Commit graph

49 commits

Author SHA1 Message Date
Aevyrie
72fbcc7633 Fix color banding by dithering image before quantization (#5264)
# Objective

- Closes #5262 
- Fix color banding caused by quantization.

## Solution

- Adds dithering to the tonemapping node from #3425.
- This is inspired by Godot's default "debanding" shader: https://gist.github.com/belzecue/
- Unlike Godot:
  - debanding happens after tonemapping. My understanding is that this is preferred, because we are running the debanding at the last moment before quantization (`[f32, f32, f32, f32]` -> `f32`). This ensures we aren't biasing the dithering strength by applying it in a different (linear) color space.
  - This code instead uses and reference the origin source, Valve at GDC 2015

![Screenshot from 2022-11-10 13-44-46](https://user-images.githubusercontent.com/2632925/201218880-70f4cdab-a1ed-44de-a88c-8759e77197f1.png)
![Screenshot from 2022-11-10 13-41-11](https://user-images.githubusercontent.com/2632925/201218883-72393352-b162-41da-88bb-6e54a1e26853.png)


## Additional Notes 

Real time rendering to standard dynamic range outputs is limited to 8 bits of depth per color channel. Internally we keep everything in full 32-bit precision (`vec4<f32>`) inside passes and 16-bit between passes until the image is ready to be displayed, at which point the GPU implicitly converts our `vec4<f32>` into a single 32bit value per pixel, with each channel (rgba) getting 8 of those 32 bits.

### The Problem

8 bits of color depth is simply not enough precision to make each step invisible - we only have 256 values per channel! Human vision can perceive steps in luma to about 14 bits of precision. When drawing a very slight gradient, the transition between steps become visible because with a gradient, neighboring pixels will all jump to the next "step" of precision at the same time.

### The Solution

One solution is to simply output in HDR - more bits of color data means the transition between bands will become smaller. However, not everyone has hardware that supports 10+ bit color depth. Additionally, 10 bit color doesn't even fully solve the issue, banding will result in coherent bands on shallow gradients, but the steps will be harder to perceive.

The solution in this PR adds noise to the signal before it is "quantized" or resampled from 32 to 8 bits. Done naively, it's easy to add unneeded noise to the image. To ensure dithering is correct and absolutely minimal, noise is adding *within* one step of the output color depth. When converting from the 32bit to 8bit signal, the value is rounded to the nearest 8 bit value (0 - 255). Banding occurs around the transition from one value to the next, let's say from 50-51. Dithering will never add more than +/-0.5 bits of noise, so the pixels near this transition might round to 50 instead of 51 but will never round more than one step. This means that the output image won't have excess variance:
  - in a gradient from 49 to 51, there will be a step between each band at 49, 50, and 51.
  - Done correctly, the modified image of this gradient will never have a adjacent pixels more than one step (0-255) from each other.
  - I.e. when scanning across the gradient you should expect to see:
```
                  |-band-| |-band-| |-band-|
Baseline:         49 49 49 50 50 50 51 51 51
Dithered:         49 50 49 50 50 51 50 51 51
Dithered (wrong): 49 50 51 49 50 51 49 51 50
```

![Screenshot from 2022-11-10 14-12-36](https://user-images.githubusercontent.com/2632925/201219075-ab3f46be-d4e9-4869-b66b-a92e1706f49e.png)
![Screenshot from 2022-11-10 14-11-48](https://user-images.githubusercontent.com/2632925/201219079-ec5d2add-817d-487a-8fc1-84569c9cda73.png)




You can see from above how correct dithering "fuzzes" the transition between bands to reduce distinct steps in color, without adding excess noise.

### HDR

The previous section (and this PR) assumes the final output is to an 8-bit texture, however this is not always the case. When Bevy adds HDR support, the dithering code will need to take the per-channel depth into account instead of assuming it to be 0-255. Edit: I talked with Rob about this and it seems like the current solution is okay. We may need to revisit once we have actual HDR final image output.

---

## Changelog

### Added

- All pipelines now support deband dithering. This is enabled by default in 3D, and can be toggled in the `Tonemapping` component in camera bundles. Banding is a graphical artifact created when the rendered image is crunched from high precision (f32 per color channel) down to the final output (u8 per channel in SDR). This results in subtle gradients becoming blocky due to the reduced color precision. Deband dithering applies a small amount of noise to the signal before it is "crunched", which breaks up the hard edges of blocks (bands) of color. Note that this does not add excess noise to the image, as the amount of noise is less than a single step of a color channel - just enough to break up the transition between color blocks in a gradient.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-11 19:43:45 +00:00
JoJoJet
336049da68 Remove outdated uses of single-tuple bundles (#6406)
# Objective

Bevy still has many instances of using single-tuples `(T,)` to create a bundle. Due to #2975, this is no longer necessary.

## Solution

Search for regex `\(.+\s*,\)`. This should have found every instance.
2022-10-29 18:15:28 +00:00
Jakob Hellermann
838b318863 separate tonemapping and upscaling passes (#3425)
Attempt to make features like bloom https://github.com/bevyengine/bevy/pull/2876 easier to implement.

