CI-capable version of #9086
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](1b51053f19/crates/bevy_reflect/bevy_reflect_derive/src/type_path.rs (L76))
in enum variant name that I didn't fix. Enum is `pub(crate)`, so there
shouldn't be any trouble if fixed. However, code is tightly coupled with
macro usage, so I decided to leave it for more experienced contributor
just in case.
I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
# Objective
Follow-up to #6404 and #8292.
Mutating the world through a shared reference is surprising, and it
makes the meaning of `&World` unclear: sometimes it gives read-only
access to the entire world, and sometimes it gives interior mutable
access to only part of it.
This is an up-to-date version of #6972.
## Solution
Use `UnsafeWorldCell` for all interior mutability. Now, `&World`
*always* gives you read-only access to the entire world.
---
## Changelog
TODO - do we still care about changelogs?
## Migration Guide
Mutating any world data using `&World` is now considered unsound -- the
type `UnsafeWorldCell` must be used to achieve interior mutability. The
following methods now accept `UnsafeWorldCell` instead of `&World`:
- `QueryState`: `get_unchecked`, `iter_unchecked`,
`iter_combinations_unchecked`, `for_each_unchecked`,
`get_single_unchecked`, `get_single_unchecked_manual`.
- `SystemState`: `get_unchecked_manual`
```rust
let mut world = World::new();
let mut query = world.query::<&mut T>();
// Before:
let t1 = query.get_unchecked(&world, entity_1);
let t2 = query.get_unchecked(&world, entity_2);
// After:
let world_cell = world.as_unsafe_world_cell();
let t1 = query.get_unchecked(world_cell, entity_1);
let t2 = query.get_unchecked(world_cell, entity_2);
```
The methods `QueryState::validate_world` and
`SystemState::matches_world` now take a `WorldId` instead of `&World`:
```rust
// Before:
query_state.validate_world(&world);
// After:
query_state.validate_world(world.id());
```
The methods `QueryState::update_archetypes` and
`SystemState::update_archetypes` now take `UnsafeWorldCell` instead of
`&World`:
```rust
// Before:
query_state.update_archetypes(&world);
// After:
query_state.update_archetypes(world.as_unsafe_world_cell_readonly());
```
# Objective
Be consistent with `Resource`s and `Components` and have `Event` types
be more self-documenting.
Although not susceptible to accidentally using a function instead of a
value due to `Event`s only being initialized by their type, much of the
same reasoning for removing the blanket impl on `Resource` also applies
here.
* Not immediately obvious if a type is intended to be an event
* Prevent invisible conflicts if the same third-party or primitive types
are used as events
* Allows for further extensions (e.g. opt-in warning for missed events)
## Solution
Remove the blanket impl for the `Event` trait. Add a derive macro for
it.
---
## Changelog
- `Event` is no longer implemented for all applicable types. Add the
`#[derive(Event)]` macro for events.
## Migration Guide
* Add the `#[derive(Event)]` macro for events. Third-party types used as
events should be wrapped in a newtype.
- Supress false positive `redundant_clone` lints.
- Supress inactionable `result_large_err` lint.
Most of the size(50 out of 68 bytes) is coming from
`naga::WithSpan<naga::valid::ValidationError>`
Fixes#8333
# Objective
Fixes issue which causes failure to compile if using
`#![deny(missing_docs)]`.
## Solution
Added some very basic commenting to the generated read-only fields.
honestly I feel this to be up for debate since the comments are very
basic and give very little useful information but the purpose of this PR
is to fix the issue at hand.
---
## Changelog
Added comments to the derive macro and the projects now successfully
compile.
---------
Co-authored-by: lupan <kallll5@hotmail.com>
# Objective
The `#[derive(WorldQuery)]` macro currently only supports structs with
named fields.
Same motivation as #6957. Remove sharp edges from the derive macro, make
it just work more often.
## Solution
Support tuple structs.
---
## Changelog
+ Added support for tuple structs to the `#[derive(WorldQuery)]` macro.
# Objective
The type `&World` is currently in an awkward place, since it has two
meanings:
1. Read-only access to the entire world.
2. Interior mutable access to the world; immutable and/or mutable access
to certain portions of world data.
