mirror of
https://github.com/bevyengine/bevy
synced 2024-11-27 15:10:19 +00:00
206c7ce219
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR. # Objective - Followup #6587. - Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45 ## Solution - [x] Remove old scheduling module - [x] Migrate new methods to no longer use extension methods - [x] Fix compiler errors - [x] Fix benchmarks - [x] Fix examples - [x] Fix docs - [x] Fix tests ## Changelog ### Added - a large number of methods on `App` to work with schedules ergonomically - the `CoreSchedule` enum - `App::add_extract_system` via the `RenderingAppExtension` trait extension method - the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms` ### Removed - stages, and all code that mentions stages - states have been dramatically simplified, and no longer use a stack - `RunCriteriaLabel` - `AsSystemLabel` trait - `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition) - systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world - `RunCriteriaLabel` - `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear. ### Changed - `System::default_labels` is now `System::default_system_sets`. - `App::add_default_labels` is now `App::add_default_sets` - `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet` - `App::add_system_set` was renamed to `App::add_systems` - The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum - `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)` - `SystemLabel` trait was replaced by `SystemSet` - `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>` - The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq` - Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria. - Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. - `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`. - `bevy_pbr::add_clusters` is no longer an exclusive system - the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling` - `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread. ## Migration Guide - Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)` - Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed. - The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved. - Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior. - Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you. - For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with - `add_system(my_system.in_set(CoreSet::PostUpdate)` - When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages - Run criteria have been renamed to run conditions. These can now be combined with each other and with states. - Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow. - For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label. - Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default. - Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually. - Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`. - the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior. - the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity - `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl. - Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings. - `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds. - `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool. - States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set` ## TODO - [x] remove dead methods on App and World - [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule` - [x] avoid adding the default system set at inappropriate times - [x] remove any accidental cycles in the default plugins schedule - [x] migrate benchmarks - [x] expose explicit labels for the built-in command flush points - [x] migrate engine code - [x] remove all mentions of stages from the docs - [x] verify docs for States - [x] fix uses of exclusive systems that use .end / .at_start / .before_commands - [x] migrate RenderStage and AssetStage - [x] migrate examples - [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub) - [x] ensure that on_enter schedules are run at least once before the main app - [x] re-enable opt-in to execution order ambiguities - [x] revert change to `update_bounds` to ensure it runs in `PostUpdate` - [x] test all examples - [x] unbreak directional lights - [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples) - [x] game menu example shows loading screen and menu simultaneously - [x] display settings menu is a blank screen - [x] `without_winit` example panics - [x] ensure all tests pass - [x] SubApp doc test fails - [x] runs_spawn_local tasks fails - [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120) ## Points of Difficulty and Controversy **Reviewers, please give feedback on these and look closely** 1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup. 2. The outer schedule controls which schedule is run when `App::update` is called. 3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes. 4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset. 5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order 6. Implemetnation strategy for fixed timesteps 7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks. 8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements. ## Future Work (ideally before 0.10) - Rename schedule_v3 module to schedule or scheduling - Add a derive macro to states, and likely a `EnumIter` trait of some form - Figure out what exactly to do with the "systems added should basically work by default" problem - Improve ergonomics for working with fixed timesteps and states - Polish FixedTime API to match Time - Rebase and merge #7415 - Resolve all internal ambiguities (blocked on better tools, especially #7442) - Add "base sets" to replace the removed default sets.
307 lines
8.9 KiB
Markdown
307 lines
8.9 KiB
Markdown
# Bevy ECS
|
|
|
|
[![Crates.io](https://img.shields.io/crates/v/bevy_ecs.svg)](https://crates.io/crates/bevy_ecs)
|
|
[![license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/bevyengine/bevy/blob/HEAD/LICENSE)
|
|
[![Discord](https://img.shields.io/discord/691052431525675048.svg?label=&logo=discord&logoColor=ffffff&color=7389D8&labelColor=6A7EC2)](https://discord.gg/bevy)
|
|
|
|
## What is Bevy ECS?
|
|
|
|
Bevy ECS is an Entity Component System custom-built for the [Bevy][bevy] game engine.
|
|
It aims to be simple to use, ergonomic, fast, massively parallel, opinionated, and featureful.
|
|
It was created specifically for Bevy's needs, but it can easily be used as a standalone crate in other projects.
|
|
|
|
## ECS
|
|
|
|
All app logic in Bevy uses the Entity Component System paradigm, which is often shortened to ECS. ECS is a software pattern that involves breaking your program up into Entities, Components, and Systems. Entities are unique "things" that are assigned groups of Components, which are then processed using Systems.