**This PR:**
- Moves the tonemapping from `pbr.wgsl` into a separate pass
- also add a separate upscaling pass after the tonemapping which writes to the swap chain (enables resolution-independant rendering and post-processing after tonemapping)
- adds a `hdr` bool to the camera which controls whether the pbr and sprite shaders render into a `Rgba16Float` texture

**Open questions:**
- ~should the 2d graph work the same as the 3d one?~ it is the same now
- ~The current solution is a bit inflexible because while you can add a post processing pass that writes to e.g. the `hdr_texture`, you can't write to a separate `user_postprocess_texture` while reading the `hdr_texture` and tell the tone mapping pass to read from the `user_postprocess_texture` instead. If the tonemapping and upscaling render graph nodes were to take in a `TextureView` instead of the view entity this would almost work, but the bind groups for their respective input textures are already created in the `Queue` render stage in the hardcoded order.~ solved by creating bind groups in render node

**New render graph:**

![render_graph](https://user-images.githubusercontent.com/22177966/147767249-57dd4229-cfab-4ec5-9bf3-dc76dccf8e8b.png)
<details>
<summary>Before</summary>

![render_graph_old](https://user-images.githubusercontent.com/22177966/147284579-c895fdbd-4028-41cf-914c-e1ffef60e44e.png)
</details>

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-10-26 20:13:59 +00:00
Charles
740ae9a37f remove mandatory mesh attributes (#6127)
# Objective

- It's possible to create a mesh without positions or normals, but currently bevy forces these attributes to be present on any mesh.

## Solution

- Don't assume these attributes are present and add a shader defs for each attributes
- I updated 2d and 3d meshes to use the same logic.

---

## Changelog

- Meshes don't require any attributes

# Notes
I didn't update the pbr.wgsl shader because I'm not sure how to handle it. It doesn't really make sense to use it without positions or normals.
2022-10-10 17:58:15 +00:00
VitalyR
f5322cd757 get proper texture format after the renderer is initialized, fix #3897 (#5413)
# Objective
There is no Srgb support on some GPU and display protocols with `winit` (for example, Nvidia's GPUs with Wayland). Thus `TextureFormat::bevy_default()` which returns `Rgba8UnormSrgb` or `Bgra8UnormSrgb` will cause panics on such platforms. This patch will resolve this problem. Fix https://github.com/bevyengine/bevy/issues/3897.

## Solution

Make `initialize_renderer` expose `wgpu::Adapter` and `first_available_texture_format`, use the `first_available_texture_format` by default.

## Changelog

* Fixed https://github.com/bevyengine/bevy/issues/3897.
2022-10-10 16:10:05 +00:00
Charles
8073362039 add globals to mesh view bind group (#5409)
# Objective

- It's often really useful to have access to the time when writing shaders.

## Solution

- Add a UnifformBuffer in the mesh view bind group
- This buffer contains the time, delta time and a wrapping frame count

https://user-images.githubusercontent.com/8348954/180130314-97948c2a-2d11-423d-a9c4-fb5c9d1892c7.mp4

---

## Changelog

- Added a `GlobalsUniform` at position 9 of the mesh view bind group

## Notes

The implementation is currently split between bevy_render and bevy_pbr because I was basing my implementation on the `ViewPlugin`. I'm not sure if that's the right way to structure it.

I named this `globals` instead of just time because we could potentially add more things to it.

## References in other engines

- Godot: <https://docs.godotengine.org/en/stable/tutorials/shaders/shader_reference/canvas_item_shader.html#global-built-ins>
    - Global time since startup, in seconds, by default resets to 0 after 3600 seconds
    - Doesn't seem to have anything else
- Unreal: <https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/ExpressionReference/Constant/>
    - Generic time value that updates every frame. Can be paused or scaled.
    - Frame count node, doesn't seem to be an equivalent for shaders: <https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/Utilities/GetFrameCount/>
- Unity: <https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html>
    - time since startup in seconds. No mention of time wrapping. Stored as a `vec4(t/20, t, t*2, t*3)` where `t` is the value in seconds
    - Also has delta time, sin time and cos time
- ShaderToy: <https://www.shadertoy.com/howto>
    - iTime is the time since startup in seconds.
    - iFrameRate
    - iTimeDelta
    - iFrame frame counter

Co-authored-by: Charles <IceSentry@users.noreply.github.com>
2022-09-28 04:20:27 +00:00
Martin Lysell
180c94cc13 Fix some outdated file reference comments in bevy_pbr (#6111)
# Objective

Simple docs/comments only PR that just fixes some outdated file references left over from the render rewrite.

## Solution

- Change the references to point to the correct files
2022-09-27 17:51:12 +00:00
ira
2b80a3f279 Implement IntoIterator for &Extract<P> (#6025)
# Objective

Implement `IntoIterator` for `&Extract<P>` if the system parameter it wraps implements `IntoIterator`.

Enables the use of `IntoIterator` with an extracted query.

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-09-20 00:29:10 +00:00
Lain-dono
24e5e10cd4 Use 3 bits of PipelineKey to store MSAA sample count (#5826)
Sample count always power of two. Thus, it is enough to store `log2(sample_count)`.
This can be implemented using [u32::trailing_zeros](https://doc.rust-lang.org/stable/std/primitive.u32.html#method.trailing_zeros). Then we can restore sample count with the `1 << stored`.
You get 3 bits instead of 6 and up to 128x MSAA. This is more than is supported by any common hardware.

