Commit graph

1349 commits

Author SHA1 Message Date
jeliag
f6b40a6e43
Multiple Configurations for Gizmos (#10342)
# Objective

This PR aims to implement multiple configs for gizmos as discussed in
#9187.

## Solution

Configs for the new `GizmoConfigGroup`s are stored in a
`GizmoConfigStore` resource and can be accesses using a type based key
or iterated over. This type based key doubles as a standardized location
where plugin authors can put their own configuration not covered by the
standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a
default color and toggle to show all AABBs. New configs can be
registered using `app.init_gizmo_group::<T>()` during startup.

When requesting the `Gizmos<T>` system parameter the generic type
determines which config is used. The config structs are available
through the `Gizmos` system parameter allowing for easy access while
drawing your gizmos.

Internally, resources and systems used for rendering (up to an including
the extract system) are generic over the type based key and inserted on
registering a new config.

## Alternatives

The configs could be stored as components on entities with markers which
would make better use of the ECS. I also implemented this approach
([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and
believe that the ergonomic benefits of a central config store outweigh
the decreased use of the ECS.

## Unsafe Code

Implementing system parameter by hand is unsafe but seems to be required
to access the config store once and not on every gizmo draw function
call. This is critical for performance. ~Is there a better way to do
this?~

## Future Work

New gizmos (such as #10038, and ideas from #9400) will require custom
configuration structs. Should there be a new custom config for every
gizmo type, or should we group them together in a common configuration?
(for example `EditorGizmoConfig`, or something more fine-grained)

## Changelog

- Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait
- Added `init_gizmo_group` to `App`
- Added early returns to gizmo drawing increasing performance when
gizmos are disabled
- Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore`
- Changed `Gizmos` system parameter to use type based key to retrieve
config
- Changed resources and systems used for gizmo rendering to be generic
over type based key
- Changed examples (3d_gizmos, 2d_gizmos) to showcase new API

## Migration Guide

- `GizmoConfig` is no longer a resource and has to be accessed through
`GizmoConfigStore` resource. The default config group is
`DefaultGizmoGroup`, but consider using your own custom config group if
applicable.

---------

Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-18 15:52:50 +00:00
GitGhillie
9abf565138
Restore brightness in the remaining three examples after exposure PR (#11389)
# Objective

Fixes #11376
During the development of the exposure settings PR (#11347) all examples
with lighting had to be adjusted, but three were missed or simply didn't
exist yet at the time. This PR restores the brightness in those examples
again:

render_ui_to_texture
asset_loading
hot_asset_reloading

All of them are a bit brighter now compared to before the exposure PR,
but it looks better IMO.
2024-01-17 17:10:21 +00:00
James O'Brien
ea42d14344
Dynamic queries and builder API (#9774)
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.

## Prior Art
 - #6390 
 - #8308 
- #10037

## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.

### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();

let mut query_a = QueryBuilder::<Entity>::new(&mut world)
    .with::<A>()
    .without::<C>()
    .build();
            
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
    .data::<&B>()
    .build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
    .with_id(component_id_a)
// How do I access the data of this component?
    .ref_id(component_id_b)
    .build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
    .with::<B>()
    .transmute::<&A>()
    .build();

query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
    // ...
}

fn system(query: Query<(&A, &B)>) {
    let lens = query.transmute_lens::<&A>();
    let q = lens.query();
    function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
    .ref_id(component_id_a)
    .with(component_id_b)
    .build();

let entity_ref = query.single(&world);

// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.

Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
    comp, c   Create new components
    spawn, s  Spawn entities
    query, q  Query for entities
Enter a command with no parameters for usage.

> c A, B, C, Data 4  
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3

> s A, B, Data 1
Entity spawned with id: 0v0

> s A, C, Data 0
Entity spawned with id: 1v0

> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]

> q B, &mut Data                                                                                     
0v0: Data: [2, 1, 1, 1]

> q B || C, &Data 
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
 - Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.

## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.

---------

Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
2024-01-16 19:16:49 +00:00
JMS55
fcd7c0fc3d
Exposure settings (adopted) (#11347)
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)

Fixes https://github.com/bevyengine/bevy/issues/8369

---

## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.

## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-16 14:53:21 +00:00
Félix Lescaudey de Maneville
135c7240f1
Texture Atlas rework (#5103)
# Objective

> Old MR: #5072 
> ~~Associated UI MR: #5070~~
> Adresses #1618

Unify sprite management

## Solution

- Remove the `Handle<Image>` field in `TextureAtlas` which is the main
cause for all the boilerplate
- Remove the redundant `TextureAtlasSprite` component
- Renamed `TextureAtlas` asset to `TextureAtlasLayout`
([suggestion](https://github.com/bevyengine/bevy/pull/5103#discussion_r917281844))
- Add a `TextureAtlas` component, containing the atlas layout handle and
the section index

The difference between this solution and #5072 is that instead of the
`enum` approach is that we can more easily manipulate texture sheets
without any breaking changes for classic `SpriteBundle`s (@mockersf
[comment](https://github.com/bevyengine/bevy/pull/5072#issuecomment-1165836139))

Also, this approach is more *data oriented* extracting the
`Handle<Image>` and avoiding complex texture atlas manipulations to
retrieve the texture in both applicative and engine code.
With this method, the only difference between a `SpriteBundle` and a
`SpriteSheetBundle` is an **additional** component storing the atlas
handle and the index.

~~This solution can be applied to `bevy_ui` as well (see #5070).~~

EDIT: I also applied this solution to Bevy UI

## Changelog

- (**BREAKING**) Removed `TextureAtlasSprite`
- (**BREAKING**) Renamed `TextureAtlas` to `TextureAtlasLayout`
- (**BREAKING**) `SpriteSheetBundle`:
  - Uses a  `Sprite` instead of a `TextureAtlasSprite` component
- Has a `texture` field containing a `Handle<Image>` like the
`SpriteBundle`
- Has a new `TextureAtlas` component instead of a
`Handle<TextureAtlasLayout>`
- (**BREAKING**) `DynamicTextureAtlasBuilder::add_texture` takes an
additional `&Handle<Image>` parameter
- (**BREAKING**) `TextureAtlasLayout::from_grid` no longer takes a
`Handle<Image>` parameter
- (**BREAKING**) `TextureAtlasBuilder::finish` now returns a
`Result<(TextureAtlasLayout, Handle<Image>), _>`
- `bevy_text`:
  - `GlyphAtlasInfo` stores the texture `Handle<Image>`
  - `FontAtlas` stores the texture `Handle<Image>`
- `bevy_ui`:
- (**BREAKING**) Removed `UiAtlasImage` , the atlas bundle is now
identical to the `ImageBundle` with an additional `TextureAtlas`

