bevy/crates/bevy_pbr/src/render/clustered_forward.wgsl
Sou1gh0st 462da1e49d
Fix incorrect function calls to hsv_to_rgb in render debug code. (#14260)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/14139

## Solution

- correct the input parameters at these call sites.

## Testing

1. Use a 3D scene example with PBR lighting and shadows enabled, such as
the `shadow_caster_receiver` and `load_gltf` example, for testing.
2. Enable relevant shader defines in crates/bevy_pbr/src/pbr_material.rs
for the StandardMaterial.
```rust
impl Material for StandardMaterial {
    // ...
    fn specialize(
            _pipeline: &MaterialPipeline<Self>,
            descriptor: &mut RenderPipelineDescriptor,
            _layout: &MeshVertexBufferLayoutRef,
            key: MaterialPipelineKey<Self>,
        ) -> Result<(), SpecializedMeshPipelineError> {
            // ...
            // shader_defs.push("CLUSTERED_FORWARD_DEBUG_Z_SLICES".into());
            // shader_defs.push("CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY".into());
            shader_defs.push("DIRECTIONAL_LIGHT_SHADOW_MAP_DEBUG_CASCADES".into());
            // ...
    }
}
``` 

## Showcase
### CLUSTERED_FORWARD_DEBUG_Z_SLICES
- example: examples/3d/shadow_caster_receiver.rs

![Screenshot2024_07_10_143150](https://github.com/bevyengine/bevy/assets/6300263/fbd12712-5cb9-489d-a7d1-ed55f72fb234)

### CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
- example: examples/3d/shadow_caster_receiver.rs

![Screenshot2024_07_10_143312](https://github.com/bevyengine/bevy/assets/6300263/8eca5d7a-27b6-4ff5-9f8d-d10b49b3f990)

### DIRECTIONAL_LIGHT_SHADOW_MAP_DEBUG_CASCADES
For this one, we need to use a large scene and modity the
`CascadeShadowConfigBuilder`, here is a simple patch for the `load_gltf`
example:
```
diff --git a/examples/3d/load_gltf.rs b/examples/3d/load_gltf.rs
index 358446238..9403aa288 100644
--- a/examples/3d/load_gltf.rs
+++ b/examples/3d/load_gltf.rs
@@ -18,7 +18,7 @@ fn main() {
 fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
     commands.spawn((
         Camera3dBundle {
-            transform: Transform::from_xyz(0.7, 0.7, 1.0)
+            transform: Transform::from_xyz(0.7, 0.7, 2.0)
                 .looking_at(Vec3::new(0.0, 0.3, 0.0), Vec3::Y),
             ..default()
         },
@@ -39,30 +39,40 @@ fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
         // We also adjusted the shadow map to be larger since we're
         // only using a single cascade.
         cascade_shadow_config: CascadeShadowConfigBuilder {
-            num_cascades: 1,
-            maximum_distance: 1.6,
+            num_cascades: 5,
+            maximum_distance: 20.0,
             ..default()
         }
         .into(),
         ..default()
     });
+
     commands.spawn(SceneBundle {
         scene: asset_server
             .load(GltfAssetLabel::Scene(0).from_asset("models/FlightHelmet/FlightHelmet.gltf")),
         ..default()
     });
+
+    for i in 1..=10 {
+        commands.spawn(SceneBundle {
+            scene: asset_server
+                .load(GltfAssetLabel::Scene(0).from_asset("models/FlightHelmet/FlightHelmet.gltf")),
+            transform: Transform::from_xyz(i as f32 * 0.5, 0.0, i as f32 * -2.0),
+            ..default()
+        });
+    }
 }
 
 fn animate_light_direction(
     time: Res<Time>,
     mut query: Query<&mut Transform, With<DirectionalLight>>,
 ) {
-    for mut transform in &mut query {
-        transform.rotation = Quat::from_euler(
-            EulerRot::ZYX,
-            0.0,
-            time.elapsed_seconds() * PI / 5.0,
-            -FRAC_PI_4,
-        );
-    }
+    // for mut transform in &mut query {
+    //     transform.rotation = Quat::from_euler(
+    //         EulerRot::ZYX,
+    //         0.0,
+    //         time.elapsed_seconds() * PI / 5.0,
+    //         -FRAC_PI_4,
+    //     );
+    // }
 }
``` 

![Screenshot2024_07_10_145737](https://github.com/bevyengine/bevy/assets/6300263/c5c71894-f9f7-45fa-9b4f-598e324b42d0)