This makes `&World` difficult to reason about, and surprising to see in
function signatures if one does not know about the interior mutable
property.
The type `UnsafeWorldCell` was added in #6404, which is meant to
alleviate this confusion by adding a dedicated type for interior mutable
world access. However, much of the engine still treats `&World` as an
interior mutable-ish type. One of those places is `SystemParam`.
## Solution
Modify `SystemParam::get_param` to accept `UnsafeWorldCell` instead of
`&World`. Simplify the safety invariants, since the `UnsafeWorldCell`
type encapsulates the concept of constrained world access.
---
## Changelog
`SystemParam::get_param` now accepts an `UnsafeWorldCell` instead of
`&World`. This type provides a high-level API for unsafe interior
mutable world access.
## Migration Guide
For manual implementers of `SystemParam`: the function `get_item` now
takes `UnsafeWorldCell` instead of `&World`. To access world data, use:
* `.get_entity()`, which returns an `UnsafeEntityCell` which can be used
to access component data.
* `get_resource()` and its variants, to access resource data.
# Objective
Follow-up to #8030.
Now that `SystemParam` and `WorldQuery` are implemented for
`PhantomData`, the `ignore` attributes are now unnecessary.
---
## Changelog
- Removed the attributes `#[system_param(ignore)]` and
`#[world_query(ignore)]`.
## Migration Guide
The attributes `#[system_param(ignore)]` and `#[world_query]` ignore
have been removed. If you were using either of these with `PhantomData`
fields, you can simply remove the attribute:
```rust
#[derive(SystemParam)]
struct MyParam<'w, 's, Marker> {
...
// Before:
#[system_param(ignore)
_marker: PhantomData<Marker>,
// After:
_marker: PhantomData<Marker>,
}
#[derive(WorldQuery)]
struct MyQuery<Marker> {
...
// Before:
#[world_query(ignore)
_marker: PhantomData<Marker>,
// After:
_marker: PhantomData<Marker>,
}
```
If you were using this for another type that implements `Default`,
consider wrapping that type in `Local<>` (this only works for
`SystemParam`):
```rust
#[derive(SystemParam)]
struct MyParam<'w, 's> {
// Before:
#[system_param(ignore)]
value: MyDefaultType, // This will be initialized using `Default` each time `MyParam` is created.
// After:
value: Local<MyDefaultType>, // This will be initialized using `Default` the first time `MyParam` is created.
}
```
If you are implementing either trait and need to preserve the exact
behavior of the old `ignore` attributes, consider manually implementing
`SystemParam` or `WorldQuery` for a wrapper struct that uses the
`Default` trait:
```rust
// Before:
#[derive(WorldQuery)
struct MyQuery {
#[world_query(ignore)]
str: String,
}
// After:
#[derive(WorldQuery)
struct MyQuery {
str: DefaultQuery<String>,
}
pub struct DefaultQuery<T: Default>(pub T);
unsafe impl<T: Default> WorldQuery for DefaultQuery<T> {
type Item<'w> = Self;
...
unsafe fn fetch<'w>(...) -> Self::Item<'w> {
Self(T::default())
}
}
```
# Objective
When using `PhantomData` fields with the `#[derive(SystemParam)]` or
`#[derive(WorldQuery)]` macros, the user is required to add the
`#[system_param(ignore)]` attribute so that the macro knows to treat
that field specially. This is undesirable, since it makes the macro more
fragile and less consistent.
## Solution
Implement `SystemParam` and `WorldQuery` for `PhantomData`. This makes
the `ignore` attributes unnecessary.
Some internal changes make the derive macro compatible with types that
have invariant lifetimes, which fixes#8192. From what I can tell, this
fix requires `PhantomData` to implement `SystemParam` in order to ensure
that all of a type's generic parameters are always constrained.
---
## Changelog
+ Implemented `SystemParam` and `WorldQuery` for `PhantomData<T>`.
+ Fixed a miscompilation caused when invariant lifetimes were used with
the `SystemParam` macro.
