bevy/examples/2d/mesh2d_manual.rs
Christian Hughes e939d6c33f
Remove remnant EntityHash and related types from bevy_utils (#15039)
# Objective

`EntityHash` and related types were moved from `bevy_utils` to
`bevy_ecs` in #11498, but seemed to have been accidentally reintroduced
a week later in #11707.

## Solution

Remove the old leftover code.

---

## Migration Guide

- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity`.
2024-09-09 15:24:17 +00:00

419 lines
16 KiB
Rust

//! This example shows how to manually render 2d items using "mid level render apis" with a custom
//! pipeline for 2d meshes.
//! It doesn't use the [`Material2d`] abstraction, but changes the vertex buffer to include vertex color.
//! Check out the "mesh2d" example for simpler / higher level 2d meshes.
//!
//! [`Material2d`]: bevy::sprite::Material2d
use bevy::{
color::palettes::basic::YELLOW,
core_pipeline::core_2d::{Transparent2d, CORE_2D_DEPTH_FORMAT},
ecs::entity::EntityHashMap,
math::FloatOrd,
prelude::*,
render::{
mesh::{Indices, MeshVertexAttribute, RenderMesh},
render_asset::{RenderAssetUsages, RenderAssets},
render_phase::{
AddRenderCommand, DrawFunctions, PhaseItemExtraIndex, SetItemPipeline,
ViewSortedRenderPhases,
},
render_resource::{
BlendState, ColorTargetState, ColorWrites, CompareFunction, DepthBiasState,
DepthStencilState, Face, FragmentState, FrontFace, MultisampleState, PipelineCache,
PolygonMode, PrimitiveState, PrimitiveTopology, RenderPipelineDescriptor,
SpecializedRenderPipeline, SpecializedRenderPipelines, StencilFaceState, StencilState,
TextureFormat, VertexBufferLayout, VertexFormat, VertexState, VertexStepMode,
},
texture::BevyDefault,
view::{ExtractedView, ViewTarget, VisibleEntities},
Extract, Render, RenderApp, RenderSet,
},
sprite::{
extract_mesh2d, DrawMesh2d, Material2dBindGroupId, Mesh2dHandle, Mesh2dPipeline,
Mesh2dPipelineKey, Mesh2dTransforms, MeshFlags, RenderMesh2dInstance, SetMesh2dBindGroup,
SetMesh2dViewBindGroup, WithMesh2d,
},
};
use std::f32::consts::PI;
fn main() {
App::new()
.add_plugins((DefaultPlugins, ColoredMesh2dPlugin))
.add_systems(Startup, star)
.run();
}
fn star(
mut commands: Commands,
// We will add a new Mesh for the star being created
mut meshes: ResMut<Assets<Mesh>>,
) {
// Let's define the mesh for the object we want to draw: a nice star.
// We will specify here what kind of topology is used to define the mesh,
// that is, how triangles are built from the vertices. We will use a
// triangle list, meaning that each vertex of the triangle has to be
// specified. We set `RenderAssetUsages::RENDER_WORLD`, meaning this mesh
// will not be accessible in future frames from the `meshes` resource, in
// order to save on memory once it has been uploaded to the GPU.
let mut star = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::RENDER_WORLD,
);
// Vertices need to have a position attribute. We will use the following
// vertices (I hope you can spot the star in the schema).
//
// 1
//
// 10 2
// 9 0 3
// 8 4
// 6
// 7 5
//
// These vertices are specified in 3D space.
let mut v_pos = vec![[0.0, 0.0, 0.0]];
for i in 0..10 {
// The angle between each vertex is 1/10 of a full rotation.
let a = i as f32 * PI / 5.0;
// The radius of inner vertices (even indices) is 100. For outer vertices (odd indices) it's 200.
let r = (1 - i % 2) as f32 * 100.0 + 100.0;
// Add the vertex position.
v_pos.push([r * a.sin(), r * a.cos(), 0.0]);
}
// Set the position attribute
star.insert_attribute(Mesh::ATTRIBUTE_POSITION, v_pos);
// And a RGB color attribute as well
let mut v_color: Vec<u32> = vec![LinearRgba::BLACK.as_u32()];
v_color.extend_from_slice(&[LinearRgba::from(YELLOW).as_u32(); 10]);
star.insert_attribute(
MeshVertexAttribute::new("Vertex_Color", 1, VertexFormat::Uint32),
v_color,
);
// Now, we specify the indices of the vertex that are going to compose the
// triangles in our star. Vertices in triangles have to be specified in CCW
// winding (that will be the front face, colored). Since we are using
// triangle list, we will specify each triangle as 3 vertices
// First triangle: 0, 2, 1
// Second triangle: 0, 3, 2
// Third triangle: 0, 4, 3
// etc
// Last triangle: 0, 1, 10
let mut indices = vec![0, 1, 10];
for i in 2..=10 {
indices.extend_from_slice(&[0, i, i - 1]);
}
star.insert_indices(Indices::U32(indices));
// We can now spawn the entities for the star and the camera
commands.spawn((
// We use a marker component to identify the custom colored meshes