## Migration Guide

* Sprites

```diff
fn my_system(
  mut images: ResMut<Assets<Image>>, 
-  mut atlases: ResMut<Assets<TextureAtlas>>, 
+  mut atlases: ResMut<Assets<TextureAtlasLayout>>, 
  asset_server: Res<AssetServer>
) {
    let texture_handle: asset_server.load("my_texture.png");
-   let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None);
+   let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None);
    let layout_handle = atlases.add(layout);
    commands.spawn(SpriteSheetBundle {
-      sprite: TextureAtlasSprite::new(0),
-      texture_atlas: atlas_handle,
+      atlas: TextureAtlas {
+         layout: layout_handle,
+         index: 0
+      },
+      texture: texture_handle,
       ..Default::default()
     });
}
```
* UI


```diff
fn my_system(
  mut images: ResMut<Assets<Image>>, 
-  mut atlases: ResMut<Assets<TextureAtlas>>, 
+  mut atlases: ResMut<Assets<TextureAtlasLayout>>, 
  asset_server: Res<AssetServer>
) {
    let texture_handle: asset_server.load("my_texture.png");
-   let layout = TextureAtlas::from_grid(texture_handle, Vec2::new(25.0, 25.0), 5, 5, None, None);
+   let layout = TextureAtlasLayout::from_grid(Vec2::new(25.0, 25.0), 5, 5, None, None);
    let layout_handle = atlases.add(layout);
    commands.spawn(AtlasImageBundle {
-      texture_atlas_image: UiTextureAtlasImage {
-           index: 0,
-           flip_x: false,
-           flip_y: false,
-       },
-      texture_atlas: atlas_handle,
+      atlas: TextureAtlas {
+         layout: layout_handle,
+         index: 0
+      },
+      image: UiImage {
+           texture: texture_handle,
+           flip_x: false,
+           flip_y: false,
+       },
       ..Default::default()
     });
}
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2024-01-16 13:59:08 +00:00
Roman Salnikov
eb9db21113
Camera-driven UI (#10559)
# Objective

Add support for presenting each UI tree on a specific window and
viewport, while making as few breaking changes as possible.

This PR is meant to resolve the following issues at once, since they're
all related.

- Fixes #5622 
- Fixes #5570 
- Fixes #5621 

Adopted #5892 , but started over since the current codebase diverged
significantly from the original PR branch. Also, I made a decision to
propagate component to children instead of recursively iterating over
nodes in search for the root.


## Solution

Add a new optional component that can be inserted to UI root nodes and
propagate to children to specify which camera it should render onto.
This is then used to get the render target and the viewport for that UI
tree. Since this component is optional, the default behavior should be
to render onto the single camera (if only one exist) and warn of
ambiguity if multiple cameras exist. This reduces the complexity for
users with just one camera, while giving control in contexts where it
matters.

## Changelog

- Adds `TargetCamera(Entity)` component to specify which camera should a
node tree be rendered into. If only one camera exists, this component is
optional.
- Adds an example of rendering UI to a texture and using it as a
material in a 3D world.
- Fixes recalculation of physical viewport size when target scale factor
changes. This can happen when the window is moved between displays with
different DPI.
- Changes examples to demonstrate assigning UI to different viewports
and windows and make interactions in an offset viewport testable.
- Removes `UiCameraConfig`. UI visibility now can be controlled via
combination of explicit `TargetCamera` and `Visibility` on the root
nodes.

---------

Co-authored-by: davier <bricedavier@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-01-16 00:39:10 +00:00
Félix Lescaudey de Maneville
01139b3472
Sprite slicing and tiling (#10588)
> Replaces #5213

# Objective

Implement sprite tiling and [9 slice
scaling](https://en.wikipedia.org/wiki/9-slice_scaling) for
`bevy_sprite`.
Allowing slice scaling and texture tiling.

Basic scaling vs 9 slice scaling:


![Traditional_scaling_vs_9-slice_scaling](https://user-images.githubusercontent.com/26703856/177335801-27f6fa27-c569-4ce6-b0e6-4f54e8f4e80a.svg)

Slicing example:

<img width="481" alt="Screenshot 2022-07-05 at 15 05 49"
src="https://user-images.githubusercontent.com/26703856/177336112-9e961af0-c0af-4197-aec9-430c1170a79d.png">

Tiling example:

<img width="1329" alt="Screenshot 2023-11-16 at 13 53 32"
src="https://github.com/bevyengine/bevy/assets/26703856/14db39b7-d9e0-4bc3-ba0e-b1f2db39ae8f">

# Solution

- `SpriteBundlue` now has a `scale_mode` component storing a
`SpriteScaleMode` enum with three variants:
  - `Stretched` (default) 
  - `Tiled` to have sprites tile horizontally and/or vertically
- `Sliced` allowing 9 slicing the texture and optionally tile some
sections with a `Textureslicer`.
- `bevy_sprite` has two extra systems to compute a
`ComputedTextureSlices` if necessary,:
- One system react to changes on `Sprite`, `Handle<Image>` or
`SpriteScaleMode`
- The other listens to `AssetEvent<Image>` to compute slices on sprites
when the texture is ready or changed
- I updated the `bevy_sprite` extraction stage to extract potentially
multiple textures instead of one, depending on the presence of
`ComputedTextureSlices`
- I added two examples showcasing the slicing and tiling feature.

The addition of `ComputedTextureSlices` as a cache is to avoid querying
the image data, to retrieve its dimensions, every frame in a extract or
prepare stage. Also it reacts to changes so we can have stuff like this
(tiling example):


https://github.com/bevyengine/bevy/assets/26703856/a349a9f3-33c3-471f-8ef4-a0e5dfce3b01

# Related 

- [ ] Once #5103 or #10099 is merged I can enable tiling and slicing for
texture sheets as ui

# To discuss

There is an other option, to consider slice/tiling as part of the asset,
using the new asset preprocessing but I have no clue on how to do it.

Also, instead of retrieving the Image dimensions, we could use the same
system as the sprite sheet and have the user give the image dimensions
directly (grid). But I think it's less user friendly

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-01-15 15:40:06 +00:00
Charles Bournhonesque
8c6d9b8103
Add support for updating the tracing subscriber in LogPlugin (#10822)
# Objective

This PR is heavily inspired by
https://github.com/bevyengine/bevy/pull/7682
It aims to solve the same problem: allowing the user to extend the
tracing subscriber with extra layers.

(in my case, I'd like to use `use
metrics_tracing_context::{MetricsLayer, TracingContextLayer};`)


## Solution

I'm proposing a different api where the user has the opportunity to take
the existing `subscriber` and apply any transformations on it.

---

## Changelog

- Added a `update_subscriber` option on the `LogPlugin` that lets the
user modify the `subscriber` (for example to extend it with more tracing
`Layers`


## Migration Guide

> This section is optional. If there are no breaking changes, you can
delete this section.

- Added a new field `update_subscriber` in the `LogPlugin`

---------

Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
2024-01-15 15:26:13 +00:00
MiniaczQ
ec5b9eeba7
Extract examples CameraController into a module (#11338)
# Objective

Unify flycam-style camera controller from the examples.

`parallax_mapping` controller was kept as is.

## Solution

Fixed some mouse movement & cursor grabbing related issues too.
2024-01-14 13:50:33 +00:00
Ixentus
e2fd63104d
Simplify conditions (#11316)
# Objective

- Conditions don't have to be closures unless they have state or mutate.

## Solution

- Simplify conditions when possible.

---

## Changelog

The following run conditions are now regular systems:
- resource_exists<T>
- resource_added<T>
- resource_changed<T>
- resource_exists_and_changed<T>
- state_exists<S: States>
- state_changed<S: States>
- any_with_component<T: Component>

## Migration Guide

- resource_exists<T>() -> resource_exists<T>
- resource_added<T>() -> resource_added<T>
- resource_changed<T>() -> resource_changed<T>
- resource_exists_and_changed<T>() -> resource_exists_and_changed<T>
- state_exists<S: States>() -> state_exists<S: States>
- state_changed<S: States>() -> state_changed<S: States>
- any_with_component<T: Component>() -> any_with_component<T: Component>
2024-01-13 13:22:17 +00:00
François
3d996639a0
Revert "Implement minimal reflection probes. (#10057)" (#11307)
# Objective

- Fix working on macOS, iOS, Android on main 
- Fixes #11281 
- Fixes #11282 
- Fixes #11283 
- Fixes #11299

## Solution

- Revert #10057
2024-01-12 20:41:51 +00:00
A. Gadjev
ce5bae55f6
Fixed typo in generate_custom_mesh.rs example (#11293)
# Objective

- Fix a typo in the "Generate Custom Mesh" example

## Solution

- Fixed small typo
2024-01-11 11:29:31 +00:00
Stepan Koltsov
06bf928927
Option to enable deterministic rendering (#11248)
# Objective

Issue #10243: rendering multiple triangles in the same place results in
flickering.

## Solution

Considered these alternatives:
- `depth_bias` may not work, because of high number of entities, so
creating a material per entity is practically not possible
- rendering at slightly different positions does not work, because when
camera is far, float rounding causes the same issues (edit: assuming we
have to use the same `depth_bias`)
- considered implementing deterministic operation like
`query.par_iter().flat_map(...).collect()` to be used in
`check_visibility` system (which would solve the issue since query is
deterministic), and could not figure out how to make it as cheap as
current approach with thread-local collectors (#11249)

So adding an option to sort entities after `check_visibility` system
run.

Should not be too bad, because after visibility check, only a handful
entities remain.

This is probably not the only source of non-determinism in Bevy, but
this is one I could find so far. At least it fixes the repro example.

## Changelog

- `DeterministicRenderingConfig` option to enable deterministic
rendering

## Test

<img width="1392" alt="image"
src="https://github.com/bevyengine/bevy/assets/28969/c735bce1-3a71-44cd-8677-c19f6c0ee6bd">

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-01-09 00:46:01 +00:00
Rob Parrett
9c972f037e
Fix missed explicit conversions in examples (#11261)
# Objective

A few of these were missed in #10878

## Solution

Fix em
2024-01-09 00:44:24 +00:00
irate
ec14e946b8
Update glam, encase and hexasphere (#11082)
Update to `glam` 0.25, `encase` 0.7 and `hexasphere` to 10.0

## Changelog
Added the `FloatExt` trait to the `bevy_math` prelude which adds `lerp`,
`inverse_lerp` and `remap` methods to the `f32` and `f64` types.
2024-01-08 22:58:45 +00:00
Stepan Koltsov
42e990861c
Remove apply_deferred example (#11142)
# Objective

Re this comment:
https://github.com/bevyengine/bevy/pull/11141#issuecomment-1872455313

Since https://github.com/bevyengine/bevy/pull/9822, Bevy automatically
inserts `apply_deferred` between systems with dependencies where needed,
so manually inserted `apply_deferred` doesn't to anything useful, and in
current state this example does more harm than good.

## Solution

The example can be modified with removal of automatic `apply_deferred`
insertion, but that would immediately upgrade this example from beginner
level, to upper intermediate. Most users don't need to disable automatic
sync point insertion, and remaining few who do probably already know how
it works.

CC @hymm
2024-01-08 22:34:32 +00:00
Connor King
1260b7bcf1
StateTransitionEvent (#11089)
# Objective

- Make it possible to react to arbitrary state changes
- this will be useful regardless of the other changes to states
currently being discussed

## Solution

- added `StateTransitionEvent<S>` struct
- previously, this would have been impossible:

