bevy/examples/3d/parallax_mapping.rs
Rob Parrett 7063c86ed4
Fix some typos (#9934)
# Objective

To celebrate the turning of the seasons, I took a small walk through the
codebase guided by the "[code spell
checker](https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker)"
VS Code extension and fixed a few typos.
2023-09-26 19:46:24 +00:00

386 lines
12 KiB
Rust

//! A simple 3D scene with a spinning cube with a normal map and depth map to demonstrate parallax mapping.
//! Press left mouse button to cycle through different views.
use std::fmt;
use bevy::{prelude::*, render::render_resource::TextureFormat, window::close_on_esc};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(Normal(None))
.add_systems(Startup, setup)
.add_systems(
Update,
(
spin,
update_normal,
move_camera,
update_parallax_depth_scale,
update_parallax_layers,
switch_method,
close_on_esc,
),
)
.run();
}
#[derive(Component)]
struct Spin {
speed: f32,
}
/// The camera, used to move camera on click.
#[derive(Component)]
struct CameraController;
const DEPTH_CHANGE_RATE: f32 = 0.1;
const DEPTH_UPDATE_STEP: f32 = 0.03;
const MAX_DEPTH: f32 = 0.3;
struct TargetDepth(f32);
impl Default for TargetDepth {
fn default() -> Self {
TargetDepth(0.09)
}
}
struct TargetLayers(f32);
impl Default for TargetLayers {
fn default() -> Self {
TargetLayers(5.0)
}
}
struct CurrentMethod(ParallaxMappingMethod);
impl Default for CurrentMethod {
fn default() -> Self {
CurrentMethod(ParallaxMappingMethod::Relief { max_steps: 4 })
}
}
impl fmt::Display for CurrentMethod {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.0 {
ParallaxMappingMethod::Occlusion => write!(f, "Parallax Occlusion Mapping"),
ParallaxMappingMethod::Relief { max_steps } => {
write!(f, "Relief Mapping with {max_steps} steps")
}
}
}
}
impl CurrentMethod {
fn next_method(&mut self) {
use ParallaxMappingMethod::*;
self.0 = match self.0 {
Occlusion => Relief { max_steps: 2 },
Relief { max_steps } if max_steps < 3 => Relief { max_steps: 4 },
Relief { max_steps } if max_steps < 5 => Relief { max_steps: 8 },
Relief { .. } => Occlusion,
}
}
}
fn update_parallax_depth_scale(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut target_depth: Local<TargetDepth>,
mut depth_update: Local<bool>,
mut text: Query<&mut Text>,
) {
if input.just_pressed(KeyCode::Key1) {
target_depth.0 -= DEPTH_UPDATE_STEP;
target_depth.0 = target_depth.0.max(0.0);
*depth_update = true;
}
if input.just_pressed(KeyCode::Key2) {
target_depth.0 += DEPTH_UPDATE_STEP;
target_depth.0 = target_depth.0.min(MAX_DEPTH);
*depth_update = true;
}
if *depth_update {
let mut text = text.single_mut();
for (_, mat) in materials.iter_mut() {
let current_depth = mat.parallax_depth_scale;
let new_depth =
current_depth * (1.0 - DEPTH_CHANGE_RATE) + (target_depth.0 * DEPTH_CHANGE_RATE);
mat.parallax_depth_scale = new_depth;
text.sections[0].value = format!("Parallax depth scale: {new_depth:.5}\n");
if (new_depth - current_depth).abs() <= 0.000000001 {
*depth_update = false;
}
}
}
}
fn switch_method(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut text: Query<&mut Text>,
mut current: Local<CurrentMethod>,
) {
if input.just_pressed(KeyCode::Space) {
current.next_method();
} else {
return;
}
let mut text = text.single_mut();
text.sections[2].value = format!("Method: {}\n", *current);
for (_, mat) in materials.iter_mut() {
mat.parallax_mapping_method = current.0;
}
}
fn update_parallax_layers(
input: Res<Input<KeyCode>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut target_layers: Local<TargetLayers>,
mut text: Query<&mut Text>,
) {
if input.just_pressed(KeyCode::Key3) {
target_layers.0 -= 1.0;
target_layers.0 = target_layers.0.max(0.0);
} else if input.just_pressed(KeyCode::Key4) {
target_layers.0 += 1.0;
} else {
return;
}
let layer_count = target_layers.0.exp2();
let mut text = text.single_mut();
text.sections[1].value = format!("Layers: {layer_count:.0}\n");
for (_, mat) in materials.iter_mut() {
mat.max_parallax_layer_count = layer_count;
}
}
fn spin(time: Res<Time>, mut query: Query<(&mut Transform, &Spin)>) {
for (mut transform, spin) in query.iter_mut() {
transform.rotate_local_y(spin.speed * time.delta_seconds());
transform.rotate_local_x(spin.speed * time.delta_seconds());
transform.rotate_local_z(-spin.speed * time.delta_seconds());
}
}
// Camera positions to cycle through when left-clicking.