|
|
|
|
For example, one entity might have a `Position` and `Velocity` component, whereas another entity might have a `Position` and `UI` component. You might have a movement system that runs on all entities with a Position and Velocity component.
|
|
|
|
The ECS pattern encourages clean, decoupled designs by forcing you to break up your app data and logic into its core components. It also helps make your code faster by optimizing memory access patterns and making parallelism easier.
|
|
|
|
## Concepts
|
|
|
|
Bevy ECS is Bevy's implementation of the ECS pattern. Unlike other Rust ECS implementations, which often require complex lifetimes, traits, builder patterns, or macros, Bevy ECS uses normal Rust data types for all of these concepts:
|
|
|
|
### Components
|
|
|
|
Components are normal Rust structs. They are data stored in a `World` and specific instances of Components correlate to Entities.
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
```
|
|
|
|
### Worlds
|
|
|
|
Entities, Components, and Resources are stored in a `World`. Worlds, much like Rust std collections like HashSet and Vec, expose operations to insert, read, write, and remove the data they store.
|
|
|
|
```rust
|
|
use bevy_ecs::world::World;
|
|
|
|
let world = World::default();
|
|
```
|
|
|
|
### Entities
|
|
|
|
Entities are unique identifiers that correlate to zero or more Components.
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
#[derive(Component)]
|
|
struct Velocity { x: f32, y: f32 }
|
|
|
|
let mut world = World::new();
|
|
|
|
let entity = world
|
|
.spawn((Position { x: 0.0, y: 0.0 }, Velocity { x: 1.0, y: 0.0 }))
|
|
.id();
|
|
|
|
let entity_ref = world.entity(entity);
|
|
let position = entity_ref.get::<Position>().unwrap();
|
|
let velocity = entity_ref.get::<Velocity>().unwrap();
|
|
```
|
|
|
|
### Systems
|
|
|
|
Systems are normal Rust functions. Thanks to the Rust type system, Bevy ECS can use function parameter types to determine what data needs to be sent to the system. It also uses this "data access" information to determine what Systems can run in parallel with each other.
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
|
|
fn print_position(query: Query<(Entity, &Position)>) {
|
|
for (entity, position) in &query {
|
|
println!("Entity {:?} is at position: x {}, y {}", entity, position.x, position.y);
|
|
}
|
|
}
|
|
```
|
|
|
|
### Resources
|
|
|
|
Apps often require unique resources, such as asset collections, renderers, audio servers, time, etc. Bevy ECS makes this pattern a first class citizen. `Resource` is a special kind of component that does not belong to any entity. Instead, it is identified uniquely by its type:
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Resource, Default)]
|
|
struct Time {
|
|
seconds: f32,
|
|
}
|
|
|
|
let mut world = World::new();
|
|
|
|
world.insert_resource(Time::default());
|
|
|
|
let time = world.get_resource::<Time>().unwrap();
|
|
|
|
// You can also access resources from Systems
|
|
fn print_time(time: Res<Time>) {
|
|
println!("{}", time.seconds);
|
|
}
|
|
```
|
|
|
|
The [`resources.rs`](examples/resources.rs) example illustrates how to read and write a Counter resource from Systems.
|
|
|
|
### Schedules
|
|
|
|
Schedules run a set of Systems according to some execution strategy.
|
|
Systems can be added to any number of System Sets, which are used to control their scheduling metadata.
|
|
|
|
The built in "parallel executor" considers dependencies between systems and (by default) run as many of them in parallel as possible. This maximizes performance, while keeping the system execution safe. To control the system ordering, define explicit dependencies between systems and their sets.
|
|
|
|
## Using Bevy ECS
|
|
|
|
Bevy ECS should feel very natural for those familiar with Rust syntax:
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
#[derive(Component)]
|
|
struct Velocity { x: f32, y: f32 }
|
|
|
|
// This system moves each entity with a Position and Velocity component
|
|
fn movement(mut query: Query<(&mut Position, &Velocity)>) {
|
|
for (mut position, velocity) in &mut query {
|
|
position.x += velocity.x;
|
|
position.y += velocity.y;
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
// Create a new empty World to hold our Entities and Components
|
|
let mut world = World::new();
|
|
|
|
// Spawn an entity with Position and Velocity components
|
|
world.spawn((
|
|
Position { x: 0.0, y: 0.0 },
|
|
Velocity { x: 1.0, y: 0.0 },
|
|
));
|
|
|
|
// Create a new Schedule, which defines an execution strategy for Systems
|
|
let mut schedule = Schedule::default();
|
|
|
|
// Add our system to the schedule
|
|
schedule.add_system(movement);
|
|
|
|
// Run the schedule once. If your app has a "loop", you would run this once per loop
|
|
schedule.run(&mut world);
|
|
}
|
|
```
|
|
|
|
## Features
|
|
|
|
### Query Filters
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
#[derive(Component)]
|
|
struct Player;
|
|
#[derive(Component)]
|
|
struct Alive;
|
|
|
|
// Gets the Position component of all Entities with Player component and without the Alive
|
|
// component.