# Objective
When using the `#[derive(WorldQuery)]` macro, the `ReadOnly` struct
generated has default (private) visibility for each field, regardless of
the visibility of the original field.
## Solution
For each field of a read-only `WorldQuery` variant, use the visibility
of the associated field defined on the original struct.
# Objective
Fix#1727Fix#8010
Meta types generated by the `SystemParam` and `WorldQuery` derive macros
can conflict with user-defined types if they happen to have the same
name.
## Solution
In order to check if an identifier would conflict with user-defined
types, we can just search the original `TokenStream` passed to the macro
to see if it contains the identifier (since the meta types are defined
in an anonymous scope, it's only possible for them to conflict with the
struct definition itself). When generating an identifier for meta types,
we can simply check if it would conflict, and then add additional
characters to the name until it no longer conflicts with anything.
The `WorldQuery` "Item" and read-only structs are a part of a module's
public API, and thus it is intended for them to conflict with
user-defined types.
This MR is a rebased and alternative proposal to
https://github.com/bevyengine/bevy/pull/5602
# Objective
- https://github.com/bevyengine/bevy/pull/4447 implemented untyped
(using component ids instead of generics and TypeId) APIs for
inserting/accessing resources and accessing components, but left
inserting components for another PR (this one)
## Solution
- add `EntityMut::insert_by_id`
- split `Bundle` into `DynamicBundle` with `get_components` and `Bundle:
DynamicBundle`. This allows the `BundleInserter` machinery to be reused
for bundles that can only be written, not read, and have no statically
available `ComponentIds`
- Compared to the original MR this approach exposes unsafe endpoints and
requires the user to manage instantiated `BundleIds`. This is quite easy
for the end user to do and does not incur the performance penalty of
checking whether component input is correctly provided for the
`BundleId`.
- This MR does ensure that constructing `BundleId` itself is safe
---
## Changelog
- add methods for inserting bundles and components to:
`world.entity_mut(entity).insert_by_id`
# Objective
Base sets, added in #7466 are a special type of system set. Systems can only be added to base sets via `in_base_set`, while non-base sets can only be added via `in_set`. Unfortunately this is currently guarded by a runtime panic, which presents an unfortunate toe-stub when the wrong method is used. The delayed response between writing code and encountering the error (possibly hours) makes the distinction between base sets and other sets much more difficult to learn.
## Solution
Add the marker traits `BaseSystemSet` and `FreeSystemSet`. `in_base_set` and `in_set` now respectively accept these traits, which moves the runtime panic to a compile time error.
---
## Changelog
+ Added the marker trait `BaseSystemSet`, which is distinguished from a `FreeSystemSet`. These are both subtraits of `SystemSet`.
## Migration Guide
None if merged with 0.10
# Objective
- it would be nice to be able to associate a `NodeId` of a system type set to the `NodeId` of the actual system (used in bevy_mod_debugdump)
## Solution
- make `system_type` return the type id of the system
- that way you can check if a `dyn SystemSet` is the system type set of a `dyn System`
- I don't know if this information is already present somewhere else in the scheduler or if there is a better way to expose it
# Objective
- Fixes#5432
- Fixes#6680
## Solution
- move code responsible for generating the `impl TypeUuid` from `type_uuid_derive` into a new function, `gen_impl_type_uuid`.
- this allows the new proc macro, `impl_type_uuid`, to call the code for generation.
- added struct `TypeUuidDef` and implemented `syn::Parse` to allow parsing of the input for the new macro.
- finally, used the new macro `impl_type_uuid` to implement `TypeUuid` for the standard library (in `crates/bevy_reflect/src/type_uuid_impl.rs`).
- fixes#6680 by doing a wrapping add of the param's index to its `TYPE_UUID`
Co-authored-by: dis-da-moe <84386186+dis-da-moe@users.noreply.github.com>
# Objective
We have a few old system labels that are now system sets but are still named or documented as labels. Documentation also generally mentioned system labels in some places.
## Solution
- Clean up naming and documentation regarding system sets
## Migration Guide
`PrepareAssetLabel` is now called `PrepareAssetSet`
# Objective
Implementing `States` manually is repetitive, so let's not.