Full table of possible variations:

```
    original MSAA sample count      stored    loaded
* 00000000000000000000000000000000 -> 000 -> 00000001  1
  00000000000000000000000000000001 -> 000 -> 00000001  1
  00000000000000000000000000000010 -> 001 -> 00000010  2
  00000000000000000000000000000100 -> 010 -> 00000100  4
  00000000000000000000000000001000 -> 011 -> 00001000  8
  00000000000000000000000000010000 -> 100 -> 00010000  16
  00000000000000000000000000100000 -> 101 -> 00100000  32
  00000000000000000000000001000000 -> 110 -> 01000000  64
  00000000000000000000000010000000 -> 111 -> 10000000  128
* 00000000000000000000000100000000 -> 000 -> 00000001  256
* 00000000000000000000001000000000 -> 001 -> 00000010  512
* 00000000000000000000010000000000 -> 010 -> 00000100  1024
* 00000000000000000000100000000000 -> 011 -> 00001000  2048
* 00000000000000000001000000000000 -> 100 -> 00010000  4096
* 00000000000000000010000000000000 -> 101 -> 00100000  8192
* 00000000000000000100000000000000 -> 110 -> 01000000  16384
* 00000000000000001000000000000000 -> 111 -> 10000000  32768
* 00000000000000010000000000000000 -> 000 -> 00000001  65536
* 00000000000000100000000000000000 -> 001 -> 00000010  131072
* 00000000000001000000000000000000 -> 010 -> 00000100  262144
* 00000000000010000000000000000000 -> 011 -> 00001000  524288
* 00000000000100000000000000000000 -> 100 -> 00010000  1048576
* 00000000001000000000000000000000 -> 101 -> 00100000  2097152
* 00000000010000000000000000000000 -> 110 -> 01000000  4194304
* 00000000100000000000000000000000 -> 111 -> 10000000  8388608
* 00000001000000000000000000000000 -> 000 -> 00000001  16777216
* 00000010000000000000000000000000 -> 001 -> 00000010  33554432
* 00000100000000000000000000000000 -> 010 -> 00000100  67108864
* 00001000000000000000000000000000 -> 011 -> 00001000  134217728
* 00010000000000000000000000000000 -> 100 -> 00010000  268435456
* 00100000000000000000000000000000 -> 101 -> 00100000  536870912
* 01000000000000000000000000000000 -> 110 -> 01000000  1073741824
* 10000000000000000000000000000000 -> 111 -> 10000000  2147483648
```
2022-08-30 03:00:39 +00:00
Robert Swain
681c9c6dc8 bevy_pbr: Fix tangent and normal normalization (#5666)
# Objective

- Morten Mikkelsen clarified that the world normal and tangent must be normalized in the vertex stage and the interpolated values must not be normalized in the fragment stage. This is in order to match the mikktspace approach exactly.
- Fixes #5514 by ensuring the tangent basis matrix (TBN) is orthonormal

## Solution

- Normalize the world normal in the vertex stage and not the fragment stage
- Normalize the world tangent xyz in the vertex stage
- Take into account the sign of the determinant of the local to world matrix when calculating the bitangent

---

## Changelog

- Fixed - scaling a model that uses normal mapping now has correct lighting again
2022-08-18 21:54:40 +00:00
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
Dusty DeWeese
9f8bdeeeb9 Use Affine3A for GlobalTransform to allow any affine transformation (#4379)
# Objective

- Add capability to use `Affine3A`s for some `GlobalTransform`s. This allows affine transformations that are not possible using a single `Transform` such as shear and non-uniform scaling along an arbitrary axis.
- Related to #1755 and #2026

## Solution

- `GlobalTransform` becomes an enum wrapping either a `Transform` or an `Affine3A`.
- The API of `GlobalTransform` is minimized to avoid inefficiency, and to make it clear that operations should be performed using the underlying data types.
- using `GlobalTransform::Affine3A` disables transform propagation, because the main use is for cases that `Transform`s cannot support.

---

## Changelog

- `GlobalTransform`s can optionally support any affine transformation using an `Affine3A`.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-16 00:51:12 +00:00
Carter Anderson
40d4992401 Visibilty Inheritance, universal ComputedVisibility and RenderLayers support (#5310)
# Objective

Fixes #4907. Fixes #838. Fixes #5089.
Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114

Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities.

Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information.

## Solution

Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function.

Additionally, all entities that have `Visibility` now also have `ComputedVisibility`.  Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate.

This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views.

Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice.

Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite.

![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png)


Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale. 

## Follow up work

* Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?.
* Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset.
* Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc).
---

## Changelog

* ComputedVisibility now takes hierarchy visibility into account.
* 2D, UI and Light entities now use the ComputedVisibility component.

## Migration Guide

If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead:

```rust
// before (0.7)
fn system(query: Query<&Visibility>) {
  for visibility in query.iter() {
    if visibility.is_visible {
       log!("found visible entity");
    }
  }
}

// after (0.8)
fn system(query: Query<&ComputedVisibility>) {
  for visibility in query.iter() {
    if visibility.is_visible() {
       log!("found visible entity");
    }
  }
}
``` 


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-15 23:24:42 +00:00
François
814f8d1635 update wgpu to 0.13 (#5168)
# Objective

- Update wgpu to 0.13
- ~~Wait, is wgpu 0.13 released? No, but I had most of the changes already ready since playing with webgpu~~ well it has been released now
- Also update parking_lot to 0.12 and naga to 0.9

## Solution

- Update syntax for wgsl shaders https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#wgsl-syntax
- Add a few options, remove some references: https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#other-breaking-changes
- fragment inputs should now exactly match vertex outputs for locations, so I added exports for those to be able to reuse them https://github.com/gfx-rs/wgpu/pull/2704
2022-07-14 21:17:16 +00:00
ira
4847f7e3ad Update codebase to use IntoIterator where possible. (#5269)
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.

```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {

// To
for _ in &list {
for _ in &mut list {
```

We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.

## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :) 


Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-07-11 15:28:50 +00:00
Daniel McNab
7b2cf98896 Make RenderStage::Extract run on the render world (#4402)
# Objective

- Currently, the `Extract` `RenderStage` is executed on the main world, with the render world available as a resource.
- However, when needing access to resources in the render world (e.g. to mutate them), the only way to do so was to get exclusive access to the whole `RenderWorld` resource.
- This meant that effectively only one extract which wrote to resources could run at a time.
- We didn't previously make `Extract`ing writing to the world a non-happy path, even though we want to discourage that.

## Solution

- Move the extract stage to run on the render world.
- Add the main world as a `MainWorld` resource.
- Add an `Extract` `SystemParam` as a convenience to access a (read only) `SystemParam` in the main world during `Extract`.