```rs
#[derive(States, Eq, PartialEq, Hash, Copy, Clone, Default)]
enum MyState {
  #[default]
  Foo,
  Bar(MySubState),
}

enum MySubState {
  Spam,
  Eggs,
}

app.add_system(Update, on_enter_bar);

fn on_enter_bar(trans: EventReader<StateTransition<MyState>>){
  for (befoare, after) in trans.read() {
    match before, after {
      MyState::Foo, MyState::Bar(_) => info!("detected transition foo => bar");
      _, _ => ();
    }
  }
}
```

---

## Changelog

- Added
  - `StateTransitionEvent<S>` - Fired on state changes of `S`

## Migration Guide

N/A no breaking changes

---------

Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
2024-01-08 22:27:00 +00:00
Joona Aalto
a795de30b4
Use impl Into<A> for Assets::add (#10878)
# Motivation

When spawning entities into a scene, it is very common to create assets
like meshes and materials and to add them via asset handles. A common
setup might look like this:

```rust
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    commands.spawn(PbrBundle {
        mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
        material: materials.add(StandardMaterial::from(Color::RED)),
        ..default()
    });
}
```

Let's take a closer look at the part that adds the assets using `add`.

```rust
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
```

Here, "mesh" and "material" are both repeated three times. It's very
explicit, but I find it to be a bit verbose. In addition to being more
code to read and write, the extra characters can sometimes also lead to
the code being formatted to span multiple lines even though the core
task, adding e.g. a primitive mesh, is extremely simple.

A way to address this is by using `.into()`:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }.into()),
material: materials.add(Color::RED.into()),
```

This is fine, but from the names and the type of `meshes`, we already
know what the type should be. It's very clear that `Cube` should be
turned into a `Mesh` because of the context it's used in. `.into()` is
just seven characters, but it's so common that it quickly adds up and
gets annoying.