One thing I'm unsure of is whether the macro import statement is in the right place.
# Objective
NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.
"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).
## Solution
This adds "base sets" as a variant of `SystemSet`:
A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:
```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
A,
B,
}
```
**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build.
**Base sets cannot belong to other sets**: this is where the word "base" comes from
Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.
```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
// X must be a normal set ... base sets cannot be added to base sets
.configure_set(X.in_base_set(MyBaseSet::A))
```
Base sets can still be configured like normal sets:
```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
```
The primary use case for base sets is enabling a "default base set":
```rust
schedule.set_default_base_set(CoreSet::Update)
// this will belong to CoreSet::Update by default
.add_system(foo)
// this will override the default base set with PostUpdate
.add_system(bar.in_base_set(CoreSet::PostUpdate))
```
This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.
---
## Changelog
- Added "base sets" and ported CoreSet to use them.
## Migration Guide
TODO
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
Fix#7447.
The `SystemParam` derive uses the wrong lifetimes for ignored fields.
## Solution
Use type inference instead of explicitly naming the types of ignored fields. This allows the compiler to automatically use the correct lifetime.
# Objective
Complete the first part of the migration detailed in bevyengine/rfcs#45.
## Solution
Add all the new stuff.
### TODO
- [x] Impl tuple methods.
- [x] Impl chaining.
- [x] Port ambiguity detection.
- [x] Write docs.
- [x] ~~Write more tests.~~(will do later)
- [ ] Write changelog and examples here?
- [x] ~~Replace `petgraph`.~~ (will do later)
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: Michael Hsu <mike.hsu@gmail.com>
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
# Objective
- Fix#7103.
- The issue is caused because I forgot to add a where clause to a generated struct in #7056.
## Solution
- Add the where clause.
Spiritual successor to #5205.
Actual successor to #6865.
# Objective
Currently, system params are defined using three traits: `SystemParam`, `ReadOnlySystemParam`, `SystemParamState`. The behavior for each param is specified by the `SystemParamState` trait, while `SystemParam` simply defers to the state.
Splitting the traits in this way makes it easier to implement within macros, but it increases the cognitive load. Worst of all, this approach requires each `MySystemParam` to have a public `MySystemParamState` type associated with it.
## Solution
* Merge the trait `SystemParamState` into `SystemParam`.
* Remove all trivial `SystemParam` state types.
* `OptionNonSendMutState<T>`: you will not be missed.
---
- [x] Fix/resolve the remaining test failure.
## Changelog
* Removed the trait `SystemParamState`, merging its functionality into `SystemParam`.
## Migration Guide
**Note**: this should replace the migration guide for #6865.
This is relative to Bevy 0.9, not main.
The traits `SystemParamState` and `SystemParamFetch` have been removed, and their functionality has been transferred to `SystemParam`.
```rust
// Before (0.9)
impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
}
unsafe impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
unsafe impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(&mut self, ...) -> Self::Item;
}
unsafe impl ReadOnlySystemParamFetch for MyParamState { }
// After (0.10)
unsafe impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
type Item<'w, 's> = MyParam<'w, 's>;
fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State { ... }
fn get_param<'w, 's>(state: &mut Self::State, ...) -> Self::Item<'w, 's>;
}
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> { }
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> {}
```
# Objective
- Fix#4200
Currently, `#[derive(SystemParam)]` publicly exposes each field type, which makes it impossible to encapsulate private fields.
## Solution
Previously, the fields were leaked because they were used as an input generic type to the macro-generated `SystemParam::State` struct. That type has been changed to store its state in a field with a specific type, instead of a generic type.
---
## Changelog
- Fixed a bug that caused `#[derive(SystemParam)]` to leak the types of private fields.
# Objective
* Currently, the `SystemParam` derive does not support types with const generic parameters.
* If you try to use const generics, the error message is cryptic and unhelpful.
* Continuation of the work started in #6867 and #6957.
## Solution
Allow const generic parameters to be used with `#[derive(SystemParam)]`.
# Objective
Fixes#4729.
Continuation of #4854.
## Solution
Add documentation to `ParamSet` and its methods. Includes examples suggested by community members in the original PR.