ColoredMesh2d,
// The `Handle<Mesh>` needs to be wrapped in a `Mesh2dHandle` to use 2d rendering instead of 3d
Mesh2dHandle(meshes.add(star)),
// This bundle's components are needed for something to be rendered
SpatialBundle::INHERITED_IDENTITY,
));
// Spawn the camera
commands.spawn(Camera2dBundle::default());
}
/// A marker component for colored 2d meshes
#[derive(Component, Default)]
pub struct ColoredMesh2d;
/// Custom pipeline for 2d meshes with vertex colors
#[derive(Resource)]
pub struct ColoredMesh2dPipeline {
/// this pipeline wraps the standard [`Mesh2dPipeline`]
mesh2d_pipeline: Mesh2dPipeline,
}
impl FromWorld for ColoredMesh2dPipeline {
fn from_world(world: &mut World) -> Self {
Self {
mesh2d_pipeline: Mesh2dPipeline::from_world(world),
}
}
}
// We implement `SpecializedPipeline` to customize the default rendering from `Mesh2dPipeline`
impl SpecializedRenderPipeline for ColoredMesh2dPipeline {
type Key = Mesh2dPipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
// Customize how to store the meshes' vertex attributes in the vertex buffer
// Our meshes only have position and color
let formats = vec![
// Position
VertexFormat::Float32x3,
// Color
VertexFormat::Uint32,
];
let vertex_layout =
VertexBufferLayout::from_vertex_formats(VertexStepMode::Vertex, formats);
let format = match key.contains(Mesh2dPipelineKey::HDR) {
true => ViewTarget::TEXTURE_FORMAT_HDR,
false => TextureFormat::bevy_default(),
};
RenderPipelineDescriptor {
vertex: VertexState {
// Use our custom shader
shader: COLORED_MESH2D_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: vec![],
// Use our custom vertex buffer
buffers: vec![vertex_layout],
},
fragment: Some(FragmentState {
// Use our custom shader
shader: COLORED_MESH2D_SHADER_HANDLE,
shader_defs: vec![],
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend: Some(BlendState::ALPHA_BLENDING),
write_mask: ColorWrites::ALL,
})],
}),
// Use the two standard uniforms for 2d meshes
layout: vec![
// Bind group 0 is the view uniform
self.mesh2d_pipeline.view_layout.clone(),
// Bind group 1 is the mesh uniform
self.mesh2d_pipeline.mesh_layout.clone(),
],
push_constant_ranges: vec![],
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: Some(Face::Back),
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: key.primitive_topology(),
strip_index_format: None,
},
depth_stencil: Some(DepthStencilState {
format: CORE_2D_DEPTH_FORMAT,
depth_write_enabled: false,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled: false,
},
label: Some("colored_mesh2d_pipeline".into()),
}
}
}
// This specifies how to render a colored 2d mesh
type DrawColoredMesh2d = (
// Set the pipeline
SetItemPipeline,
// Set the view uniform as bind group 0
SetMesh2dViewBindGroup<0>,
// Set the mesh uniform as bind group 1
SetMesh2dBindGroup<1>,
// Draw the mesh
DrawMesh2d,
);
// The custom shader can be inline like here, included from another file at build time
// using `include_str!()`, or loaded like any other asset with `asset_server.load()`.
const COLORED_MESH2D_SHADER: &str = r"
// Import the standard 2d mesh uniforms and set their bind groups
#import bevy_sprite::mesh2d_functions
// The structure of the vertex buffer is as specified in `specialize()`
struct Vertex {
@builtin(instance_index) instance_index: u32,
@location(0) position: vec3<f32>,
@location(1) color: u32,
};
struct VertexOutput {
// The vertex shader must set the on-screen position of the vertex
@builtin(position) clip_position: vec4<f32>,
// We pass the vertex color to the fragment shader in location 0
@location(0) color: vec4<f32>,
};
/// Entry point for the vertex shader
@vertex
fn vertex(vertex: Vertex) -> VertexOutput {
var out: VertexOutput;
// Project the world position of the mesh into screen position
let model = mesh2d_functions::get_world_from_local(vertex.instance_index);
out.clip_position = mesh2d_functions::mesh2d_position_local_to_clip(model, vec4<f32>(vertex.position, 1.0));
// Unpack the `u32` from the vertex buffer into the `vec4<f32>` used by the fragment shader
out.color = vec4<f32>((vec4<u32>(vertex.color) >> vec4<u32>(0u, 8u, 16u, 24u)) & vec4<u32>(255u)) / 255.0;
return out;
}
// The input of the fragment shader must correspond to the output of the vertex shader for all `location`s
struct FragmentInput {
// The color is interpolated between vertices by default
@location(0) color: vec4<f32>,
};
/// Entry point for the fragment shader