It would be nice if you could skip all of the conversion and let Bevy
handle it for you:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
```

# Objective

Make adding assets more ergonomic by making `Assets::add` take an `impl
Into<A>` instead of `A`.

## Solution

`Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this
works:

```rust
    commands.spawn(PbrBundle {
        mesh: meshes.add(shape::Cube { size: 1.0 }),
        material: materials.add(Color::RED),
        ..default()
    });
```

I also changed all examples to use this API, which increases consistency
as well because `Mesh::from` and `into` were being used arbitrarily even
in the same file. This also gets rid of some lines of code because
formatting is nicer.

---

## Changelog

- `Assets::add` now takes an `impl Into<A>` instead of `A`
- Examples don't use `T::from(K)` or `K.into()` when adding assets

## Migration Guide

Some `into` calls that worked previously might now be broken because of
the new trait bounds. You need to either remove `into` or perform the
conversion explicitly with `from`:

```rust
// Doesn't compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()),

// These compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }),
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
```

## Concerns

I believe the primary concerns might be:

1. Is this too implicit?
2. Does this increase codegen bloat?

Previously, the two APIs were using `into` or `from`, and now it's
"nothing" or `from`. You could argue that `into` is slightly more
explicit than "nothing" in cases like the earlier examples where a
`Color` gets converted to e.g. a `StandardMaterial`, but I personally
don't think `into` adds much value even in this case, and you could
still see the actual type from the asset type.

As for codegen bloat, I doubt it adds that much, but I'm not very
familiar with the details of codegen. I personally value the user-facing
code reduction and ergonomics improvements that these changes would
provide, but it might be worth checking the other effects in more
detail.

Another slight concern is migration pain; apps might have a ton of
`into` calls that would need to be removed, and it did take me a while
to do so for Bevy itself (maybe around 20-40 minutes). However, I think
the fact that there *are* so many `into` calls just highlights that the
API could be made nicer, and I'd gladly migrate my own projects for it.
2024-01-08 22:14:43 +00:00
Patrick Walton
54a943d232
Implement minimal reflection probes. (#10057)
# Objective

This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].

## Solution

This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.

A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.

A frequent question is "why two components instead of just one?" The
advantages of this setup are:

1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.

2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.

Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.

An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.

Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:

* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)

* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.

* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.

Future work includes:

* Blending between multiple reflection probes.

* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.

* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.

* Support for WebGL 2, by breaking batches when reflection probes are
used.

These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.

---

## Changelog

### Added

* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.

[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html

[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi

[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-08 22:09:17 +00:00
Torstein Grindvik
99c43fabdf
Usability methods for RenderTargets and image handles (#10736)
# Objective

In my code I use a lot of images as render targets.
I'd like some convenience methods for working with this type.

## Solution

- Allow `.into()` to construct a `RenderTarget`
- Add `.as_image()` 

---

## Changelog

### Added

- `RenderTarget` can be constructed via `.into()` on a `Handle<Image>`
- `RenderTarget` new method: `as_image`

---------

Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
2024-01-04 17:01:04 +00:00
JMS55
44424391fe
Unload render assets from RAM (#10520)
# Objective
- No point in keeping Meshes/Images in RAM once they're going to be sent
to the GPU, and kept in VRAM. This saves a _significant_ amount of
memory (several GBs) on scenes like bistro.
- References
  - https://github.com/bevyengine/bevy/pull/1782
  - https://github.com/bevyengine/bevy/pull/8624 

## Solution
- Augment RenderAsset with the capability to unload the underlying asset
after extracting to the render world.
- Mesh/Image now have a cpu_persistent_access field. If this field is
RenderAssetPersistencePolicy::Unload, the asset will be unloaded from
Assets<T>.
- A new AssetEvent is sent upon dropping the last strong handle for the
asset, which signals to the RenderAsset to remove the GPU version of the
asset.

---

## Changelog
- Added `AssetEvent::NoLongerUsed` and
`AssetEvent::is_no_longer_used()`. This event is sent when the last
strong handle of an asset is dropped.
- Rewrote the API for `RenderAsset` to allow for unloading the asset
data from the CPU.
- Added `RenderAssetPersistencePolicy`.
- Added `Mesh::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `Image::cpu_persistent_access` for memory savings when the asset
is not needed except for on the GPU.
- Added `ImageLoaderSettings::cpu_persistent_access`.
- Added `ExrTextureLoaderSettings`.
- Added `HdrTextureLoaderSettings`.

## Migration Guide
- Asset loaders (GLTF, etc) now load meshes and textures without
`cpu_persistent_access`. These assets will be removed from
`Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and
`RenderAssets<Image>` contain the GPU versions of these assets, in order
to reduce memory usage. If you require access to the asset data from the
CPU in future frames after the GLTF asset has been loaded, modify all
dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to
`RenderAssetPersistencePolicy::Keep`.
- `Mesh` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `Image` now requires a new `cpu_persistent_access` field. Set it to
`RenderAssetPersistencePolicy::Keep` to mimic the previous behavior.
- `MorphTargetImage::new()` now requires a new `cpu_persistent_access`
parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the
previous behavior.
- `DynamicTextureAtlasBuilder::add_texture()` now requires that the
`TextureAtlas` you pass has an `Image` with `cpu_persistent_access:
RenderAssetPersistencePolicy::Keep`. Ensure you construct the image
properly for the texture atlas.
- The `RenderAsset` trait has significantly changed, and requires
adapting your existing implementations.
  - The trait now requires `Clone`.
- The `ExtractedAsset` associated type has been removed (the type itself
is now extracted).
  - The signature of `prepare_asset()` is slightly different
- A new `persistence_policy()` method is now required (return
RenderAssetPersistencePolicy::Unload to match the previous behavior).
- Match on the new `NoLongerUsed` variant for exhaustive matches of
`AssetEvent`.
2024-01-03 03:31:04 +00:00
Patrick Walton
dd14f3a477
Implement lightmaps. (#10231)
![Screenshot](https://i.imgur.com/A4KzWFq.png)

# Objective

Lightmaps, textures that store baked global illumination, have been a
mainstay of real-time graphics for decades. Bevy currently has no
support for them, so this pull request implements them.

## Solution

The new `Lightmap` component can be attached to any entity that contains
a `Handle<Mesh>` and a `StandardMaterial`. When present, it will be
applied in the PBR shader. Because multiple lightmaps are frequently
packed into atlases, each lightmap may have its own UV boundaries within
its texture. An `exposure` field is also provided, to control the
brightness of the lightmap.

Note that this PR doesn't provide any way to bake the lightmaps. That