Co-authored-by: Nanox19435 <50684926+Nanox19435@users.noreply.github.com>
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
# Objective
* The `SystemParam` derive internally uses tuples, which means it is constrained by the 16-field limit on `all_tuples`.
* The error message if you exceed this limit is abysmal.
* Supercedes #5965 -- this does the same thing, but is simpler.
## Solution
If any tuples have more than 16 fields, they are folded into tuples of tuples until they are under the 16-field limit.
# Objective
Currently, only named structs can be used with the `SystemParam` derive macro.
## Solution
Remove the restriction. Tuple structs and unit structs are now supported.
---
## Changelog
+ Added support for tuple structs and unit structs to the `SystemParam` derive macro.
# Objective
A separate `tracing` span for running a system's commands is created, even if the system doesn't have commands. This is adding extra measuring overhead (see #4892) where it's not needed.
## Solution
Move the span into `ParallelCommandState` and `CommandQueue`'s `SystemParamState::apply`. To get the right metadata for the span, a additional `&SystemMeta` parameter was added to `SystemParamState::apply`.
---
## Changelog
Added: `SystemMeta::name`
Changed: Systems without `Commands` and `ParallelCommands` will no longer show a "system_commands" span when profiling.
Changed: `SystemParamState::apply` now takes a `&SystemMeta` parameter in addition to the provided `&mut World`.
# Objective
Speed up bundle insertion and spawning from a bundle.
## Solution
Use the same technique used in #6800 to remove the branch on storage type when writing components from a `Bundle` into storage.
- Add a `StorageType` argument to the closure on `Bundle::get_components`.
- Pass `C::Storage::STORAGE_TYPE` into that argument.
- Match on that argument instead of reading from a `Vec<StorageType>` in `BundleInfo`.
- Marked all implementations of `Bundle::get_components` as inline to encourage dead code elimination.
The `Vec<StorageType>` in `BundleInfo` was also removed as it's no longer needed. If users were reliant on this, they can either use the compile time constants or fetch the information from `Components`. Should save a rather negligible amount of memory.
## Performance
Microbenchmarks show a slight improvement to inserting components into existing entities, as well as spawning from a bundle. Ranging about 8-16% faster depending on the benchmark.
```
group main soft-constant-write-components
----- ---- ------------------------------
add_remove/sparse_set 1.08 1019.0±80.10µs ? ?/sec 1.00 944.6±66.86µs ? ?/sec
add_remove/table 1.07 1343.3±20.37µs ? ?/sec 1.00 1257.3±18.13µs ? ?/sec
add_remove_big/sparse_set 1.08 1132.4±263.10µs ? ?/sec 1.00 1050.8±240.74µs ? ?/sec
add_remove_big/table 1.02 2.6±0.05ms ? ?/sec 1.00 2.5±0.08ms ? ?/sec
get_or_spawn/batched 1.15 401.4±17.76µs ? ?/sec 1.00 349.3±11.26µs ? ?/sec
get_or_spawn/individual 1.13 732.1±43.35µs ? ?/sec 1.00 645.6±41.44µs ? ?/sec
insert_commands/insert 1.12 623.9±37.48µs ? ?/sec 1.00 557.4±34.99µs ? ?/sec
insert_commands/insert_batch 1.16 401.4±17.00µs ? ?/sec 1.00 347.4±12.87µs ? ?/sec
insert_simple/base 1.08 416.9±5.60µs ? ?/sec 1.00 385.2±4.14µs ? ?/sec
insert_simple/unbatched 1.06 934.5±44.58µs ? ?/sec 1.00 881.3±47.86µs ? ?/sec
spawn_commands/2000_entities 1.09 190.7±11.41µs ? ?/sec 1.00 174.7±9.15µs ? ?/sec
spawn_commands/4000_entities 1.10 386.5±25.33µs ? ?/sec 1.00 352.3±18.81µs ? ?/sec
spawn_commands/6000_entities 1.10 586.2±34.42µs ? ?/sec 1.00 535.3±27.25µs ? ?/sec
spawn_commands/8000_entities 1.08 778.5±45.15µs ? ?/sec 1.00 718.0±33.66µs ? ?/sec
spawn_world/10000_entities 1.04 1026.4±195.46µs ? ?/sec 1.00 985.8±253.37µs ? ?/sec
spawn_world/1000_entities 1.06 103.8±20.23µs ? ?/sec 1.00 97.6±18.22µs ? ?/sec
spawn_world/100_entities 1.15 11.4±4.25µs ? ?/sec 1.00 9.9±1.87µs ? ?/sec
spawn_world/10_entities 1.05 1030.8±229.78ns ? ?/sec 1.00 986.2±231.12ns ? ?/sec
spawn_world/1_entities 1.01 105.1±23.33ns ? ?/sec 1.00 104.6±31.84ns ? ?/sec
```
---
## Changelog
Changed: `Bundle::get_components` now takes a `FnMut(StorageType, OwningPtr)`. The provided storage type must be correct for the component being fetched.