## Future work

It should be possible to avoid needing to use `get_or_spawn` for the render commands, since now the `Commands`' `Entities` matches up with the world being executed on.
We need to determine how this interacts with https://github.com/bevyengine/bevy/pull/3519
It's theoretically possible to remove the need for the `value` method on `Extract`. However, that requires slightly changing the `SystemParam` interface, which would make it more complicated. That would probably mess up the `SystemState` api too.

## Todo
I still need to add doc comments to `Extract`.

---

## Changelog

### Changed
- The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
   You must use the `Extract` `SystemParam` to access the main world during the extract phase.
   Resources on the render world can now be accessed using `ResMut` during extract.

### Removed
- `Commands::spawn_and_forget`. Use `Commands::get_or_spawn(e).insert_bundle(bundle)` instead

## Migration Guide

The `Extract` `RenderStage` now runs on the render world (instead of the main world as before).
You must use the `Extract` `SystemParam` to access the main world during the extract phase. `Extract` takes a single type parameter, which is any system parameter (such as `Res`, `Query` etc.). It will extract this from the main world, and returns the result of this extraction when `value` is called on it.

For example, if previously your extract system looked like:
```rust
fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
    for cloud in clouds.iter() {
        commands.get_or_spawn(cloud).insert(Cloud);
    }
}
```
the new version would be:
```rust
fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
    for cloud in clouds.value().iter() {
        commands.get_or_spawn(cloud).insert(Cloud);
    }
}
```
The diff is:
```diff
--- a/src/clouds.rs
+++ b/src/clouds.rs
@@ -1,5 +1,5 @@
-fn extract_clouds(mut commands: Commands, clouds: Query<Entity, With<Cloud>>) {
-    for cloud in clouds.iter() {
+fn extract_clouds(mut commands: Commands, mut clouds: Extract<Query<Entity, With<Cloud>>>) {
+    for cloud in clouds.value().iter() {
         commands.get_or_spawn(cloud).insert(Cloud);
     }
 }
```
You can now also access resources from the render world using the normal system parameters during `Extract`:
```rust
fn extract_assets(mut render_assets: ResMut<MyAssets>, source_assets: Extract<Res<MyAssets>>) {
     *render_assets = source_assets.clone();
}
```
Please note that all existing extract systems need to be updated to match this new style; even if they currently compile they will not run as expected. A warning will be emitted on a best-effort basis if this is not met.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-08 23:56:33 +00:00
Robin KAY
3c51ad2764 Allow rendering meshes without UV coordinate data. (#5222)
# Objective

Bevy requires meshes to include UV coordinates, even if the material does not use any textures, and will fail with an error `ERROR bevy_pbr::material: Mesh is missing requested attribute: Vertex_Uv (MeshVertexAttributeId(2), pipeline type: Some("bevy_pbr::material::MaterialPipeline<bevy_pbr::pbr_material::StandardMaterial>"))` otherwise. The objective of this PR is to permit this.

## Solution

This PR follows the design of #4528, which added support for per-vertex colours. It adds a shader define called VERTEX_UVS which indicates the presence of UV coordinates to the shader.
2022-07-08 20:55:08 +00:00
Nicola Papale
288765930f Rework extract_meshes (#4240)
* Cleanup redundant code
* Use a type alias to make sure the `caster_query` and
  `not_caster_query` really do the same thing and access the same things

**Objective**

Cleanup code that would otherwise be difficult to understand

**Solution**

* `extract_meshes` had two for loops which are functionally identical,
  just copy-pasted code. I extracted the common code between the two
  and put them into an anonymous function.
* I flattened the tuple literal for the bundle batch, it looks much
  less nested and the code is much more readable as a result.
* The parameters of `extract_meshes` were also very daunting, but they
  turned out to be the same query repeated twice. I extracted the query
  into a type alias.

EDIT: I reworked the PR to **not do anything breaking**, and keep the old allocation behavior. Removing the memorized length was clearly a performance loss, so I kept it.
2022-07-04 12:44:23 +00:00
Robert Swain
b333386271 Add reusable shader functions for transforming position/normal/tangent (#4901)
# Objective

- Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way
- The next step in #3969 so check there for more details.

## Solution

- Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports
  - These contain `mesh_` and `mesh2d_` versions of the following functions:
    - `mesh_position_local_to_world`
    - `mesh_position_world_to_clip`
    - `mesh_position_local_to_clip`
    - `mesh_normal_local_to_world`
    - `mesh_tangent_local_to_world`
- Use them everywhere where it is appropriate
  - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there
- NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D.

---

## Changelog

- Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions:
  - `mesh_position_local_to_world`
  - `mesh_position_world_to_clip`
  - `mesh_position_local_to_clip`
  - `mesh_normal_local_to_world`
  - `mesh_tangent_local_to_world`

## Migration Guide

- The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
François
f969c62f7b Fix wasm examples (#4967)
# Objective

Fix #4958 

There was 4 issues:

- this is not true in WASM and on macOS: f28b921209/examples/3d/split_screen.rs (L90)
  - ~~I made sure the system was running at least once~~
  - I'm sending the event on window creation
- in webgl, setting a viewport has impacts on other render passes
  - only in webgl and when there is a custom viewport, I added a render pass without a custom viewport
- shaderdef NO_ARRAY_TEXTURES_SUPPORT was not used by the 2d pipeline
  - webgl feature was used but not declared in bevy_sprite, I added it to the Cargo.toml
- shaderdef NO_STORAGE_BUFFERS_SUPPORT was not used by the 2d pipeline
  - I added it based on the BufferBindingType

The last commit changes the two last fixes to add the shaderdefs in the shader cache directly instead of needing to do it in each pipeline

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-11 20:10:13 +00:00
Aevyrie
772d15238c Change default Image FilterMode to Linear (#4465)
# Objective

- Closes #4464 

## Solution

- Specify default mag and min filter types for `Image` instead of using `wgpu`'s defaults.