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
2024-07-22 18:25:54 +00:00

128 lines
5.4 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::clustered_forward
#import bevy_pbr::{
mesh_view_bindings as bindings,
utils::rand_f,
}
#import bevy_render::{
color_operations::hsv_to_rgb,
maths::PI_2,
}
// NOTE: Keep in sync with bevy_pbr/src/light.rs
fn view_z_to_z_slice(view_z: f32, is_orthographic: bool) -> u32 {
var z_slice: u32 = 0u;
if is_orthographic {
// NOTE: view_z is correct in the orthographic case
z_slice = u32(floor((view_z - bindings::lights.cluster_factors.z) * bindings::lights.cluster_factors.w));
} else {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
z_slice = u32(log(-view_z) * bindings::lights.cluster_factors.z - bindings::lights.cluster_factors.w + 1.0);
}
// NOTE: We use min as we may limit the far z plane used for clustering to be closer than
// the furthest thing being drawn. This means that we need to limit to the maximum cluster.
return min(z_slice, bindings::lights.cluster_dimensions.z - 1u);
}
fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32, is_orthographic: bool) -> u32 {
let xy = vec2<u32>(floor((frag_coord - bindings::view.viewport.xy) * bindings::lights.cluster_factors.xy));
let z_slice = view_z_to_z_slice(view_z, is_orthographic);
// NOTE: Restricting cluster index to avoid undefined behavior when accessing uniform buffer
// arrays based on the cluster index.
return min(
(xy.y * bindings::lights.cluster_dimensions.x + xy.x) * bindings::lights.cluster_dimensions.z + z_slice,
bindings::lights.cluster_dimensions.w - 1u
);
}
// this must match CLUSTER_COUNT_SIZE in light.rs
const CLUSTER_COUNT_SIZE = 9u;
fn unpack_offset_and_counts(cluster_index: u32) -> vec3<u32> {
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3
return bindings::cluster_offsets_and_counts.data[cluster_index].xyz;
#else
let offset_and_counts = bindings::cluster_offsets_and_counts.data[cluster_index >> 2u][cluster_index & ((1u << 2u) - 1u)];
// [ 31 .. 18 | 17 .. 9 | 8 .. 0 ]
// [ offset | point light count | spot light count ]
return vec3<u32>(
(offset_and_counts >> (CLUSTER_COUNT_SIZE * 2u)) & ((1u << (32u - (CLUSTER_COUNT_SIZE * 2u))) - 1u),
(offset_and_counts >> CLUSTER_COUNT_SIZE) & ((1u << CLUSTER_COUNT_SIZE) - 1u),
offset_and_counts & ((1u << CLUSTER_COUNT_SIZE) - 1u),
);
#endif
}
fn get_clusterable_object_id(index: u32) -> u32 {
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3
return bindings::clusterable_object_index_lists.data[index];
#else
// The index is correct but in clusterable_object_index_lists we pack 4 u8s into a u32
// This means the index into clusterable_object_index_lists is index / 4
let indices = bindings::clusterable_object_index_lists.data[index >> 4u][(index >> 2u) &
((1u << 2u) - 1u)];
// And index % 4 gives the sub-index of the u8 within the u32 so we shift by 8 * sub-index
return (indices >> (8u * (index & ((1u << 2u) - 1u)))) & ((1u << 8u) - 1u);
#endif
}
fn cluster_debug_visualization(
input_color: vec4<f32>,
view_z: f32,
is_orthographic: bool,
offset_and_counts: vec3<u32>,
cluster_index: u32,
) -> vec4<f32> {
var output_color = input_color;
// Cluster allocation debug (using 'over' alpha blending)
#ifdef CLUSTERED_FORWARD_DEBUG_Z_SLICES
// NOTE: This debug mode visualises the z-slices
let cluster_overlay_alpha = 0.1;
var z_slice: u32 = view_z_to_z_slice(view_z, is_orthographic);
// A hack to make the colors alternate a bit more
if (z_slice & 1u) == 1u {
z_slice = z_slice + bindings::lights.cluster_dimensions.z / 2u;
}
let slice_color_hsv = vec3(
f32(z_slice) / f32(bindings::lights.cluster_dimensions.z + 1u) * PI_2,
1.0,
0.5
);
let slice_color = hsv_to_rgb(slice_color_hsv);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_Z_SLICES
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COMPLEXITY
// NOTE: This debug mode visualises the number of clusterable objects within
// the cluster that contains the fragment. It shows a sort of cluster
// complexity measure.
let cluster_overlay_alpha = 0.1;
let max_complexity_per_cluster = 64.0;
output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r + cluster_overlay_alpha *
smoothStep(
0.0,
max_complexity_per_cluster,
f32(offset_and_counts[1] + offset_and_counts[2]));
output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g + cluster_overlay_alpha *
(1.0 - smoothStep(
0.0,
max_complexity_per_cluster,
f32(offset_and_counts[1] + offset_and_counts[2])));
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COMPLEXITY
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
// NOTE: Visualizes the cluster to which the fragment belongs
let cluster_overlay_alpha = 0.1;
var rng = cluster_index;
let cluster_color_hsv = vec3(rand_f(&rng) * PI_2, 1.0, 0.5);
let cluster_color = hsv_to_rgb(cluster_color_hsv);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * cluster_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
return output_color;
}