# Objective
* Implementing a custom `SystemParam` by hand requires implementing three traits -- four if it is read-only.
* The trait `SystemParamFetch<'w, 's>` is a workaround from before we had generic associated types, and is no longer necessary.
## Solution
* Combine the trait `SystemParamFetch` with `SystemParamState`.
* I decided to remove the `Fetch` name and keep the `State` name, since the former was consistently conflated with the latter.
* Replace the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`, which simplifies trait bounds in generic code.
---
## Changelog
- Removed the trait `SystemParamFetch`, moving its functionality to `SystemParamState`.
- Replaced the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`.
## Migration Guide
The trait `SystemParamFetch` has been removed, and its functionality has been transferred to `SystemParamState`.
```rust
// Before
impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(...) -> Self::Item;
}
// After
impl SystemParamState for MyParamState {
type Item<'w, 's> = MyParam<'w, 's>; // Generic associated types!
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
fn get_param<'w, 's>(...) -> Self::Item<'w, 's>;
}
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl<'w, 's> ReadOnlySystemParam for MyParam<'w, 's> {}
```
having `doc(hidden)` on the read only version of a generated mutable world query leads to docs on the readonly item having a dead link. It also makes it annoying to have nice docs for libraries attempting to expose derived `WorldQuery` structs as re-exporting the read only item does not cause it to appear in docs even though it would be intended for users to know about the read only world query and use it.
# Objective
Prevent future unsoundness that was seen in #6623.
## Solution
Newtype both indexes in `Archetype` and `Table` as `ArchetypeRow` and `TableRow`. This avoids weird numerical manipulation on the indices, and can be stored and treated opaquely. Also enforces the source and destination of where these indices at a type level.
---
## Changelog
Changed: `Archetype` indices and `Table` rows have been newtyped as `ArchetypeRow` and `TableRow`.
# Objective
Currently, the `SystemParam` derive forces you to declare the lifetime parameters `<'w, 's>`, even if you don't use them.
If you don't follow this structure, the error message is quite nasty.
### Example (before):
```rust
#[derive(SystemParam)]
pub struct EventWriter<'w, 's, E: Event> {
events: ResMut<'w, Events<E>>,
// The derive forces us to declare the `'s` lifetime even though we don't use it,
// so we have to add this `PhantomData` to please rustc.
#[system_param(ignore)]
_marker: PhantomData<&'s ()>,
}
```
## Solution
* Allow the user to omit either lifetime.
* Emit a descriptive error if any lifetimes used are invalid.
### Example (after):
```rust
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
events: ResMut<'w, Events<E>>,
}
```
---
## Changelog
* The `SystemParam` derive is now more flexible, allowing you to omit unused lifetime parameters.
# Objective
Replace `WorldQueryGats` trait with actual gats
## Solution
Replace `WorldQueryGats` trait with actual gats
---
## Changelog
- Replaced `WorldQueryGats` trait with actual gats
## Migration Guide
- Replace usage of `WorldQueryGats` assoc types with the actual gats on `WorldQuery` trait
For `derive(WorldQuery)`, there are three structs generated, `Item`, `Fetch` and `State`.