|
|
fn system(query: Query<&Position, (With<Player>, Without<Alive>)>) {
|
|
for position in &query {
|
|
}
|
|
}
|
|
```
|
|
|
|
### Change Detection
|
|
|
|
Bevy ECS tracks _all_ changes to Components and Resources.
|
|
|
|
Queries can filter for changed Components:
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
#[derive(Component)]
|
|
struct Velocity { x: f32, y: f32 }
|
|
|
|
// Gets the Position component of all Entities whose Velocity has changed since the last run of the System
|
|
fn system_changed(query: Query<&Position, Changed<Velocity>>) {
|
|
for position in &query {
|
|
}
|
|
}
|
|
|
|
// Gets the Position component of all Entities that had a Velocity component added since the last run of the System
|
|
fn system_added(query: Query<&Position, Added<Velocity>>) {
|
|
for position in &query {
|
|
}
|
|
}
|
|
```
|
|
|
|
Resources also expose change state:
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Resource)]
|
|
struct Time(f32);
|
|
|
|
// Prints "time changed!" if the Time resource has changed since the last run of the System
|
|
fn system(time: Res<Time>) {
|
|
if time.is_changed() {
|
|
println!("time changed!");
|
|
}
|
|
}
|
|
```
|
|
|
|
The [`change_detection.rs`](examples/change_detection.rs) example shows how to query only for updated entities and react on changes in resources.
|
|
|
|
### Component Storage
|
|
|
|
Bevy ECS supports multiple component storage types.
|
|
|
|
Components can be stored in:
|
|
|
|
* **Tables**: Fast and cache friendly iteration, but slower adding and removing of components. This is the default storage type.
|
|
* **Sparse Sets**: Fast adding and removing of components, but slower iteration.
|
|
|
|
Component storage types are configurable, and they default to table storage if the storage is not manually defined.
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Component)]
|
|
struct TableStoredComponent;
|
|
|
|
#[derive(Component)]
|
|
#[component(storage = "SparseSet")]
|
|
struct SparseStoredComponent;
|
|
```
|
|
|
|
### Component Bundles
|
|
|
|
Define sets of Components that should be added together.
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
#[derive(Default, Component)]
|
|
struct Player;
|
|
#[derive(Default, Component)]
|
|
struct Position { x: f32, y: f32 }
|
|
#[derive(Default, Component)]
|
|
struct Velocity { x: f32, y: f32 }
|
|
|
|
#[derive(Bundle, Default)]
|
|
struct PlayerBundle {
|
|
player: Player,
|
|
position: Position,
|
|
velocity: Velocity,
|
|
}
|
|
|
|
let mut world = World::new();
|
|
|
|
// Spawn a new entity and insert the default PlayerBundle
|
|
world.spawn(PlayerBundle::default());
|
|
|
|
// Bundles play well with Rust's struct update syntax
|
|
world.spawn(PlayerBundle {
|
|
position: Position { x: 1.0, y: 1.0 },
|
|
..Default::default()
|
|
});
|
|
```
|
|
|
|
### Events
|
|
|
|
Events offer a communication channel between one or more systems. Events can be sent using the system parameter `EventWriter` and received with `EventReader`.
|
|
|
|
```rust
|
|
use bevy_ecs::prelude::*;
|
|
|
|
struct MyEvent {
|
|
message: String,
|
|
}
|
|
|
|
fn writer(mut writer: EventWriter<MyEvent>) {
|
|
writer.send(MyEvent {
|
|
message: "hello!".to_string(),
|
|
});
|
|
}
|
|
|
|
fn reader(mut reader: EventReader<MyEvent>) {
|
|
for event in reader.iter() {
|
|
}
|
|
}
|
|
```
|
|
|
|
A minimal set up using events can be seen in [`events.rs`](examples/events.rs).
|
|
|
|
[bevy]: https://bevyengine.org/
|