipelineDescriptor, Shader, ShaderRef, SpecializedMeshPipeline,
SpecializedMeshPipelineError, SpecializedMeshPipelines,
},
renderer::RenderDevice,
texture::FallbackImage,
view::{ComputedVisibility, ExtractedView, Msaa, Visibility, VisibleEntities},
Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_transform::components::{GlobalTransform, Transform};
use bevy_utils::{FloatOrd, HashMap, HashSet};
use std::hash::Hash;
use std::marker::PhantomData;
use crate::{
DrawMesh2d, Mesh2dHandle, Mesh2dPipeline, Mesh2dPipelineKey, Mesh2dUniform, SetMesh2dBindGroup,
SetMesh2dViewBindGroup,
};
/// Materials are used alongside [`Material2dPlugin`] and [`MaterialMesh2dBundle`]
/// to spawn entities that are rendered with a specific [`Material2d`] type. They serve as an easy to use high level
/// way to render [`Mesh2dHandle`] entities with custom shader logic.
///
/// Material2ds must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
///
/// Materials must also implement [`TypeUuid`] so they can be treated as an [`Asset`](bevy_asset::Asset).
///
/// # Example
///
/// Here is a simple Material2d implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
/// check out the [`AsBindGroup`] documentation.
/// ```
/// # use bevy_sprite::{Material2d, MaterialMesh2dBundle};
/// # use bevy_ecs::prelude::*;
/// # use bevy_reflect::{TypeUuid, TypePath};
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderRef}, texture::Image, color::Color};
/// # use bevy_asset::{Handle, AssetServer, Assets};
///
/// #[derive(AsBindGroup, TypeUuid, TypePath, Debug, Clone)]
/// #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"]
/// pub struct CustomMaterial {
/// // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
/// // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
/// #[uniform(0)]
/// color: Color,
/// // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
/// // add the sampler attribute with a different binding index.
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// }
///
/// // All functions on `Material2d` have default impls. You only need to implement the
/// // functions that are relevant for your material.
/// impl Material2d for CustomMaterial {
/// fn fragment_shader() -> ShaderRef {
/// "shaders/custom_material.wgsl".into()
/// }
/// }
///
/// // Spawn an entity using `CustomMaterial`.
/// fn setup(mut commands: Commands, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>) {
/// commands.spawn(MaterialMesh2dBundle {
/// material: materials.add(CustomMaterial {
/// color: Color::RED,
/// color_texture: asset_server.load("some_image.png"),
/// }),
/// ..Default::default()
/// });
/// }
/// ```
/// In WGSL shaders, the material's binding would look like this:
///
/// ```wgsl
/// struct CustomMaterial {
/// color: vec4<f32>,
/// }
///
/// @group(1) @binding(0)
/// var<uniform> material: CustomMaterial;
/// @group(1) @binding(1)
/// var color_texture: texture_2d<f32>;
/// @group(1) @binding(2)
/// var color_sampler: sampler;
/// ```
pub trait Material2d: AsBindGroup + Send + Sync + Clone + TypeUuid + TypePath + Sized {
/// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
/// will be used.
fn vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
/// will be used.
fn fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Customizes the default [`RenderPipelineDescriptor`].
#[allow(unused_variables)]
#[inline]
fn specialize(
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayout,
key: Material2dKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
Ok(())
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material2d`]
/// asset type (which includes [`Material2d`] types).