These inherit the visibility of the derived structure, thus `#![warn(missing_docs)]` would
warn about missing documentation for these structures.
- [ ] I'd like some advice on what to write here, as I personally don't really understand `Fetch` nor `State`.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
Clean up code surrounding fetch by pulling out the common parts into the iteration code.
## Solution
Merge `Fetch::table_fetch` and `Fetch::archetype_fetch` into a single API: `Fetch::fetch(&mut self, entity: &Entity, table_row: &usize)`. This provides everything any fetch requires to internally decide which storage to read from and get the underlying data. All of these functions are marked as `#[inline(always)]` and the arguments are passed as references to attempt to optimize out the argument that isn't being used.
External to `Fetch`, Query iteration has been changed to keep track of the table row and entity outside of fetch, which moves a lot of the expensive bookkeeping `Fetch` structs had previously done internally into the outer loop.
~~TODO: Benchmark, docs~~ Done.
---
## Changelog
Changed: `Fetch::table_fetch` and `Fetch::archetype_fetch` have been merged into a single `Fetch::fetch` function.
## Migration Guide
TODO
Co-authored-by: Brian Merchant <bhmerchang@gmail.com>
Co-authored-by: Saverio Miroddi <saverio.pub2@gmail.com>
# Objective
- Do not implement `Copy` or `Clone` for `Fetch` types as this is kind of sus soundness wise (it feels like cloning an `IterMut` in safe code to me). Cloning a fetch seems important to think about soundness wise when doing it so I prefer this over adding a `Clone` bound to the assoc type definition (i.e. `type Fetch: Clone`) even though that would also solve the other listed things here.
- Remove a bunch of `QueryFetch<'w, Q>: Clone` bounds from our API as now all fetches can be "cloned" for use in `iter_combinations`. This should also help avoid the type inference regression ptrification introduced where `for<'a> QueryFetch<'a, Q>: Trait` bounds misbehave since we no longer need any of those kind of higher ranked bounds (although in practice we had none anyway).
- Stop being able to "forget" to implement clone for fetches, we've had a lot of issues where either `derive(Clone)` was used instead of a manual impl (so we ended up with too tight bounds on the impl) or flat out forgot to implement Clone at all. With this change all fetches are able to be cloned for `iter_combinations` so this will no longer be possible to mess up.
On an unrelated note, while making this PR I realised we probably want safety invariants on `archetype/table_fetch` that nothing aliases the table_row/archetype_index according to the access we set.
---
## Changelog
`Clone` and `Copy` were removed from all `Fetch` types.
## Migration Guide
- Call `WorldQuery::clone_fetch` instead of `fetch.clone()`. Make sure to add safety comments :)
# Objective
Fixes#5559
Replaces #5628
## Solution
Because the generated method from_components() creates an instance of Self my implementation requires any field type that is marked to be ignored to implement Default.
---
## Changelog
Added the possibility to ignore fields in a bundle with `#[bundle(ignore)]`. Typically used when `PhantomData` needs to be added to a `Bundle`.
@BoxyUwU this is your fault.
Also cart didn't arrive in time to tell us not to do this.
# Objective
- Fix#2974
## Solution
- The first commit just does the actual change
- Follow up commits do steps to prove that this method works to unify as required, but this does not remove `insert_bundle`.
## Changelog
### Changed
Nested bundles now collapse automatically, and every `Component` now implements `Bundle`.
This means that you can combine bundles and components arbitrarily, for example:
```rust
// before:
.insert(A).insert_bundle(MyBBundle{..})
// after:
.insert_bundle((A, MyBBundle {..}))
```
Note that there will be a follow up PR that removes the current `insert` impl and renames `insert_bundle` to `insert`.
### Removed
The `bundle` attribute in `derive(Bundle)`.
## Migration guide
In `derive(Bundle)`, the `bundle` attribute has been removed. Nested bundles are not collapsed automatically. You should remove `#[bundle]` attributes.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Ambiguity sets are used to ignore system order ambiguities between groups of systems. However, they are not very useful: they are clunky, poorly integrated, and generally hampered by the difficulty using (or discovering) the ambiguity detector.
As a first step to the work in #4299, we're removing them.