const CAMERA_POSITIONS: &[Transform] = &[
Transform {
translation: Vec3::new(1.5, 1.5, 1.5),
rotation: Quat::from_xyzw(-0.279, 0.364, 0.115, 0.880),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 0.0, 0.2),
rotation: Quat::from_xyzw(0.094, 0.676, 0.116, 0.721),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(2.4, 2.6, -4.3),
rotation: Quat::from_xyzw(0.170, 0.908, 0.308, 0.225),
scale: Vec3::ONE,
},
Transform {
translation: Vec3::new(-1.0, 0.8, -1.2),
rotation: Quat::from_xyzw(-0.004, 0.909, 0.247, -0.335),
scale: Vec3::ONE,
},
];
fn move_camera(
mut camera: Query<&mut Transform, With<CameraController>>,
mut current_view: Local<usize>,
button: Res<Input<MouseButton>>,
) {
let mut camera = camera.single_mut();
if button.just_pressed(MouseButton::Left) {
*current_view = (*current_view + 1) % CAMERA_POSITIONS.len();
}
let target = CAMERA_POSITIONS[*current_view];
camera.translation = camera.translation.lerp(target.translation, 0.2);
camera.rotation = camera.rotation.slerp(target.rotation, 0.2);
}
fn setup(
mut commands: Commands,
mut materials: ResMut<Assets<StandardMaterial>>,
mut meshes: ResMut<Assets<Mesh>>,
mut normal: ResMut<Normal>,
asset_server: Res<AssetServer>,
) {
// The normal map. Note that to generate it in the GIMP image editor, you should
// open the depth map, and do Filters → Generic → Normal Map
// You should enable the "flip X" checkbox.
let normal_handle = asset_server.load("textures/parallax_example/cube_normal.png");
normal.0 = Some(normal_handle);
// Camera
commands.spawn((
Camera3dBundle {
transform: Transform::from_xyz(1.5, 1.5, 1.5).looking_at(Vec3::ZERO, Vec3::Y),
..default()
},
CameraController,
));
// light
commands
.spawn(PointLightBundle {
transform: Transform::from_xyz(1.8, 0.7, -1.1),
point_light: PointLight {
intensity: 226.0,
shadows_enabled: true,
..default()
},
..default()
})
.with_children(|commands| {
// represent the light source as a sphere
let mesh = meshes.add(
shape::Icosphere {
radius: 0.05,
subdivisions: 3,
}
.try_into()
.unwrap(),
);
commands.spawn(PbrBundle { mesh, ..default() });
});
// Plane
commands.spawn(PbrBundle {
mesh: meshes.add(
shape::Plane {
size: 10.0,
subdivisions: 0,
}
.into(),
),
material: materials.add(StandardMaterial {
// standard material derived from dark green, but
// with roughness and reflectance set.