pub struct Material2dPlugin<M: Material2d>(PhantomData<M>);
impl<M: Material2d> Default for Material2dPlugin<M> {
fn default() -> Self {
Self(Default::default())
}
}
impl<M: Material2d> Plugin for Material2dPlugin<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
fn build(&self, app: &mut App) {
app.add_asset::<M>()
.add_plugins(ExtractComponentPlugin::<Handle<M>>::extract_visible());
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.add_render_command::<Transparent2d, DrawMaterial2d<M>>()
.init_resource::<ExtractedMaterials2d<M>>()
.init_resource::<RenderMaterials2d<M>>()
.init_resource::<SpecializedMeshPipelines<Material2dPipeline<M>>>()
.add_systems(ExtractSchedule, extract_materials_2d::<M>)
.add_systems(
Render,
(
prepare_materials_2d::<M>
.in_set(RenderSet::PrepareAssets)
.after(prepare_assets::<Image>),
queue_material2d_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_materials_2d::<M>),
),
);
}
}
fn finish(&self, app: &mut App) {
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<Material2dPipeline<M>>();
}
}
}
/// Render pipeline data for a given [`Material2d`]
#[derive(Resource)]
pub struct Material2dPipeline<M: Material2d> {
pub mesh2d_pipeline: Mesh2dPipeline,
pub material2d_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
marker: PhantomData<M>,
}
pub struct Material2dKey<M: Material2d> {
pub mesh_key: Mesh2dPipelineKey,
pub bind_group_data: M::Data,
}
impl<M: Material2d> Eq for Material2dKey<M> where M::Data: PartialEq {}
impl<M: Material2d> PartialEq for Material2dKey<M>
where
M::Data: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
}
}
impl<M: Material2d> Clone for Material2dKey<M>
where
M::Data: Clone,
{
fn clone(&self) -> Self {
Self {
mesh_key: self.mesh_key,
bind_group_data: self.bind_group_data.clone(),
}
}
}
impl<M: Material2d> Hash for Material2dKey<M>
where
M::Data: Hash,
{
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.mesh_key.hash(state);
self.bind_group_data.hash(state);
}
}
impl<M: Material2d> Clone for Material2dPipeline<M> {
fn clone(&self) -> Self {
Self {
mesh2d_pipeline: self.mesh2d_pipeline.clone(),
material2d_layout: self.material2d_layout.clone(),
vertex_shader: self.vertex_shader.clone(),
fragment_shader: self.fragment_shader.clone(),
marker: PhantomData,
}
}
}
impl<M: Material2d> SpecializedMeshPipeline for Material2dPipeline<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
type Key = Material2dKey<M>;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh2d_pipeline.specialize(key.mesh_key, layout)?;
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout = vec![
self.mesh2d_pipeline.view_layout.clone(),
self.material2d_layout.clone(),
self.mesh2d_pipeline.mesh_layout.clone(),
];
M::specialize(&mut descriptor, layout, key)?;
Ok(descriptor)
}
}
impl<M: Material2d> FromWorld for Material2dPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
let material2d_layout = M::bind_group_layout(render_device);
Material2dPipeline {
mesh2d_pipeline: world.resource::<Mesh2dPipeline>().clone(),
material2d_layout,
vertex_shader: match M::vertex_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
fragment_shader: match M::fragment_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
marker: PhantomData,
}
}
}
type DrawMaterial2d<M> = (
SetItemPipeline,
SetMesh2dViewBindGroup<0>,
SetMaterial2dBindGroup<M, 1>,
SetMesh2dBindGroup<2>,
DrawMesh2d,
);
pub struct SetMaterial2dBindGroup<M: Material2d, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: Material2d, const I: usize> RenderCommand<P>
for SetMaterial2dBindGroup<M, I>
{
type Param = SRes<RenderMaterials2d<M>>;
type ViewWorldQuery = ();
type ItemWorldQuery = Read<Handle<M>>;
#[inline]
fn render<'w>(
_item: &P,
_view: (),
material2d_handle: ROQueryItem<'_, Self::ItemWorldQuery>,