---

## Changelog

### Changed

- Default `Image` filtering changed from `Nearest` to `Linear`.


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-06-11 09:13:37 +00:00
Robert Swain
cc4062ec43 Split mesh shader files (#4867)
# Objective

- Split PBR and 2D mesh shaders into types and bindings to prepare the shaders to be more reusable.
- See #3969 for details. I'm doing this in multiple steps to make review easier.

---

## Changelog

- Changed: 2D and PBR mesh shaders are now split into types and bindings, the following shader imports are available: `bevy_pbr::mesh_view_types`, `bevy_pbr::mesh_view_bindings`, `bevy_pbr::mesh_types`, `bevy_pbr::mesh_bindings`, `bevy_sprite::mesh2d_view_types`, `bevy_sprite::mesh2d_view_bindings`, `bevy_sprite::mesh2d_types`, `bevy_sprite::mesh2d_bindings`

## Migration Guide

- In shaders for 3D meshes:
  - `#import bevy_pbr::mesh_view_bind_group` -> `#import bevy_pbr::mesh_view_bindings`
  - `#import bevy_pbr::mesh_struct` -> `#import bevy_pbr::mesh_types`
    - NOTE: If you are using the mesh bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_pbr::mesh_bindings` which itself imports the mesh types needed for the bindings.
- In shaders for 2D meshes:
  - `#import bevy_sprite::mesh2d_view_bind_group` -> `#import bevy_sprite::mesh2d_view_bindings`
  - `#import bevy_sprite::mesh2d_struct` -> `#import bevy_sprite::mesh2d_types`
    - NOTE: If you are using the mesh2d bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_sprite::mesh2d_bindings` which itself imports the mesh2d types needed for the bindings.
2022-05-31 23:23:25 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
Robert Swain
a0a3d8798b ExtractResourcePlugin (#3745)
# Objective

- Add an `ExtractResourcePlugin` for convenience and consistency

## Solution

- Add an `ExtractResourcePlugin` similar to `ExtractComponentPlugin` but for ECS `Resource`s. The system that is executed simply clones the main world resource into a render world resource, if and only if the main world resource was either added or changed since the last execution of the system.
- Add an `ExtractResource` trait with a `fn extract_resource(res: &Self) -> Self` function. This is used by the `ExtractResourcePlugin` to extract the resource
- Add a derive macro for `ExtractResource` on a `Resource` with the `Clone` trait, that simply returns `res.clone()`
- Use `ExtractResourcePlugin` wherever both possible and appropriate
2022-05-30 18:36:03 +00:00
Teodor Tanasoaia
b6eededea4 Use uniform buffer usage for SkinnedMeshUniform instead of all usages (#4816)
# Objective

fixes #4811 (caused by #4339 [[exact change](https://github.com/bevyengine/bevy/pull/4339/files#diff-4bf3ed03d4129aad9f5678ba19f9b14ee8e3e61d6f6365e82197b01c74468b10R712-R721)] - where the buffer type has been changed from `UniformVec` to `BufferVec`)

## Solution

Use uniform buffer usage for `SkinnedMeshUniform` instead of all usages due to the `Default` derive.
2022-05-20 22:05:32 +00:00
Teodor Tanasoaia
7cb4d3cb43 Migrate to encase from crevice (#4339)
# Objective

- Unify buffer APIs
- Also see #4272

## Solution

- Replace vendored `crevice` with `encase`

---

## Changelog

Changed `StorageBuffer`
Added `DynamicStorageBuffer`
Replaced `UniformVec` with `UniformBuffer`
Replaced `DynamicUniformVec` with `DynamicUniformBuffer`

## Migration Guide

### `StorageBuffer`

removed `set_body()`, `values()`, `values_mut()`, `clear()`, `push()`, `append()`
added `set()`, `get()`, `get_mut()`

### `UniformVec` -> `UniformBuffer`

renamed `uniform_buffer()` to `buffer()`
removed `len()`, `is_empty()`, `capacity()`, `push()`, `reserve()`, `clear()`, `values()`
added `set()`, `get()`

### `DynamicUniformVec` -> `DynamicUniformBuffer`

renamed `uniform_buffer()` to `buffer()`
removed `capacity()`, `reserve()`


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-18 21:09:21 +00:00
Dusty DeWeese
82d849d3dc Add support for vertex colors (#4528)
# Objective

Add support for vertex colors

## Solution

This change is modeled after how vertex tangents are handled, so the shader is conditionally compiled with vertex color support if the mesh has the corresponding attribute set.

Vertex colors are multiplied by the base color. I'm not sure if this is the best for all cases, but may be useful for modifying vertex colors without creating a new mesh.

I chose `VertexFormat::Float32x4`, but I'd prefer 16-bit floats if/when support is added.

## Changelog

### Added
- Vertex colors can be specified using the `Mesh::ATTRIBUTE_COLOR` mesh attribute.
2022-05-05 00:46:32 +00:00
KDecay
7a7f097485 Move Size to bevy_ui (#4285)
# Objective

- Related #4276.
- Part of the splitting process of #3503.

## Solution

- Move `Size` to `bevy_ui`.

## Reasons

- `Size` is only needed in `bevy_ui` (because it needs to use `Val` instead of `f32`), but it's also used as a worse `Vec2`  replacement in other areas.
- `Vec2` is more powerful than `Size` so it should be used whenever possible.
- Discussion in #3503.