can be done with [The Lightmapper] or another solution, such as Unity's
Bakery.

---

## Changelog

### Added
* A new component, `Lightmap`, is available, for baked global
illumination. If your mesh has a second UV channel (UV1), and you attach
this component to the entity with that mesh, Bevy will apply the texture
referenced in the lightmap.

[The Lightmapper]: https://github.com/Naxela/The_Lightmapper

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-01-02 20:38:47 +00:00
Stepan Koltsov
0f71dcbf1a
Simplify examples/3d/orthographic (#11045)
Current example may mislead into thinking both parameters are mandatory
to make orthographic projection work.
2024-01-02 19:27:22 +00:00
Stepan Koltsov
d8d8bcfb21
Add ability to panic to logs example (#11171)
# Objective

To debug issues like https://github.com/bevyengine/bevy/pull/11169.

## Solution

When P is pressed in logs example, call `panic!()`.

<img width="1392" alt="Screenshot 2024-01-02 at 01 10 16"
src="https://github.com/bevyengine/bevy/assets/28969/a788737e-d23c-43a3-bc68-d6c5b0ab88ad">
2024-01-02 03:02:56 +00:00
Doonv
189ceaf0d3
Replace or document ignored doctests (#11040)
# Objective

There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.

## Solution

I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.

---------

Co-authored-by: François <mockersf@gmail.com>
2024-01-01 16:50:56 +00:00
François
71adb77a2e
support all types of animation interpolation from gltf (#10755)
# Objective

- Support step and cubic spline interpolation from gltf

## Solution

- Support step and cubic spline interpolation from gltf

Tested with
https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/InterpolationTest
expected: 

![](https://raw.githubusercontent.com/KhronosGroup/glTF-Sample-Models/master/2.0/InterpolationTest/screenshot/screenshot.gif)
result: 

![output](https://github.com/bevyengine/bevy/assets/8672791/e7f1afd5-20c9-4921-97d4-8d0c82203068)

---

## Migration Guide

When manually specifying an animation `VariableCurve`, the interpolation
type must be specified:

- Bevy 0.12
```rust
        VariableCurve {
            keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
            keyframes: Keyframes::Rotation(vec![
                Quat::IDENTITY,
                Quat::from_axis_angle(Vec3::Y, PI / 2.),
                Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
                Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
                Quat::IDENTITY,
            ]),
        },
```

- Bevy 0.13
```rust
        VariableCurve {
            keyframe_timestamps: vec![0.0, 1.0, 2.0, 3.0, 4.0],
            keyframes: Keyframes::Rotation(vec![
                Quat::IDENTITY,
                Quat::from_axis_angle(Vec3::Y, PI / 2.),
                Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
                Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
                Quat::IDENTITY,
            ]),
            interpolation: Interpolation::Linear,
        },
```
2023-12-31 18:01:50 +00:00
JMS55
70b0eacc3b
Keep track of when a texture is first cleared (#10325)
# Objective
- Custom render passes, or future passes in the engine (such as
https://github.com/bevyengine/bevy/pull/10164) need a better way to know
and indicate to the core passes whether the view color/depth/prepass
attachments have been cleared or not yet this frame, to know if they
should clear it themselves or load it.

## Solution

- For all render targets (depth textures, shadow textures, prepass
textures, main textures) use an atomic bool to track whether or not each
texture has been cleared this frame. Abstracted away in the new
ColorAttachment and DepthAttachment wrappers.

---

## Changelog
- Changed `ViewTarget::get_color_attachment()`, removed arguments.
- Changed `ViewTarget::get_unsampled_color_attachment()`, removed
arguments.
- Removed `Camera3d::clear_color`.
- Removed `Camera2d::clear_color`.
- Added `Camera::clear_color`.
- Added `ExtractedCamera::clear_color`.
- Added `ColorAttachment` and `DepthAttachment` wrappers.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- Core render passes now track when a texture is first bound as an
attachment in order to decide whether to clear or load it.

## Migration Guide
- Remove arguments to `ViewTarget::get_color_attachment()` and
`ViewTarget::get_unsampled_color_attachment()`.
- Configure clear color on `Camera` instead of on `Camera3d` and
`Camera2d`.
- Moved `ClearColor` and `ClearColorConfig` from
`bevy::core_pipeline::clear_color` to `bevy::render::camera`.
- `ViewDepthTexture` must now be created via the `new()` method

---------

Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-12-31 00:37:37 +00:00
Mike
786abbf3f5
Fix ci xvfb (#11143)
# Objective

Fix ci hang, so we can merge pr's again.

## Solution

- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123

---------

Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
2023-12-30 09:07:31 +00:00
Nurzhan Sakén
8067e46049
Add example for pixel-perfect grid snapping in 2D (#8112)
# Objective

Provide an example of how to achieve pixel-perfect "grid snapping" in 2D
via rendering to a texture. This is a common use case in retro pixel art
game development.

## Solution

Render sprites to a canvas via a Camera, then use another (scaled up)
Camera to render the resulting canvas to the screen. This example is
based on the `3d/render_to_texture.rs` example. Furthermore, this
example demonstrates mixing retro-style graphics with high-resolution
graphics, as well as pixel-snapped rendering of a
`MaterialMesh2dBundle`.
2023-12-26 17:15:50 +00:00
Tygyh
1568d4a415
Reorder impl to be the same as the trait (#11076)
# Objective

- Make the implementation order consistent between all sources to fit
the order in the trait.

## Solution

- Change the implementation order.
2023-12-24 17:43:55 +00:00
Tygyh
7b8305e5b4
Remove unnecessary parens (#11075)
# Objective

- Increase readability.

## Solution

- Remove unnecessary parens.
2023-12-24 17:43:01 +00:00
Thierry Berger
80f15e0dbb
Remove CanvasParentResizePlugin (#11057)
Improves #11052

# Changelog
- Remove `Window::fit_canvas_to_parent`, as its resizing on wasm now
respects its CSS configuration.

## Migration Guide
- Remove uses of `Window::fit_canvas_to_parent` in favor of CSS
properties, for example:
  ```css
  canvas {
    width: 100%;
    height: 100%;
  }
  ```
2023-12-21 20:01:22 +00:00
Doonv
ba0f8f996f
Add insert_state to App. (#11043)
# Objective

Fix #10731.

## Solution

Rename `App::add_state<T>(&mut self)` to `init_state`, and add
`App::insert_state<T>(&mut self, state: T)`. I decided on these names
because they are more similar to `init_resource` and `insert_resource`.

I also removed the `States` trait's requirement for `Default`. Instead,
`init_state` requires `FromWorld`.

---

## Changelog

- Renamed `App::add_state` to `init_state`.
- Added `App::insert_state`.
- Removed the `States` trait's requirement for `Default`.

## Migration Guide

- Renamed `App::add_state` to `init_state`.
2023-12-21 14:09:24 +00:00
Thierry Berger
ced216f59a
Update winit dependency to 0.29 (#10702)
# Objective

- Update winit dependency to 0.29

## Changelog

### KeyCode changes

- Removed `ScanCode`, as it was [replaced by
KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292).
- `ReceivedCharacter.char` is now a `SmolStr`, [relevant
doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text).
- Changed most `KeyCode` values, and added more.

KeyCode has changed meaning. With this PR, it refers to physical
position on keyboard rather than the printed letter on keyboard keys.

In practice this means:
- On QWERTY keyboard layouts, nothing changes
- On any other keyboard layout, `KeyCode` no longer reflects the label
on key.
- This is "good". In bevy 0.12, when you used WASD for movement, users
with non-QWERTY keyboards couldn't play your game! This was especially
bad for non-latin keyboards. Now, WASD represents the physical keys. A
French player will press the ZQSD keys, which are near each other,
Kyrgyz players will use "Цфыв".
- This is "bad" as well. You can't know in advance what the label of the
