Commit graph

121 commits

Author SHA1 Message Date
François
9d54f33974 Skinned extraction speedup (#4428)
# Objective

- While animating 501 https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BrainStem, I noticed things were getting a little slow
- Looking in tracy, the system `extract_skinned_meshes` is taking a lot of time, with a mean duration of 15.17ms

## Solution

- ~~Use `Vec` instead of a `SmallVec`~~
- ~~Don't use an temporary variable~~
- Compute the affine matrix as an `Affine3A` instead
- Remove the `temp` vec

| |mean|
|---|---|
|base|15.17ms|
|~~vec~~|~~9.31ms~~|
|~~no temp variable~~|~~11.31ms~~|
|removing the temp vector|8.43ms|
|affine|13.21ms|
|all together|7.23ms|
2022-04-07 16:16:36 +00:00
Robert Swain
c5963b4fd5 Use storage buffers for clustered forward point lights (#3989)
# Objective

- Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene
- Fixes #3605 
- Based on top of #4079 

This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR.

## Solution

- Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability
- Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time.
- Appropriate shader defs in the shader code to handle the two cases

## Context on some decisions / open questions

- I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately.
- Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants?


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-04-07 16:16:35 +00:00
James Liu
31bd4ecbbc Mesh Skinning. Attempt #3 (#4238)
# Objective
Load skeletal weights and indices from GLTF files. Animate meshes.

## Solution
 - Load skeletal weights and indices from GLTF files.
 - Added `SkinnedMesh` component and ` SkinnedMeshInverseBindPose` asset
 - Added `extract_skinned_meshes` to extract joint matrices.
 - Added queue phase systems for enqueuing the buffer writes.

Some notes:

 -  This ports part of # #2359 to the current main.
 -  This generates new `BufferVec`s and bind groups every frame. The expectation here is that the number of `Query::get` calls during extract is probably going to be the stronger bottleneck, with up to 256 calls per skinned mesh. Until that is optimized, caching buffers and bind groups is probably a non-concern.
 - Unfortunately, due to the uniform size requirements, this means a 16KB buffer is allocated for every skinned mesh every frame. There's probably a few ways to get around this, but most of them require either compute shaders or storage buffers, which are both incompatible with WebGL2.

Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2022-03-29 18:31:13 +00:00
Boxy
024d98457c yeet unsound lifetime annotations on Query methods (#4243)
# Objective
Continuation of #2964 (I really should have checked other methods when I made that PR)

yeet unsound lifetime annotations on `Query` methods.
Example unsoundness:
```rust
use bevy::prelude::*;

fn main() {
    App::new().add_startup_system(bar).add_system(foo).run();
}

pub fn bar(mut cmds: Commands) {
    let e = cmds.spawn().insert(Foo { a: 10 }).id();
    cmds.insert_resource(e);
}

#[derive(Component, Debug, PartialEq, Eq)]
pub struct Foo {
    a: u32,
}
pub fn foo(mut query: Query<&mut Foo>, e: Res<Entity>) {
    dbg!("hi");
    {
        let data: &Foo = query.get(*e).unwrap();
        let data2: Mut<Foo> = query.get_mut(*e).unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.single();
        let data2: Mut<Foo> = query.single_mut();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.get_single().unwrap();
        let data2: Mut<Foo> = query.get_single_mut().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.iter().next().unwrap();
        let data2: Mut<Foo> = query.iter_mut().next().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let mut opt_data: Option<&Foo> = None;
        let mut opt_data_2: Option<Mut<Foo>> = None;
        query.for_each(|data| opt_data = Some(data));
        query.for_each_mut(|data| opt_data_2 = Some(data));
        assert_eq!(opt_data.unwrap(), &*opt_data_2.unwrap()); // oops UB
    }
    dbg!("bye");
}

```

## Solution
yeet unsound lifetime annotations on `Query` methods

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-22 02:49:41 +00:00
Robert Swain
0529f633f9 KTX2/DDS/.basis compressed texture support (#3884)
# Objective

- Support compressed textures including 'universal' formats (ETC1S, UASTC) and transcoding of them to 
- Support `.dds`, `.ktx2`, and `.basis` files

## Solution

- Fixes https://github.com/bevyengine/bevy/issues/3608 Look there for more details.
- Note that the functionality is all enabled through non-default features. If it is desirable to enable some by default, I can do that.
- The `basis-universal` crate, used for `.basis` file support and for transcoding, is built on bindings against a C++ library. It's not feasible to rewrite in Rust in a short amount of time. There are no Rust alternatives of which I am aware and it's specialised code. In its current state it doesn't support the wasm target, but I don't know for sure. However, it is possible to build the upstream C++ library with emscripten, so there is perhaps a way to add support for web too with some shenanigans.
- There's no support for transcoding from BasisLZ/ETC1S in KTX2 files as it was quite non-trivial to implement and didn't feel important given people could use `.basis` files for ETC1S.
2022-03-15 22:26:46 +00:00
Alice Cecile
557ab9897a Make get_resource (and friends) infallible (#4047)
# Objective

- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).

## Solution

- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.

## Notes

I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.

## Migration Guide

Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.

Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.

## Impact

- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
2022-02-27 22:37:18 +00:00
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
Carter Anderson
98938a8555 Internal Asset Hot Reloading (#3966)
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.

This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.

This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code. 

This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.