## Changelog

### Changed

- The `Size` type got moved from `bevy_math` to `bevy_ui`.

## Migration Guide

- The `Size` type got moved from `bevy::math` to `bevy::ui`. To migrate you just have to import `bevy::ui::Size` instead of `bevy::math::Math` or use the `bevy::prelude` instead.

Co-authored-by: KDecay <KDecayMusic@protonmail.com>
2022-04-25 13:54:46 +00:00
François
9d54f33974 Skinned extraction speedup (#4428)
# Objective

- While animating 501 https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BrainStem, I noticed things were getting a little slow
- Looking in tracy, the system `extract_skinned_meshes` is taking a lot of time, with a mean duration of 15.17ms

## Solution

- ~~Use `Vec` instead of a `SmallVec`~~
- ~~Don't use an temporary variable~~
- Compute the affine matrix as an `Affine3A` instead
- Remove the `temp` vec

| |mean|
|---|---|
|base|15.17ms|
|~~vec~~|~~9.31ms~~|
|~~no temp variable~~|~~11.31ms~~|
|removing the temp vector|8.43ms|
|affine|13.21ms|
|all together|7.23ms|
2022-04-07 16:16:36 +00:00
Robert Swain
c5963b4fd5 Use storage buffers for clustered forward point lights (#3989)
# Objective

- Make use of storage buffers, where they are available, for clustered forward bindings to support far more point lights in a scene
- Fixes #3605 
- Based on top of #4079 

This branch on an M1 Max can keep 60fps with about 2150 point lights of radius 1m in the Sponza scene where I've been testing. The bottleneck is mostly assigning lights to clusters which grows faster than linearly (I think 1000 lights was about 1.5ms and 5000 was 7.5ms). I have seen papers and presentations leveraging compute shaders that can get this up to over 1 million. That said, I think any further optimisations should probably be done in a separate PR.

## Solution

- Add `RenderDevice` to the `Material` and `SpecializedMaterial` trait `::key()` functions to allow setting flags on the keys depending on feature/limit availability
- Make `GpuPointLights` and `ViewClusterBuffers` into enums containing `UniformVec` and `StorageBuffer` variants. Implement the necessary API on them to make usage the same for both cases, and the only difference is at initialisation time.
- Appropriate shader defs in the shader code to handle the two cases

## Context on some decisions / open questions

- I'm using `max_storage_buffers_per_shader_stage >= 3` as a check to see if storage buffers are supported. I was thinking about diving into 'binding resource management' but it feels like we don't have enough use cases to understand the problem yet, and it is mostly a separate concern to this PR, so I think it should be handled separately.
- Should `ViewClusterBuffers` and `ViewClusterBindings` be merged, duplicating the count variables into the enum variants?


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-04-07 16:16:35 +00:00
James Liu
31bd4ecbbc Mesh Skinning. Attempt #3 (#4238)
# Objective
Load skeletal weights and indices from GLTF files. Animate meshes.

## Solution
 - Load skeletal weights and indices from GLTF files.
 - Added `SkinnedMesh` component and ` SkinnedMeshInverseBindPose` asset
 - Added `extract_skinned_meshes` to extract joint matrices.
 - Added queue phase systems for enqueuing the buffer writes.

Some notes:

 -  This ports part of # #2359 to the current main.
 -  This generates new `BufferVec`s and bind groups every frame. The expectation here is that the number of `Query::get` calls during extract is probably going to be the stronger bottleneck, with up to 256 calls per skinned mesh. Until that is optimized, caching buffers and bind groups is probably a non-concern.
 - Unfortunately, due to the uniform size requirements, this means a 16KB buffer is allocated for every skinned mesh every frame. There's probably a few ways to get around this, but most of them require either compute shaders or storage buffers, which are both incompatible with WebGL2.

Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2022-03-29 18:31:13 +00:00
Boxy
024d98457c yeet unsound lifetime annotations on Query methods (#4243)
# Objective
Continuation of #2964 (I really should have checked other methods when I made that PR)

yeet unsound lifetime annotations on `Query` methods.
Example unsoundness:
```rust
use bevy::prelude::*;

fn main() {
    App::new().add_startup_system(bar).add_system(foo).run();
}

pub fn bar(mut cmds: Commands) {
    let e = cmds.spawn().insert(Foo { a: 10 }).id();
    cmds.insert_resource(e);
}

#[derive(Component, Debug, PartialEq, Eq)]
pub struct Foo {
    a: u32,
}
pub fn foo(mut query: Query<&mut Foo>, e: Res<Entity>) {
    dbg!("hi");
    {
        let data: &Foo = query.get(*e).unwrap();
        let data2: Mut<Foo> = query.get_mut(*e).unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.single();
        let data2: Mut<Foo> = query.single_mut();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.get_single().unwrap();
        let data2: Mut<Foo> = query.get_single_mut().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let data: &Foo = query.iter().next().unwrap();
        let data2: Mut<Foo> = query.iter_mut().next().unwrap();
        assert_eq!(data, &*data2); // oops UB
    }

    {
        let mut opt_data: Option<&Foo> = None;
        let mut opt_data_2: Option<Mut<Foo>> = None;
        query.for_each(|data| opt_data = Some(data));
        query.for_each_mut(|data| opt_data_2 = Some(data));
        assert_eq!(opt_data.unwrap(), &*opt_data_2.unwrap()); // oops UB
    }
    dbg!("bye");
}

```

## Solution
yeet unsound lifetime annotations on `Query` methods

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-22 02:49:41 +00:00
Robert Swain
0529f633f9 KTX2/DDS/.basis compressed texture support (#3884)
# Objective

- Support compressed textures including 'universal' formats (ETC1S, UASTC) and transcoding of them to 
- Support `.dds`, `.ktx2`, and `.basis` files