key for input is. Your UI says "press WASD to move", even if in reality,
they should be pressing "ZQSD" or "Цфыв". You also no longer can use
`KeyCode` for text inputs. In any case, it was a pretty bad API for text
input. You should use `ReceivedCharacter` now instead.

### Other changes
- Use `web-time` rather than `instant` crate.
(https://github.com/rust-windowing/winit/pull/2836)
- winit did split `run_return` in `run_onDemand` and `pump_events`, I
did the same change in bevy_winit and used `pump_events`.
- Removed `return_from_run` from `WinitSettings` as `winit::run` now
returns on supported platforms.
- I left the example "return_after_run" as I think it's still useful.
- This winit change is done partly to allow to create a new window after
quitting all windows: https://github.com/emilk/egui/issues/1918 ; this
PR doesn't address.
- added `width` and `height` properties in the `canvas` from wasm
example
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168)

## Known regressions (important follow ups?)
- Provide an API for reacting when a specific key from current layout
was released.
- possible solutions: use winit::Key from winit::KeyEvent ; mapping
between KeyCode and Key ; or .
- We don't receive characters through alt+numpad (e.g. alt + 151 = "ù")
anymore ; reproduced on winit example "ime". maybe related to
https://github.com/rust-windowing/winit/issues/2945
- (windows) Window content doesn't refresh at all when resizing. By
reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect
we should just fire a `window.request_redraw();` from `AboutToWait`, and
handle actual redrawing within `RedrawRequested`. I'm not sure how to
move all that code so I'd appreciate it to be a follow up.
- (windows) unreleased winit fix for using set_control_flow in
AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm
not sure what the implications are, but that feels bad 🤔

## Follow up 

I'd like to avoid bloating this PR, here are a few follow up tasks
worthy of a separate PR, or new issue to track them once this PR is
closed, as they would either complicate reviews, or at risk of being
controversial:
- remove CanvasParentResizePlugin
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856)
- avoid mentionning explicitly winit in docs from bevy_window ?
- NamedKey integration on bevy_input:
https://github.com/rust-windowing/winit/pull/3143 introduced a new
NamedKey variant. I implemented it only on the converters but we'd
benefit making the same changes to bevy_input.
- Add more info in KeyboardInput
https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313
- https://github.com/bevyengine/bevy/pull/9905 added a workaround on a
bug allegedly fixed by winit 0.29. We should check if it's still
necessary.
- update to raw_window_handle 0.6
  - blocked by wgpu
- Rename `KeyCode` to `PhysicalKeyCode`
https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015
- remove `instant` dependency, [replaced
by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd
need to update to :
  - fastrand >= 2.0
- [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7
    - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0
- Verify license, see
[discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800)
  - we might be missing a short notice or description of changes made
- Consider using https://github.com/rust-windowing/cursor-icon directly
rather than vendoring it in bevy.
- investigate [this
unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986)
(`winit_window.canvas().unwrap();`)
- Use more good things about winit's update
- https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428
## Migration Guide

This PR should have one.
2023-12-21 07:40:47 +00:00
Tygyh
746361bdfd
Add html tags required for accessibility (#10989)
# Objective

- Make example comply with accessibility standards.

## Solution

- Add missing tags.
2023-12-16 03:09:36 +00:00
Anton Iacobaeus
ca1874e6c6
Update texture_atlas example with different padding and sampling (#10073)
# Objective

- Expand the texture_atlas example with padding and show how it can
resolve sprite bleeding for different types of sampling.
- Fixes #9522
## Solution
Updated the texture_atlas example by adding 4 different texture atlases:
1. linear, no padding
2. linear, padding
3. nearest neighbor, no padding
4. nearest neighbor, padding

Now renders one padded and one unpadded texture atlas, and the same
upscaled sprite from each of the new texture atlases. See the screenshot
below (taken on 1080p monitor).


![Screenshot from 2023-10-10
08-37-43](https://github.com/bevyengine/bevy/assets/46004494/4cef707c-e117-4835-b2c8-66503d8c275f)

**From left->right:** linear no padding, nearest no padding, linear
padding, nearest padding.

---

---------

Co-authored-by: davidasberg <david.aasberg@gmail.com>
2023-12-14 18:48:38 +00:00
Tygyh
720d6dab82
Change Window scale factor to f32 (adopted) (#10897)
# Objective

- Finish the work done in #8942 .

## Solution

- Rebase the changes made in #8942 and fix the issues stopping it from
being merged earlier

---------

Co-authored-by: Thomas <1234328+thmsgntz@users.noreply.github.com>
2023-12-14 14:56:40 +00:00
Elabajaba
70a592f31a
Update to wgpu 0.18 (#10266)
# Objective

Keep up to date with wgpu.

## Solution

Update the wgpu version.

Currently blocked on naga_oil updating to naga 0.14 and releasing a new
version.

3d scenes (or maybe any scene with lighting?) currently don't render
anything due to
```
error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid
 = Capability Capabilities(CUBE_ARRAY_TEXTURES) is required
 ```

I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?)

Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first.

## Known issues

Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though).

---

## Changelog

Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11.
- Windows desktop GL should now be less painful as it no longer requires Angle.
- You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html)

## Migration Guide

- `RenderPassDescriptor` `color_attachments`  (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored.
- `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`.
- `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now.
- See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details
2023-12-14 02:45:47 +00:00
Mantas
5af2f022d8
Rename WorldQueryData & WorldQueryFilter to QueryData & QueryFilter (#10779)
# Rename `WorldQueryData` & `WorldQueryFilter` to `QueryData` &
`QueryFilter`

Fixes #10776 

## Solution

Traits `WorldQueryData` & `WorldQueryFilter` were renamed to `QueryData`
and `QueryFilter`, respectively. Related Trait types were also renamed.

---

## Changelog

- Trait `WorldQueryData` has been renamed to `QueryData`. Derive macro's
`QueryData` attribute `world_query_data` has been renamed to
`query_data`.
- Trait `WorldQueryFilter` has been renamed to `QueryFilter`. Derive
macro's `QueryFilter` attribute `world_query_filter` has been renamed to
`query_filter`.
- Trait's `ExtractComponent` type `Query` has been renamed to `Data`.
- Trait's `GetBatchData` types `Query` & `QueryFilter` has been renamed
to `Data` & `Filter`, respectively.
- Trait's `ExtractInstance` type `Query` has been renamed to `Data`.
- Trait's `ViewNode` type `ViewQuery` has been renamed to `ViewData`.
- Trait's `RenderCommand` types `ViewWorldQuery` & `ItemWorldQuery` has
been renamed to `ViewData` & `ItemData`, respectively.

## Migration Guide

Note: if merged before 0.13 is released, this should instead modify the
migration guide of #10776 with the updated names.

- Rename `WorldQueryData` & `WorldQueryFilter` trait usages to
`QueryData` & `QueryFilter` and their respective derive macro attributes
`world_query_data` & `world_query_filter` to `query_data` &
`query_filter`.
- Rename the following trait type usages:
  - Trait's `ExtractComponent` type `Query` to `Data`.
  - Trait's `GetBatchData` type `Query` to `Data`.
  - Trait's `ExtractInstance` type `Query` to `Data`.
  - Trait's `ViewNode` type `ViewQuery` to `ViewData`'
- Trait's `RenderCommand` types `ViewWolrdQuery` & `ItemWorldQuery` to
`ViewData` & `ItemData`, respectively.