materials: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let material2d = materials.into_inner().get(material2d_handle).unwrap();
pass.set_bind_group(I, &material2d.bind_group, &[]);
RenderCommandResult::Success
}
}
#[allow(clippy::too_many_arguments)]
pub fn queue_material2d_meshes<M: Material2d>(
transparent_draw_functions: Res<DrawFunctions<Transparent2d>>,
material2d_pipeline: Res<Material2dPipeline<M>>,
mut pipelines: ResMut<SpecializedMeshPipelines<Material2dPipeline<M>>>,
pipeline_cache: Res<PipelineCache>,
msaa: Res<Msaa>,
render_meshes: Res<RenderAssets<Mesh>>,
render_materials: Res<RenderMaterials2d<M>>,
material2d_meshes: Query<(&Handle<M>, &Mesh2dHandle, &Mesh2dUniform)>,
mut views: Query<(
&ExtractedView,
&VisibleEntities,
Option<&Tonemapping>,
Option<&DebandDither>,
&mut RenderPhase<Transparent2d>,
)>,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
if material2d_meshes.is_empty() {
return;
}
for (view, visible_entities, tonemapping, dither, mut transparent_phase) in &mut views {
let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial2d<M>>();
let mut view_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples())
| Mesh2dPipelineKey::from_hdr(view.hdr);
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= Mesh2dPipelineKey::TONEMAP_IN_SHADER;
view_key |= match tonemapping {
Tonemapping::None => Mesh2dPipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => Mesh2dPipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => {
Mesh2dPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE
}
Tonemapping::AcesFitted => Mesh2dPipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => Mesh2dPipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
Mesh2dPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => Mesh2dPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => Mesh2dPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
};
}
if let Some(DebandDither::Enabled) = dither {
view_key |= Mesh2dPipelineKey::DEBAND_DITHER;
}
}
for visible_entity in &visible_entities.entities {
if let Ok((material2d_handle, mesh2d_handle, mesh2d_uniform)) =
material2d_meshes.get(*visible_entity)
{
if let Some(material2d) = render_materials.get(material2d_handle) {
if let Some(mesh) = render_meshes.get(&mesh2d_handle.0) {
let mesh_key = view_key
| Mesh2dPipelineKey::from_primitive_topology(mesh.primitive_topology);
let pipeline_id = pipelines.specialize(
&pipeline_cache,
&material2d_pipeline,
Material2dKey {
mesh_key,
bind_group_data: material2d.key.clone(),
},
&mesh.layout,
);
let pipeline_id = match pipeline_id {
Ok(id) => id,
Err(err) => {
error!("{}", err);
continue;
}
};
let mesh_z = mesh2d_uniform.transform.w_axis.z;
transparent_phase.add(Transparent2d {
entity: *visible_entity,
draw_function: draw_transparent_pbr,
pipeline: pipeline_id,
// NOTE: Back-to-front ordering for transparent with ascending sort means far should have the
// lowest sort key and getting closer should increase. As we have
// -z in front of the camera, the largest distance is -far with values increasing toward the
// camera. As such we can just use mesh_z as the distance
sort_key: FloatOrd(mesh_z),
// This material is not batched
batch_size: 1,
});
}
}
}
}
}
}
/// Data prepared for a [`Material2d`] instance.
pub struct PreparedMaterial2d<T: Material2d> {
pub bindings: Vec<OwnedBindingResource>,
pub bind_group: BindGroup,
pub key: T::Data,
}
#[derive(Resource)]
pub struct ExtractedMaterials2d<M: Material2d> {
extracted: Vec<(Handle<M>, M)>,
removed: Vec<Handle<M>>,
}
impl<M: Material2d> Default for ExtractedMaterials2d<M> {
fn default() -> Self {
Self {
extracted: Default::default(),
removed: Default::default(),
}
}
}
/// Stores all prepared representations of [`Material2d`] assets for as long as they exist.