## Solution

- Fixes https://github.com/bevyengine/bevy/issues/3608 Look there for more details.
- Note that the functionality is all enabled through non-default features. If it is desirable to enable some by default, I can do that.
- The `basis-universal` crate, used for `.basis` file support and for transcoding, is built on bindings against a C++ library. It's not feasible to rewrite in Rust in a short amount of time. There are no Rust alternatives of which I am aware and it's specialised code. In its current state it doesn't support the wasm target, but I don't know for sure. However, it is possible to build the upstream C++ library with emscripten, so there is perhaps a way to add support for web too with some shenanigans.
- There's no support for transcoding from BasisLZ/ETC1S in KTX2 files as it was quite non-trivial to implement and didn't feel important given people could use `.basis` files for ETC1S.
2022-03-15 22:26:46 +00:00
Alice Cecile
557ab9897a Make get_resource (and friends) infallible (#4047)
# Objective

- In the large majority of cases, users were calling `.unwrap()` immediately after `.get_resource`.
- Attempting to add more helpful error messages here resulted in endless manual boilerplate (see #3899 and the linked PRs).

## Solution

- Add an infallible variant named `.resource` and so on.
- Use these infallible variants over `.get_resource().unwrap()` across the code base.

## Notes

I did not provide equivalent methods on `WorldCell`, in favor of removing it entirely in #3939.

## Migration Guide

Infallible variants of `.get_resource` have been added that implicitly panic, rather than needing to be unwrapped.

Replace `world.get_resource::<Foo>().unwrap()` with `world.resource::<Foo>()`.

## Impact

- `.unwrap` search results before: 1084
- `.unwrap` search results after: 942
- internal `unwrap_or_else` calls added: 4
- trivial unwrap calls removed from tests and code: 146
- uses of the new `try_get_resource` API: 11
- percentage of the time the unwrapping API was used internally: 93%
2022-02-27 22:37:18 +00:00
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
Carter Anderson
98938a8555 Internal Asset Hot Reloading (#3966)
Adds "hot reloading" of internal assets, which is normally not possible because they are loaded using `include_str` / direct Asset collection access.

This is accomplished via the following:
* Add a new `debug_asset_server` feature flag
* When that feature flag is enabled, create a second App with a second AssetServer that points to a configured location (by default the `crates` folder). Plugins that want to add hot reloading support for their assets can call the new `app.add_debug_asset::<T>()` and `app.init_debug_asset_loader::<T>()` functions.
* Load "internal" assets using the new `load_internal_asset` macro. By default this is identical to the current "include_str + register in asset collection" approach. But if the `debug_asset_server` feature flag is enabled, it will also load the asset dynamically in the debug asset server using the file path. It will then set up a correlation between the "debug asset" and the "actual asset" by listening for asset change events.

This is an alternative to #3673. The goal was to keep the boilerplate and features flags to a minimum for bevy plugin authors, and allow them to home their shaders near relevant code. 

This is a draft because I haven't done _any_ quality control on this yet. I'll probably rename things and remove a bunch of unwraps. I just got it working and wanted to use it to start a conversation.

Fixes #3660
2022-02-18 22:56:57 +00:00
Carter Anderson
e9f52b9dd2 Move import_path definitions into shader source (#3976)
This enables shaders to (optionally) define their import path inside their source. This has a number of benefits:

1. enables users to define their own custom paths directly in their assets
2. moves the import path "close" to the asset instead of centralized in the plugin definition, which seems "better" to me. 
3. makes "internal hot shader reloading" way more reasonable (see #3966)
4. logically opens the door to importing "parts" of a shader by defining "import_path blocks".

```rust
#define_import_path bevy_pbr::mesh_struct

struct Mesh {
    model: mat4x4<f32>;
    inverse_transpose_model: mat4x4<f32>;
    // 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
    flags: u32;
};

let MESH_FLAGS_SHADOW_RECEIVER_BIT: u32 = 1u;
```
2022-02-18 21:54:03 +00:00
Hennadii Chernyshchyk
458cb7a9e9 Add headless mode (#3439)
# Objective

In this PR I added the ability to opt-out graphical backends. Closes #3155.

## Solution

I turned backends into `Option` ~~and removed panicking sub app API to force users handle the error (was suggested by `@cart`)~~.
2022-01-08 10:39:43 +00:00
davier
c2da7800e3 Add 2d meshes and materials (#3460)
# Objective

The current 2d rendering is specialized to render sprites, we need a generic way to render 2d items, using meshes and materials like we have for 3d.

## Solution

I cloned a good part of `bevy_pbr` into `bevy_sprite/src/mesh2d`, removed lighting and pbr itself, adapted it to 2d rendering, added a `ColorMaterial`, and modified the sprite rendering to break batches around 2d meshes.

~~The PR is a bit crude; I tried to change as little as I could in both the parts copied from 3d and the current sprite rendering to make reviewing easier. In the future, I expect we could make the sprite rendering a normal 2d material, cleanly integrated with the rest.~~ _edit: see <https://github.com/bevyengine/bevy/pull/3460#issuecomment-1003605194>_

## Remaining work

- ~~don't require mesh normals~~ _out of scope_
- ~~add an example~~ _done_
- support 2d meshes & materials in the UI?
- bikeshed names (I didn't think hard about naming, please check if it's fine)

## Remaining questions

- ~~should we add a depth buffer to 2d now that there are 2d meshes?~~ _let's revisit that when we have an opaque render phase_
- ~~should we add MSAA support to the sprites, or remove it from the 2d meshes?~~ _I added MSAA to sprites since it's really needed for 2d meshes_
- ~~how to customize vertex attributes?~~ _#3120_



Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-01-08 01:29:08 +00:00
François
585d0b8467 remove some mut in queries (#3437)
# Objective

- While reading code, found some queries that are `mut` and not used as such

## Solution

- Remove `mut` when possible


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-26 05:39:46 +00:00
Carter Anderson
963e2f08a2 Materials and MaterialPlugin (#3428)
This adds "high level" `Material` and `SpecializedMaterial` traits, which can be used with a `MaterialPlugin<T: SpecializedMaterial>`. `MaterialPlugin` automatically registers the appropriate resources, draw functions, and queue systems. The `Material` trait is simpler, and should cover most use cases. `SpecializedMaterial` is like `Material`, but it also requires defining a "specialization key" (see #3031). `Material` has a trivial blanket impl of `SpecializedMaterial`, which allows us to use the same types + functions for both.

