bevy/crates/bevy_reflect
Joona Aalto f418de8eb6
Rename Direction2d/3d to Dir2/3 (#12189)
# Objective

Split up from #12017, rename Bevy's direction types.

Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.

However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.

This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.

Some examples of what it looks like: (copied from #12017)

```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);

// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```

```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Direction3d::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);

// After
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Dir3::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);
```

```rust
// Before
self.circle(
    Vec3::new(0.0, -2.0, 0.0),
    Direction3d::Y,
    5.0,
    Color::TURQUOISE,
);

// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```

## Solution

Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.

---

## Migration Guide

The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.

## Additional Context

This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
2024-02-28 22:48:43 +00:00
..
bevy_reflect_derive fix some typos (#12038) 2024-02-22 18:55:22 +00:00
examples fix nightly clippy warnings (#6395) 2022-10-28 21:03:01 +00:00
src Rename Direction2d/3d to Dir2/3 (#12189) 2024-02-28 22:48:43 +00:00
Cargo.toml Bump Version after Release (#12020) 2024-02-21 20:58:59 +00:00
README.md add and fix shields in Readmes (#9993) 2023-10-15 00:52:31 +00:00

Bevy Reflect

License Crates.io Downloads Docs Discord

This crate enables you to dynamically interact with Rust types:

  • Derive the Reflect traits
  • Interact with fields using their names (for named structs) or indices (for tuple structs)
  • "Patch" your types with new values
  • Look up nested fields using "path strings"
  • Iterate over struct fields
  • Automatically serialize and deserialize via Serde (without explicit serde impls)
  • Trait "reflection"

Features

Derive the Reflect traits

// this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
    a: u32,
    b: Bar,
    c: Vec<i32>,
    d: Vec<Baz>,
}

// this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);

#[derive(Reflect)]
struct Baz {
    value: f32,
}

// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
    a: 1,
    b: Bar("hello".to_string()),
    c: vec![1, 2],
    d: vec![Baz { value: 3.14 }],
};

Interact with fields using their names

assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);

*foo.get_field_mut::<u32>("a").unwrap() = 2;

assert_eq!(foo.a, 2);

"Patch" your types with new values

let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);

foo.apply(&dynamic_struct);

assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);

Look up nested fields using "path strings"

let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);

Iterate over struct fields

for (i, value: &Reflect) in foo.iter_fields().enumerate() {
    let field_name = foo.name_at(i).unwrap();
    if let Some(value) = value.downcast_ref::<u32>() {
        println!("{} is a u32 with the value: {}", field_name, *value);
    }
}

Automatically serialize and deserialize via Serde (without explicit serde impls)

let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();

let serializer = ReflectSerializer::new(&foo, &registry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();

let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(&registry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();

assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());

Trait "reflection"

Call a trait on a given &dyn Reflect reference without knowing the underlying type!

#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
    value: String,
}

impl DoThing for MyType {
    fn do_thing(&self) -> String {
        format!("{} World!", self.value)
    }
}

#[reflect_trait]
pub trait DoThing {
    fn do_thing(&self) -> String;
}

// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
    value: "Hello".to_string(),
});

// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?

// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default();
type_registry.register::<MyType>();

// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
    .get_type_data::<ReflectDoThing>(reflect_value.type_id())
    .unwrap();

// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();

// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());

// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn DoThing, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn DoThing

Why make this?

The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?

  • Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
  • Sometimes the dynamic way is easier
  • Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)