bevy/crates/bevy_ecs/src/query/world_query.rs
Benjamin Brienen afd0f1322d
Move all_tuples to a new crate (#16161)
# Objective

Fixes #15941

## Solution

Created https://crates.io/crates/variadics_please and moved the code
there; updating references

`bevy_utils/macros` is deleted.

## Testing

cargo check

## Migration Guide

Use `variadics_please::{all_tuples, all_tuples_with_size}` instead of
`bevy::utils::{all_tuples, all_tuples_with_size}`.
2024-12-03 17:41:09 +00:00

250 lines
12 KiB
Rust

use crate::{
archetype::Archetype,
component::{ComponentId, Components, Tick},
entity::Entity,
query::FilteredAccess,
storage::{Table, TableRow},
world::{unsafe_world_cell::UnsafeWorldCell, World},
};
use variadics_please::all_tuples;
/// Types that can be used as parameters in a [`Query`].
/// Types that implement this should also implement either [`QueryData`] or [`QueryFilter`]
///
/// # Safety
///
/// Implementor must ensure that
/// [`update_component_access`], [`matches_component_set`], and [`fetch`]
/// obey the following:
///
/// - For each component mutably accessed by [`fetch`], [`update_component_access`] should add write access unless read or write access has already been added, in which case it should panic.
/// - For each component readonly accessed by [`fetch`], [`update_component_access`] should add read access unless write access has already been added, in which case it should panic.
/// - If `fetch` mutably accesses the same component twice, [`update_component_access`] should panic.
/// - [`update_component_access`] may not add a `Without` filter for a component unless [`matches_component_set`] always returns `false` when the component set contains that component.
/// - [`update_component_access`] may not add a `With` filter for a component unless [`matches_component_set`] always returns `false` when the component set doesn't contain that component.
/// - In cases where the query represents a disjunction (such as an `Or` filter) where each element is a valid [`WorldQuery`], the following rules must be obeyed:
/// - [`matches_component_set`] must be a disjunction of the element's implementations
/// - [`update_component_access`] must replace the filters with a disjunction of filters
/// - Each filter in that disjunction must be a conjunction of the corresponding element's filter with the previous `access`
///
/// When implementing [`update_component_access`], note that `add_read` and `add_write` both also add a `With` filter, whereas `extend_access` does not change the filters.
///
/// [`fetch`]: Self::fetch
/// [`matches_component_set`]: Self::matches_component_set
/// [`Query`]: crate::system::Query
/// [`update_component_access`]: Self::update_component_access
/// [`QueryData`]: crate::query::QueryData
/// [`QueryFilter`]: crate::query::QueryFilter
pub unsafe trait WorldQuery {
/// The item returned by this [`WorldQuery`]
/// For `QueryData` this will be the item returned by the query.
/// For `QueryFilter` this will be either `()`, or a `bool` indicating whether the entity should be included
/// or a tuple of such things.
type Item<'a>;
/// Per archetype/table state used by this [`WorldQuery`] to fetch [`Self::Item`](WorldQuery::Item)
type Fetch<'a>: Clone;
/// State used to construct a [`Self::Fetch`](WorldQuery::Fetch). This will be cached inside [`QueryState`](crate::query::QueryState),
/// so it is best to move as much data / computation here as possible to reduce the cost of
/// constructing [`Self::Fetch`](WorldQuery::Fetch).
type State: Send + Sync + Sized;
/// This function manually implements subtyping for the query items.
fn shrink<'wlong: 'wshort, 'wshort>(item: Self::Item<'wlong>) -> Self::Item<'wshort>;
/// This function manually implements subtyping for the query fetches.
fn shrink_fetch<'wlong: 'wshort, 'wshort>(fetch: Self::Fetch<'wlong>) -> Self::Fetch<'wshort>;
/// Creates a new instance of this fetch.
///
/// # Safety
///
/// - `state` must have been initialized (via [`WorldQuery::init_state`]) using the same `world` passed
/// in to this function.
unsafe fn init_fetch<'w>(
world: UnsafeWorldCell<'w>,
state: &Self::State,
last_run: Tick,
this_run: Tick,
) -> Self::Fetch<'w>;
/// Returns true if (and only if) every table of every archetype matched by this fetch contains
/// all of the matched components. This is used to select a more efficient "table iterator"
/// for "dense" queries. If this returns true, [`WorldQuery::set_table`] must be used before
/// [`WorldQuery::fetch`] can be called for iterators. If this returns false,
/// [`WorldQuery::set_archetype`] must be used before [`WorldQuery::fetch`] can be called for
/// iterators.
const IS_DENSE: bool;
/// Adjusts internal state to account for the next [`Archetype`]. This will always be called on
/// archetypes that match this [`WorldQuery`].
///
/// # Safety
///
/// - `archetype` and `tables` must be from the same [`World`] that [`WorldQuery::init_state`] was called on.
/// - `table` must correspond to `archetype`.
/// - `state` must be the [`State`](Self::State) that `fetch` was initialized with.
unsafe fn set_archetype<'w>(
fetch: &mut Self::Fetch<'w>,
state: &Self::State,
archetype: &'w Archetype,
table: &'w Table,
);
/// Adjusts internal state to account for the next [`Table`]. This will always be called on tables
/// that match this [`WorldQuery`].
///
/// # Safety
///