This makes defining custom 3d materials much simpler (see the `shader_material` example diff) and ensures consistent behavior across all 3d materials (both built in and custom). I ported the built in `StandardMaterial` to `MaterialPlugin`. There is also a new `MaterialMeshBundle<T: SpecializedMaterial>`, which `PbrBundle` aliases to.
2021-12-25 21:45:43 +00:00
Jakob Hellermann
adb3ad399c make sub_app return an &App and add sub_app_mut() -> &mut App (#3309)
It's sometimes useful to have a reference to an app a sub app at the same time, which is only possible with an immutable reference.
2021-12-24 06:57:30 +00:00
François
79d36e7c28 Prepare crevice for vendored release (#3394)
# Objective

- Our crevice is still called "crevice", which we can't use for a release
- Users would need to use our "crevice" directly to be able to use the derive macro

## Solution

- Rename crevice to bevy_crevice, and crevice-derive to bevy-crevice-derive
- Re-export it from bevy_render, and use it from bevy_render everywhere
- Fix derive macro to work either from bevy_render, from bevy_crevice, or from bevy

## Remaining

- It is currently re-exported as `bevy::render::bevy_crevice`, is it the path we want?
- After a brief suggestion to Cart, I changed the version to follow Bevy version instead of crevice, do we want that?
- Crevice README.md need to be updated
- in the `Cargo.toml`, there are a few things to change. How do we want to change them? How do we keep attributions to original Crevice?
```
authors = ["Lucien Greathouse <me@lpghatguy.com>"]
documentation = "https://docs.rs/crevice"
homepage = "https://github.com/LPGhatguy/crevice"
repository = "https://github.com/LPGhatguy/crevice"
```


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-23 22:49:12 +00:00
Nicola Papale
035ec7b763 Implement non-indexed mesh rendering (#3415)
# Objective

Instead of panicking when the `indices` field of a mesh is `None`, actually manage it.

This is just a question of keeping track of the vertex buffer size.

## Notes

* Relying on this change to improve performance on [bevy_debug_lines using the new renderer](https://github.com/Toqozz/bevy_debug_lines/pull/10)
* I'm still new to rendering, my only expertise with wgpu is the learn-wgpu tutorial, likely I'm overlooking something.
2021-12-23 19:19:13 +00:00
François
6c479649bf enable Webgl2 optimisation in pbr under feature (#3291)
# Objective

- 3d examples fail to run in webgl2 because of unsupported texture formats or texture too large

## Solution

- switch to supported formats if a feature is enabled. I choose a feature instead of a build target to not conflict with a potential webgpu support

Very inspired by 6813b2edc5, and need #3290 to work.

I named the feature `webgl2`, but it's only needed if one want to use PBR in webgl2. Examples using only 2D already work.

Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-22 20:59:48 +00:00
Vabka
9a89295a17 Update wgpu to 0.12 and naga to 0.8 (#3375)
# Objective

Fixes #3352
Fixes #3208

## Solution

- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
2021-12-19 03:03:06 +00:00
Dusty DeWeese
73f524f61c Support topologies other than TriangleList (#3349)
# Objective

Fixes https://github.com/bevyengine/bevy/issues/3346

## Solution

I've encoded the topology in the `MeshKey` similar to how MSAA samples are handled.
2021-12-18 20:55:40 +00:00
Robert Swain
c061ec33c8 bevy_pbr2: Fix clustering for orthographic projections (#3316)
# Objective

PBR lighting was broken in the new renderer when using orthographic projections due to the way the depth slicing works for the clusters. Fix it.

## Solution

- The default orthographic projection near plane is 0.0. The perspective projection depth slicing does a division by the near plane which gives a floating point NaN and the clustering all breaks down.
- Orthographic projections have a linear depth mapping, so it made intuitive sense to me to do depth slicing with a linear mapping too. The alternative I saw was to try to handle the near plane being at 0.0 and using the exponential depth slicing, but that felt like a hack that didn't make sense.
- As such, I have added code that detects whether the projection is orthographic based on `projection[3][3] == 1.0` and then implemented the orthographic mapping case throughout (when computing cluster AABBs, and when mapping a view space position (or light) to a cluster id in both the rust and shader code).

## Screenshots
Before:
![before](https://user-images.githubusercontent.com/302146/145847278-5b1bca74-fbad-4cc5-8b49-384f6a377fdc.png)
After:
<img width="1392" alt="Screenshot 2021-12-13 at 16 36 53" src="https://user-images.githubusercontent.com/302146/145847314-6f3a2035-5d87-4896-8032-0c3e35e15b7d.png">
Old renderer (slightly lighter due to slight difference in configured intensity):
<img width="1392" alt="Screenshot 2021-12-13 at 16 42 23" src="https://user-images.githubusercontent.com/302146/145847391-6a5e6fe0-22da-4fc1-a6c7-440543689a63.png">
2021-12-14 23:42:35 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
Renamed from pipelined/bevy_pbr2/src/render/mesh.rs (Browse further)