#[derive(Resource, Deref, DerefMut)]
pub struct RenderMaterials2d<T: Material2d>(HashMap<Handle<T>, PreparedMaterial2d<T>>);
impl<T: Material2d> Default for RenderMaterials2d<T> {
fn default() -> Self {
Self(Default::default())
}
}
/// This system extracts all created or modified assets of the corresponding [`Material2d`] type
/// into the "render world".
pub fn extract_materials_2d<M: Material2d>(
mut commands: Commands,
mut events: Extract<EventReader<AssetEvent<M>>>,
assets: Extract<Res<Assets<M>>>,
) {
let mut changed_assets = HashSet::default();
let mut removed = Vec::new();
for event in events.read() {
match event {
AssetEvent::Created { handle } | AssetEvent::Modified { handle } => {
changed_assets.insert(handle.clone_weak());
}
AssetEvent::Removed { handle } => {
changed_assets.remove(handle);
removed.push(handle.clone_weak());
}
}
}
let mut extracted_assets = Vec::new();
for handle in changed_assets.drain() {
if let Some(asset) = assets.get(&handle) {
extracted_assets.push((handle, asset.clone()));
}
}
commands.insert_resource(ExtractedMaterials2d {
extracted: extracted_assets,
removed,
});
}
/// All [`Material2d`] values of a given type that should be prepared next frame.
pub struct PrepareNextFrameMaterials<M: Material2d> {
assets: Vec<(Handle<M>, M)>,
}
impl<M: Material2d> Default for PrepareNextFrameMaterials<M> {
fn default() -> Self {
Self {
assets: Default::default(),
}
}
}
/// This system prepares all assets of the corresponding [`Material2d`] type
/// which where extracted this frame for the GPU.
pub fn prepare_materials_2d<M: Material2d>(
mut prepare_next_frame: Local<PrepareNextFrameMaterials<M>>,
mut extracted_assets: ResMut<ExtractedMaterials2d<M>>,
mut render_materials: ResMut<RenderMaterials2d<M>>,
render_device: Res<RenderDevice>,
images: Res<RenderAssets<Image>>,
fallback_image: Res<FallbackImage>,
pipeline: Res<Material2dPipeline<M>>,
) {
let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
for (handle, material) in queued_assets {
match prepare_material2d(
&material,
&render_device,
&images,
&fallback_image,
&pipeline,
) {
Ok(prepared_asset) => {
render_materials.insert(handle, prepared_asset);
}
Err(AsBindGroupError::RetryNextUpdate) => {
prepare_next_frame.assets.push((handle, material));
}
}
}
for removed in std::mem::take(&mut extracted_assets.removed) {
render_materials.remove(&removed);
}
for (handle, material) in std::mem::take(&mut extracted_assets.extracted) {
match prepare_material2d(
&material,
&render_device,
&images,
&fallback_image,
&pipeline,
) {
Ok(prepared_asset) => {
render_materials.insert(handle, prepared_asset);
}
Err(AsBindGroupError::RetryNextUpdate) => {
prepare_next_frame.assets.push((handle, material));
}
}
}
}
fn prepare_material2d<M: Material2d>(
material: &M,
render_device: &RenderDevice,
images: &RenderAssets<Image>,
fallback_image: &FallbackImage,
pipeline: &Material2dPipeline<M>,
) -> Result<PreparedMaterial2d<M>, AsBindGroupError> {
let prepared = material.as_bind_group(
&pipeline.material2d_layout,
render_device,
images,
fallback_image,
)?;
Ok(PreparedMaterial2d {
bindings: prepared.bindings,
bind_group: prepared.bind_group,
key: prepared.data,
})
}
/// A component bundle for entities with a [`Mesh2dHandle`] and a [`Material2d`].
#[derive(Bundle, Clone)]
pub struct MaterialMesh2dBundle<M: Material2d> {
pub mesh: Mesh2dHandle,
pub material: Handle<M>,
pub transform: Transform,
pub global_transform: GlobalTransform,
/// User indication of whether an entity is visible
pub visibility: Visibility,
/// Algorithmically-computed indication of whether an entity is visible and should be extracted for rendering
pub computed_visibility: ComputedVisibility,
}
impl<M: Material2d> Default for MaterialMesh2dBundle<M> {
fn default() -> Self {
Self {
mesh: Default::default(),
material: Default::default(),
transform: Default::default(),
global_transform: Default::default(),
visibility: Default::default(),
computed_visibility: Default::default(),
}
}
}