/// - `table` must be from the same [`World`] that [`WorldQuery::init_state`] was called on.
/// - `state` must be the [`State`](Self::State) that `fetch` was initialized with.
unsafe fn set_table<'w>(fetch: &mut Self::Fetch<'w>, state: &Self::State, table: &'w Table);
/// Sets available accesses for implementors with dynamic access such as [`FilteredEntityRef`](crate::world::FilteredEntityRef)
/// or [`FilteredEntityMut`](crate::world::FilteredEntityMut).
///
/// Called when constructing a [`QueryLens`](crate::system::QueryLens) or calling [`QueryState::from_builder`](super::QueryState::from_builder)
fn set_access(_state: &mut Self::State, _access: &FilteredAccess<ComponentId>) {}
/// Fetch [`Self::Item`](`WorldQuery::Item`) for either the given `entity` in the current [`Table`],
/// or for the given `entity` in the current [`Archetype`]. This must always be called after
/// [`WorldQuery::set_table`] with a `table_row` in the range of the current [`Table`] or after
/// [`WorldQuery::set_archetype`] with a `entity` in the current archetype.
///
/// # Safety
///
/// Must always be called _after_ [`WorldQuery::set_table`] or [`WorldQuery::set_archetype`]. `entity` and
/// `table_row` must be in the range of the current table and archetype.
unsafe fn fetch<'w>(
fetch: &mut Self::Fetch<'w>,
entity: Entity,
table_row: TableRow,
) -> Self::Item<'w>;
/// Adds any component accesses used by this [`WorldQuery`] to `access`.
///
/// Used to check which queries are disjoint and can run in parallel
// This does not have a default body of `{}` because 99% of cases need to add accesses
// and forgetting to do so would be unsound.
fn update_component_access(state: &Self::State, access: &mut FilteredAccess<ComponentId>);
/// Creates and initializes a [`State`](WorldQuery::State) for this [`WorldQuery`] type.
fn init_state(world: &mut World) -> Self::State;
/// Attempts to initialize a [`State`](WorldQuery::State) for this [`WorldQuery`] type using read-only
/// access to [`Components`].
fn get_state(components: &Components) -> Option<Self::State>;
/// Returns `true` if this query matches a set of components. Otherwise, returns `false`.
///
/// Used to check which [`Archetype`]s can be skipped by the query
/// (if none of the [`Component`](crate::component::Component)s match)
fn matches_component_set(
state: &Self::State,
set_contains_id: &impl Fn(ComponentId) -> bool,
) -> bool;
}
macro_rules! impl_tuple_world_query {
($(#[$meta:meta])* $(($name: ident, $state: ident)),*) => {
#[allow(non_snake_case)]
#[allow(clippy::unused_unit)]
$(#[$meta])*
/// SAFETY:
/// `fetch` accesses are the conjunction of the subqueries' accesses
/// This is sound because `update_component_access` adds accesses according to the implementations of all the subqueries.
/// `update_component_access` adds all `With` and `Without` filters from the subqueries.
/// This is sound because `matches_component_set` always returns `false` if any the subqueries' implementations return `false`.
unsafe impl<$($name: WorldQuery),*> WorldQuery for ($($name,)*) {
type Fetch<'w> = ($($name::Fetch<'w>,)*);
type Item<'w> = ($($name::Item<'w>,)*);
type State = ($($name::State,)*);
fn shrink<'wlong: 'wshort, 'wshort>(item: Self::Item<'wlong>) -> Self::Item<'wshort> {
let ($($name,)*) = item;
($(
$name::shrink($name),
)*)
}
fn shrink_fetch<'wlong: 'wshort, 'wshort>(fetch: Self::Fetch<'wlong>) -> Self::Fetch<'wshort> {
let ($($name,)*) = fetch;
($(
$name::shrink_fetch($name),
)*)
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn init_fetch<'w>(_world: UnsafeWorldCell<'w>, state: &Self::State, _last_run: Tick, _this_run: Tick) -> Self::Fetch<'w> {
let ($($name,)*) = state;
// SAFETY: The invariants are uphold by the caller.
($(unsafe { $name::init_fetch(_world, $name, _last_run, _this_run) },)*)
}
const IS_DENSE: bool = true $(&& $name::IS_DENSE)*;
#[inline]
unsafe fn set_archetype<'w>(
_fetch: &mut Self::Fetch<'w>,
_state: &Self::State,
_archetype: &'w Archetype,
_table: &'w Table
) {
let ($($name,)*) = _fetch;
let ($($state,)*) = _state;
// SAFETY: The invariants are uphold by the caller.
$(unsafe { $name::set_archetype($name, $state, _archetype, _table); })*
}
#[inline]
unsafe fn set_table<'w>(_fetch: &mut Self::Fetch<'w>, _state: &Self::State, _table: &'w Table) {
let ($($name,)*) = _fetch;
let ($($state,)*) = _state;
// SAFETY: The invariants are uphold by the caller.
$(unsafe { $name::set_table($name, $state, _table); })*
}
#[inline(always)]
#[allow(clippy::unused_unit)]
unsafe fn fetch<'w>(
_fetch: &mut Self::Fetch<'w>,
_entity: Entity,
_table_row: TableRow
) -> Self::Item<'w> {
let ($($name,)*) = _fetch;
// SAFETY: The invariants are uphold by the caller.
($(unsafe { $name::fetch($name, _entity, _table_row) },)*)
}
fn update_component_access(state: &Self::State, _access: &mut FilteredAccess<ComponentId>) {
let ($($name,)*) = state;
$($name::update_component_access($name, _access);)*
}
#[allow(unused_variables)]
fn init_state(world: &mut World) -> Self::State {
($($name::init_state(world),)*)
}
#[allow(unused_variables)]
fn get_state(components: &Components) -> Option<Self::State> {
Some(($($name::get_state(components)?,)*))
}
fn matches_component_set(state: &Self::State, _set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
let ($($name,)*) = state;
true $(&& $name::matches_component_set($name, _set_contains_id))*
}
}
};
}
all_tuples!(
#[doc(fake_variadic)]
impl_tuple_world_query,
0,
15,
F,
S
);