@fragment
fn fragment(in: FragmentInput) -> @location(0) vec4<f32> {
return in.color;
}
";
/// Plugin that renders [`ColoredMesh2d`]s
pub struct ColoredMesh2dPlugin;
/// Handle to the custom shader with a unique random ID
pub const COLORED_MESH2D_SHADER_HANDLE: Handle<Shader> =
Handle::weak_from_u128(13828845428412094821);
/// Our custom pipeline needs its own instance storage
#[derive(Resource, Deref, DerefMut, Default)]
pub struct RenderColoredMesh2dInstances(EntityHashMap<RenderMesh2dInstance>);
impl Plugin for ColoredMesh2dPlugin {
fn build(&self, app: &mut App) {
// Load our custom shader
let mut shaders = app.world_mut().resource_mut::<Assets<Shader>>();
shaders.insert(
&COLORED_MESH2D_SHADER_HANDLE,
Shader::from_wgsl(COLORED_MESH2D_SHADER, file!()),
);
// Register our custom draw function, and add our render systems
app.get_sub_app_mut(RenderApp)
.unwrap()
.add_render_command::<Transparent2d, DrawColoredMesh2d>()
.init_resource::<SpecializedRenderPipelines<ColoredMesh2dPipeline>>()
.init_resource::<RenderColoredMesh2dInstances>()
.add_systems(
ExtractSchedule,
extract_colored_mesh2d.after(extract_mesh2d),
)
.add_systems(Render, queue_colored_mesh2d.in_set(RenderSet::QueueMeshes));
}
fn finish(&self, app: &mut App) {
// Register our custom pipeline
app.get_sub_app_mut(RenderApp)
.unwrap()
.init_resource::<ColoredMesh2dPipeline>();
}
}
/// Extract the [`ColoredMesh2d`] marker component into the render app
pub fn extract_colored_mesh2d(
mut commands: Commands,
mut previous_len: Local<usize>,
// When extracting, you must use `Extract` to mark the `SystemParam`s
// which should be taken from the main world.
query: Extract<
Query<(Entity, &ViewVisibility, &GlobalTransform, &Mesh2dHandle), With<ColoredMesh2d>>,
>,
mut render_mesh_instances: ResMut<RenderColoredMesh2dInstances>,
) {
let mut values = Vec::with_capacity(*previous_len);
for (entity, view_visibility, transform, handle) in &query {
if !view_visibility.get() {
continue;
}
let transforms = Mesh2dTransforms {
world_from_local: (&transform.affine()).into(),
flags: MeshFlags::empty().bits(),
};
values.push((entity, ColoredMesh2d));
render_mesh_instances.insert(
entity,
RenderMesh2dInstance {
mesh_asset_id: handle.0.id(),
transforms,
material_bind_group_id: Material2dBindGroupId::default(),
automatic_batching: false,
},
);
}
*previous_len = values.len();
commands.insert_or_spawn_batch(values);
}
/// Queue the 2d meshes marked with [`ColoredMesh2d`] using our custom pipeline and draw function
#[allow(clippy::too_many_arguments)]
pub fn queue_colored_mesh2d(
transparent_draw_functions: Res<DrawFunctions<Transparent2d>>,
colored_mesh2d_pipeline: Res<ColoredMesh2dPipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<ColoredMesh2dPipeline>>,
pipeline_cache: Res<PipelineCache>,
render_meshes: Res<RenderAssets<RenderMesh>>,
render_mesh_instances: Res<RenderColoredMesh2dInstances>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
views: Query<(Entity, &VisibleEntities, &ExtractedView, &Msaa)>,
) {
if render_mesh_instances.is_empty() {
return;
}
// Iterate each view (a camera is a view)
for (view_entity, visible_entities, view, msaa) in &views {
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
continue;
};
let draw_colored_mesh2d = transparent_draw_functions.read().id::<DrawColoredMesh2d>();
let mesh_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples())
| Mesh2dPipelineKey::from_hdr(view.hdr);
// Queue all entities visible to that view
for visible_entity in visible_entities.iter::<WithMesh2d>() {
if let Some(mesh_instance) = render_mesh_instances.get(visible_entity) {
let mesh2d_handle = mesh_instance.mesh_asset_id;
let mesh2d_transforms = &mesh_instance.transforms;
// Get our specialized pipeline
let mut mesh2d_key = mesh_key;
if let Some(mesh) = render_meshes.get(mesh2d_handle) {
mesh2d_key |=
Mesh2dPipelineKey::from_primitive_topology(mesh.primitive_topology());
}
let pipeline_id =
pipelines.specialize(&pipeline_cache, &colored_mesh2d_pipeline, mesh2d_key);
let mesh_z = mesh2d_transforms.world_from_local.translation.z;
transparent_phase.add(Transparent2d {
entity: *visible_entity,
draw_function: draw_colored_mesh2d,
pipeline: pipeline_id,
// The 2d render items are sorted according to their z value before rendering,
// in order to get correct transparency
sort_key: FloatOrd(mesh_z),
// This material is not batched
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
}
}
}
}