Fixes #3660
2022-02-18 22:56:57 +00:00
Carter Anderson
e9f52b9dd2 Move import_path definitions into shader source (#3976)
This enables shaders to (optionally) define their import path inside their source. This has a number of benefits:

1. enables users to define their own custom paths directly in their assets
2. moves the import path "close" to the asset instead of centralized in the plugin definition, which seems "better" to me. 
3. makes "internal hot shader reloading" way more reasonable (see #3966)
4. logically opens the door to importing "parts" of a shader by defining "import_path blocks".

```rust
#define_import_path bevy_pbr::mesh_struct

struct Mesh {
    model: mat4x4<f32>;
    inverse_transpose_model: mat4x4<f32>;
    // 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
    flags: u32;
};

let MESH_FLAGS_SHADOW_RECEIVER_BIT: u32 = 1u;
```
2022-02-18 21:54:03 +00:00
Hennadii Chernyshchyk
458cb7a9e9 Add headless mode (#3439)
# Objective

In this PR I added the ability to opt-out graphical backends. Closes #3155.

## Solution

I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
2022-01-08 10:39:43 +00:00
davier
c2da7800e3 Add 2d meshes and materials (#3460)
# Objective

The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.

## Solution

I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.

~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_

## Remaining work

- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)

## Remaining questions

- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_



Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
François
585d0b8467 remove some mut in queries (#3437)
# Objective

- While reading code, found some queries that are `mut` and not used as such

## Solution

- Remove `mut` when possible


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-26 05:39:46 +00:00
Carter Anderson
963e2f08a2 Materials and MaterialPlugin (#3428)
This adds "high level" `Material` and `SpecializedMaterial` traits, which can be used with a `MaterialPlugin<T: SpecializedMaterial>`. `MaterialPlugin` automatically registers the appropriate resources, draw functions, and queue systems. The `Material` trait is simpler, and should cover most use cases. `SpecializedMaterial` is like `Material`, but it also requires defining a "specialization key" (see #3031). `Material` has a trivial blanket impl of `SpecializedMaterial`, which allows us to use the same types + functions for both.

This makes defining custom 3d materials much simpler (see the `shader_material` example diff) and ensures consistent behavior across all 3d materials (both built in and custom). I ported the built in `StandardMaterial` to `MaterialPlugin`. There is also a new `MaterialMeshBundle<T: SpecializedMaterial>`, which `PbrBundle` aliases to.
2021-12-25 21:45:43 +00:00
Jakob Hellermann
adb3ad399c make sub_app return an &App and add sub_app_mut() -> &mut App (#3309)
It's sometimes useful to have a reference to an app a sub app at the same time, which is only possible with an immutable reference.
2021-12-24 06:57:30 +00:00
François
79d36e7c28 Prepare crevice for vendored release (#3394)
# Objective

- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro

## Solution

- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy

## Remaining

- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-23 22:49:12 +00:00
Nicola Papale
035ec7b763 Implement non-indexed mesh rendering (#3415)
# Objective

Instead of panicking when the `indices` field of a mesh is `None`, actually manage it.

This is just a question of keeping track of the vertex buffer size.

## Notes

* Relying on this change to improve performance on [bevy_debug_lines using the new renderer](https://github.com/Toqozz/bevy_debug_lines/pull/10)
* I'm still new to rendering, my only expertise with wgpu is the learn-wgpu tutorial, likely I'm overlooking something.
2021-12-23 19:19:13 +00:00
François
6c479649bf enable Webgl2 optimisation in pbr under feature (#3291)
# Objective

- 3d examples fail to run in webgl2 because of unsupported texture formats or texture too large

## Solution

- switch to supported formats if a feature is enabled. I choose a feature instead of a build target to not conflict with a potential webgpu support

Very inspired by 6813b2edc5, and need #3290 to work.

I named the feature `webgl2`, but it's only needed if one want to use PBR in webgl2. Examples using only 2D already work.

Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-22 20:59:48 +00:00
Vabka
9a89295a17 Update wgpu to 0.12 and naga to 0.8 (#3375)
# Objective

Fixes #3352
Fixes #3208

## Solution

- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
2021-12-19 03:03:06 +00:00
Dusty DeWeese
73f524f61c Support topologies other than TriangleList (#3349)
# Objective

Fixes https://github.com/bevyengine/bevy/issues/3346

## Solution

I've encoded the topology in the `MeshKey` similar to how MSAA samples are handled.
2021-12-18 20:55:40 +00:00
Robert Swain
c061ec33c8 bevy_pbr2: Fix clustering for orthographic projections (#3316)
# Objective

PBR lighting was broken in the new renderer when using orthographic projections due to the way the depth slicing works for the clusters. Fix it.

## Solution

- The default orthographic projection near plane is 0.0. The perspective projection depth slicing does a division by the near plane which gives a floating point NaN and the clustering all breaks down.
- Orthographic projections have a linear depth mapping, so it made intuitive sense to me to do depth slicing with a linear mapping too. The alternative I saw was to try to handle the near plane being at 0.0 and using the exponential depth slicing, but that felt like a hack that didn't make sense.
- As such, I have added code that detects whether the projection is orthographic based on `projection[3][3] == 1.0` and then implemented the orthographic mapping case throughout (when computing cluster AABBs, and when mapping a view space position (or light) to a cluster id in both the rust and shader code).

## Screenshots
Before:
![before](https://user-images.githubusercontent.com/302146/145847278-5b1bca74-fbad-4cc5-8b49-384f6a377fdc.png)
After:
<img width="1392" alt="Screenshot 2021-12-13 at 16 36 53" src="https://user-images.githubusercontent.com/302146/145847314-6f3a2035-5d87-4896-8032-0c3e35e15b7d.png">
Old renderer (slightly lighter due to slight difference in configured intensity):
<img width="1392" alt="Screenshot 2021-12-13 at 16 42 23" src="https://user-images.githubusercontent.com/302146/145847391-6a5e6fe0-22da-4fc1-a6c7-440543689a63.png">
2021-12-14 23:42:35 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
Renamed from pipelined/bevy_pbr2/src/render/mesh.rs (Browse further)