perceptual_roughness: 0.45,
reflectance: 0.18,
..Color::rgb_u8(0, 80, 0).into()
}),
transform: Transform::from_xyz(0.0, -1.0, 0.0),
..default()
});
let mut cube: Mesh = shape::Cube { size: 1.0 }.into();
// NOTE: for normal maps and depth maps to work, the mesh
// needs tangents generated.
cube.generate_tangents().unwrap();
let parallax_depth_scale = TargetDepth::default().0;
let max_parallax_layer_count = TargetLayers::default().0.exp2();
let parallax_mapping_method = CurrentMethod::default();
let parallax_material = materials.add(StandardMaterial {
perceptual_roughness: 0.4,
base_color_texture: Some(asset_server.load("textures/parallax_example/cube_color.png")),
normal_map_texture: normal.0.clone(),
// The depth map is a greyscale texture where black is the highest level and
// white the lowest.
depth_map: Some(asset_server.load("textures/parallax_example/cube_depth.png")),
parallax_depth_scale,
parallax_mapping_method: parallax_mapping_method.0,
max_parallax_layer_count,
..default()
});
commands.spawn((
PbrBundle {
mesh: meshes.add(cube),
material: parallax_material.clone_weak(),
..default()
},
Spin { speed: 0.3 },
));
let mut background_cube: Mesh = shape::Cube { size: 40.0 }.into();
background_cube.generate_tangents().unwrap();
let background_cube = meshes.add(background_cube);
let background_cube_bundle = |translation| {
(
PbrBundle {
transform: Transform::from_translation(translation),
mesh: background_cube.clone(),
material: parallax_material.clone(),
..default()
},
Spin { speed: -0.1 },
)
};
commands.spawn(background_cube_bundle(Vec3::new(45., 0., 0.)));
commands.spawn(background_cube_bundle(Vec3::new(-45., 0., 0.)));
commands.spawn(background_cube_bundle(Vec3::new(0., 0., 45.)));
commands.spawn(background_cube_bundle(Vec3::new(0., 0., -45.)));
let style = TextStyle {
font_size: 20.0,
..default()
};
// example instructions
commands.spawn(
TextBundle::from_sections(vec![
TextSection::new(
format!("Parallax depth scale: {parallax_depth_scale:.5}\n"),
style.clone(),
),
TextSection::new(
format!("Layers: {max_parallax_layer_count:.0}\n"),
style.clone(),
),
TextSection::new(format!("{parallax_mapping_method}\n"), style.clone()),
TextSection::new("\n\n", style.clone()),
TextSection::new("Controls:\n", style.clone()),
TextSection::new("Left click - Change view angle\n", style.clone()),
TextSection::new(
"1/2 - Decrease/Increase parallax depth scale\n",
style.clone(),
),
TextSection::new("3/4 - Decrease/Increase layer count\n", style.clone()),
TextSection::new("Space - Switch parallaxing algorithm\n", style),
])
.with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
}),
);
}
/// Store handle of the normal to later modify its format in [`update_normal`].
#[derive(Resource)]
struct Normal(Option<Handle<Image>>);
/// Work around the default bevy image loader.
///
/// The bevy image loader used by `AssetServer` always loads images in
/// `Srgb` mode, which is usually what it should do,
/// but is incompatible with normal maps.
///
/// Normal maps require a texture in linear color space,
/// so we overwrite the format of the normal map we loaded through `AssetServer`
/// in this system.
///
/// Note that this method of conversion is a last resort workaround. You should
/// get your normal maps from a 3d model file, like gltf.
///
/// In this system, we wait until the image is loaded, immediately
/// change its format and never run the logic afterward.
fn update_normal(
mut already_ran: Local<bool>,
mut images: ResMut<Assets<Image>>,
normal: Res<Normal>,
) {
if *already_ran {
return;
}
if let Some(normal) = normal.0.as_ref() {
if let Some(image) = images.get_mut(normal) {
image.texture_descriptor.format = TextureFormat::Rgba8Unorm;
*already_ran = true;
}
}
}