```rust
// Before
#[derive(WorldQueryData)]
#[world_query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// After
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// Before
#[derive(WorldQueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// After
#[derive(QueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// Before
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Query = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Query>) -> Option<Self::Out> {
        //...
    }
}

// After
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Data = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Data>) -> Option<Self::Out> {
        //...
    }
}

// Before
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Query = Entity;
    type QueryFilter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Query>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// After
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Data = Entity;
    type Filter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Data>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// Before
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Query = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Query>) -> Option<Self> {
        Some(item.id())
    }
}

// After
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Data = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Data>) -> Option<Self> {
        Some(item.id())
    }
}

// Before
impl ViewNode for PostProcessNode {
    type ViewQuery = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// After
impl ViewNode for PostProcessNode {
    type ViewData = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewData>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// Before
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewWorldQuery = ();
    type ItemWorldQuery = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}

// After
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewData = ();
    type ItemData = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}
```
2023-12-12 19:45:50 +00:00
robtfm
67d92e9b85
light renderlayers (#10742)
# Objective

add `RenderLayers` awareness to lights. lights default to
`RenderLayers::layer(0)`, and must intersect the camera entity's
`RenderLayers` in order to affect the camera's output.

note that lights already use renderlayers to filter meshes for shadow
casting. this adds filtering lights per view based on intersection of
camera layers and light layers.

fixes #3462 

## Solution

PointLights and SpotLights are assigned to individual views in
`assign_lights_to_clusters`, so we simply cull the lights which don't
match the view layers in that function.

DirectionalLights are global, so we 
- add the light layers to the `DirectionalLight` struct
- add the view layers to the `ViewUniform` struct
- check for intersection before processing the light in
`apply_pbr_lighting`

potential issue: when mesh/light layers are smaller than the view layers
weird results can occur. e.g:
camera = layers 1+2
light = layers 1
mesh = layers 2

the mesh does not cast shadows wrt the light as (1 & 2) == 0.
the light affects the view as (1+2 & 1) != 0. 
the view renders the mesh as (1+2 & 2) != 0.

so the mesh is rendered and lit, but does not cast a shadow. 

this could be fixed (so that the light would not affect the mesh in that
view) by adding the light layers to the point and spot light structs,
but i think the setup is pretty unusual, and space is at a premium in
those structs (adding 4 bytes more would reduce the webgl point+spot
light max count to 240 from 256).

I think typical usage is for cameras to have a single layer, and
meshes/lights to maybe have multiple layers to render to e.g. minimaps
as well as primary views.

if there is a good use case for the above setup and we should support
it, please let me know.

---

## Migration Guide

Lights no longer affect all `RenderLayers` by default, now like cameras
and meshes they default to `RenderLayers::layer(0)`. To recover the
previous behaviour and have all lights affect all views, add a
`RenderLayers::all()` component to the light entity.
2023-12-12 19:45:37 +00:00
Mateusz Wachowiak
1f97717a3d
Rename Input to ButtonInput (#10859)
# Objective

- Resolves #10853 

## Solution

- ~~Changed the name of `Input` struct to `PressableInput`.~~
- Changed the name of `Input` struct to `ButtonInput`.

## Migration Guide

- Breaking Change: Users need to rename `Input` to `ButtonInput` in
their projects.
2023-12-06 20:32:34 +00:00
Joona Aalto
d9aac887b5
Split Ray into Ray2d and Ray3d and simplify plane construction (#10856)
# Objective

A better alternative version of #10843.

Currently, Bevy has a single `Ray` struct for 3D. To allow better
interoperability with Bevy's primitive shapes (#10572) and some third
party crates (that handle e.g. spatial queries), it would be very useful
to have separate versions for 2D and 3D respectively.

## Solution

Separate `Ray` into `Ray2d` and `Ray3d`. These new structs also take
advantage of the new primitives by using `Direction2d`/`Direction3d` for
the direction:

```rust
pub struct Ray2d {
    pub origin: Vec2,
    pub direction: Direction2d,
}

pub struct Ray3d {
    pub origin: Vec3,
    pub direction: Direction3d,
}
```

and by using `Plane2d`/`Plane3d` in `intersect_plane`:

```rust
impl Ray2d {
    // ...
    pub fn intersect_plane(&self, plane_origin: Vec2, plane: Plane2d) -> Option<f32> {
        // ...
    }
}
```

---

## Changelog

### Added

- `Ray2d` and `Ray3d`
- `Ray2d::new` and `Ray3d::new` constructors
- `Plane2d::new` and `Plane3d::new` constructors

### Removed

- Removed `Ray` in favor of `Ray3d`

### Changed

- `direction` is now a `Direction2d`/`Direction3d` instead of a vector,
which provides guaranteed normalization
- `intersect_plane` now takes a `Plane2d`/`Plane3d` instead of just a
vector for the plane normal
- `Direction2d` and `Direction3d` now derive `Serialize` and
`Deserialize` to preserve ray (de)serialization

## Migration Guide

`Ray` has been renamed to `Ray3d`.

### Ray creation

Before:

```rust
Ray {
    origin: Vec3::ZERO,
    direction: Vec3::new(0.5, 0.6, 0.2).normalize(),
}
```

After:

```rust
// Option 1:
Ray3d {
    origin: Vec3::ZERO,
    direction: Direction3d::new(Vec3::new(0.5, 0.6, 0.2)).unwrap(),
}

// Option 2:
Ray3d::new(Vec3::ZERO, Vec3::new(0.5, 0.6, 0.2))
```

### Plane intersections

Before:

```rust
let result = ray.intersect_plane(Vec2::X, Vec2::Y);
```

After:

```rust
let result = ray.intersect_plane(Vec2::X, Plane2d::new(Vec2::Y));
```
2023-12-06 14:09:04 +00:00
akimakinai
f90248b052
Remove unnecessary ResMut in examples (#10879)
# Objective

- Examples containing `ResMut`s that are never mutated can be confusing
for readers.

## Solution

- Changes them to `Res`.
2023-12-05 15:42:32 +00:00
ickshonpe
166686e0f2
Rename TextAlignment to JustifyText. (#10854)
# Objective

The name `TextAlignment` is really deceptive and almost every new user
gets confused about the differences between aligning text with
`TextAlignment`, aligning text with `Style` and aligning text with
anchor (when using `Text2d`).

## Solution

* Rename `TextAlignment` to `JustifyText`. The associated helper methods
are also renamed.
* Improve the doc comments for text explaining explicitly how the
`JustifyText` component affects the arrangement of text.
* Add some extra cases to the `text_debug` example that demonstate the
differences between alignment using `JustifyText` and alignment using
`Style`.
<img width="757" alt="text_debug_2"
src="https://github.com/bevyengine/bevy/assets/27962798/9d53e647-93f9-4bc7-8a20-0d9f783304d2">

---

## Changelog
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`

## Migration Guide
* `TextAlignment` has been renamed to `JustifyText`
* `TextBundle::with_text_alignment` has been renamed to
`TextBundle::with_text_justify`
* `Text::with_alignment` has been renamed to `Text::with_justify`
* The `text_alignment` field of `TextMeasureInfo` has been renamed to
`justification`
2023-12-05 03:00:41 +00:00
Jos Feenstra
18ac125997
Add helper macro's for logging only once (#10808)
# Objective

Fixes #10291

This adds a way to easily log messages once within system which are
called every frame.

## Solution

Opted for a macro-based approach. The fact that the 'once' call is
tracked per call site makes the `log_once!()` macro very versatile and
easy-to-use. I suspect it will be very handy for all of us, but
especially beginners, to get some initial feedback from systems without
spamming up the place!

I've made the macro's return its internal `has_fired` state, for
situations in which that might be useful to know (trigger something else
alongside the log, for example).

Please let me know if I placed the macro's in the right location, and if
you would like me to do something more clever with the macro's
themselves, since its looking quite copy-pastey at the moment. I've
tried ways to replace 5 with 1 macro's, but no success yet.

One downside of this approach is: Say you wish to warn the user if a
resource is invalid. In this situation, the
`resource.is_valid()` check would still be performed every frame:
```rust
fn my_system(my_res: Res<MyResource>) {
   if !my_res.is_valid() {
      warn_once!("resource is invalid!");
   }
}
```
If you want to prevent that, you would still need to introduce a local
boolean. I don't think this is a very big deal, as expensive checks
shouldn't be called every frame in any case.


## Changelog
Added: `trace_once!()`, `debug_once!()`, `info_once!()`, `warn_once!()`,
and `error_once!()` log macros which fire only once per call site.
2023-12-05 01:56:40 +00:00
Federico Rinaldi
0400ef059b
Substitute get(0) with first() (#10847)
Substitute calls to `get(0)` with `first()`, improving readability.
2023-12-02 22:13:42 +00:00
James Liu
2148518758
Override QueryIter::fold to port Query::for_each perf gains to select Iterator combinators (#6773)
# Objective
After #6547, `Query::for_each` has been capable of automatic
vectorization on certain queries, which is seeing a notable (>50% CPU
time improvements) for iteration. However, `Query::for_each` isn't
idiomatic Rust, and lacks the flexibility of iterator combinators.

Ideally, `Query::iter` and friends should be able to achieve the same
results. However, this does seem to blocked upstream
(rust-lang/rust#104914) by Rust's loop optimizations.

## Solution
This is an intermediate solution and refactor. This moves the
`Query::for_each` implementation onto the `Iterator::fold`
implementation for `QueryIter` instead. This should result in the same
automatic vectorization optimization on all `Iterator` functions that
internally use fold, including `Iterator::for_each`, `Iterator::count`,
etc.

With this, it should close the gap between the two completely.
Internally, this PR changes `Query::for_each` to use
`query.iter().for_each(..)` instead of the duplicated implementation.

Separately, the duplicate implementations of internal iteration (i.e.
`Query::par_for_each`) now use portions of the current `Query::for_each`
implementation factored out into their own functions.

This also massively cleans up our internal fragmentation of internal
iteration options, deduplicating the iteration code used in `for_each`
and `par_iter().for_each()`.

---

## Changelog
Changed: `Query::for_each`, `Query::for_each_mut`, `Query::for_each`,
and `Query::for_each_mut` have been moved to `QueryIter`'s
`Iterator::for_each` implementation, and still retains their performance
improvements over normal iteration. These APIs are deprecated in 0.13
and will be removed in 0.14.

---------

Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-12-01 09:09:55 +00:00
thepackett
e581d74f7d
Mention DynamicSceneBuilder in scene example (#10441)
# Objective

Make ```DynamicSceneBuilder``` more visible to new bevy learners!
```DynamicSceneBuilder``` is likely to be the most appropriate tool to use when creating dynamic scenes in all but the simplest scenarios. However, it's not mentioned in the scene example. This PR aims to fix this.

## Solution

I've modified the comment above where the ```DynamicScene``` is created to note that ```DynamicSceneBuilder``` can also be used to create the scene. I believe this is the best approach to introduce ```DynamicSceneBuilder``` without adding additional complexity to the example.
2023-11-30 20:05:59 +00:00
tygyh
fd308571c4
Remove unnecessary path prefixes (#10749)
# Objective

- Shorten paths by removing unnecessary prefixes

## Solution

- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
2023-11-28 23:43:40 +00:00
JMS55
4bf20e7d27
Swap material and mesh bind groups (#10485)
# Objective
- Materials should be a more frequent rebind then meshes (due to being
able to use a single vertex buffer, such as in #10164) and therefore
should be in a higher bind group.

---

## Changelog
- For 2d and 3d mesh/material setups (but not UI materials, or other
rendering setups such as gizmos, sprites, or text), mesh data is now in
bind group 1, and material data is now in bind group 2, which is swapped
from how they were before.

## Migration Guide
- Custom 2d and 3d mesh/material shaders should now use bind group 2
`@group(2) @binding(x)` for their bound resources, instead of bind group
1.
- Many internal pieces of rendering code have changed so that mesh data
is now in bind group 1, and material data is now in bind group 2.
Semi-custom rendering setups (that don't use the Material or Material2d
APIs) should adapt to these changes.
2023-11-28 22:26:22 +00:00