## Migration Guide
Ambiguity sets have been removed.
# Objective
- Fixes#5817.
- Removes std::vec::Vec ambiguities in derive_bundle macro
## Solution
Prepend :: to standard library full Vec qualified type name (::std::vec::Vec)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Simplify the worldquery trait hierarchy as much as possible by putting it all in one trait. If/when gats are stabilised this can be trivially migrated over to use them, although that's not why I made this PR, those reasons are:
- Moves all of the conceptually related unsafe code for a worldquery next to eachother
- Removes now unnecessary traits simplifying the "type system magic" in bevy_ecs
---
## Changelog
All methods/functions/types/consts on `FetchState` and `Fetch` traits have been moved to the `WorldQuery` trait and the other traits removed. `WorldQueryGats` now only contains an `Item` and `Fetch` assoc type.
## Migration Guide
Implementors should move items in impls to the `WorldQuery/Gats` traits and remove any `Fetch`/`FetchState` impls
Any use sites of items in the `Fetch`/`FetchState` traits should be updated to use the `WorldQuery` trait items instead
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5362
## Solution
Add the attribute `#[label(ignore_fields)]` for `*Label` types.
```rust
#[derive(SystemLabel)]
pub enum MyLabel {
One,
// Previously this was not allowed since labels cannot contain data.
#[system_label(ignore_fields)]
Two(PhantomData<usize>),
}
```
## Notes
This label makes it possible for equality to behave differently depending on whether or not you are treating the type as a label. For example:
```rust
#[derive(SystemLabel, PartialEq, Eq)]
#[system_label(ignore_fields)]
pub struct Foo(usize);
```
If you compare it as a label, it will ignore the wrapped fields as the user requested. But if you compare it as a `Foo`, the derive will incorrectly compare the inner fields. I see a few solutions
1. Do nothing. This is technically intended behavior, but I think we should do our best to prevent footguns.
2. Generate impls of `PartialEq` and `Eq` along with the `#[derive(Label)]` macros. This is a breaking change as it requires all users to remove these derives from their types.
3. Only allow `PhantomData` to be used with `ignore_fields` -- seems needlessly prescriptive.
---
## Changelog
* Added the `ignore_fields` attribute to the derive macros for `*Label` types.
* Added an example showing off different forms of the derive macro.
<!--
## Migration Guide
> This section is optional. If there are no breaking changes, you can delete this section.
- If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change.
-->
# Objective
- `.iter_combinations_*()` cannot be used on custom derived `WorldQuery`, so this fixes that
- Fixes#5284
## Solution
- `#[derive(Clone)]` on the `Fetch` of the proc macro derive.
- `#[derive(Clone)]` for `AnyOf` to satisfy tests.
Remove unnecessary calls to `iter()`/`iter_mut()`.
Mainly updates the use of queries in our code, docs, and examples.
```rust
// From
for _ in list.iter() {
for _ in list.iter_mut() {
// To
for _ in &list {
for _ in &mut list {
```
We already enable the pedantic lint [clippy::explicit_iter_loop](https://rust-lang.github.io/rust-clippy/stable/) inside of Bevy. However, this only warns for a few known types from the standard library.
## Note for reviewers
As you can see the additions and deletions are exactly equal.
Maybe give it a quick skim to check I didn't sneak in a crypto miner, but you don't have to torture yourself by reading every line.
I already experienced enough pain making this PR :)
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
`SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage.
There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment.
## Solution
- since clippy expects `SAFETY` instead of `SAFE`, rename those
- add `SAFETY` comments in more places
- for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety
- add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs`
### Note for reviewers
The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review.
cb042a416e..55cef2d6fa is the diff for all other changes.
### Safety comments where I'm not too familiar with the code
774012ece5/crates/bevy_ecs/src/entity/mod.rs (L540-L546)774012ece5/crates/bevy_ecs/src/world/entity_ref.rs (L249-L252)
### Locations left undocumented with a `TODO` comment
5dde944a30/crates/bevy_ecs/src/schedule/executor_parallel.rs (L196-L199)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L287-L289)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L413-L415)
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
- Nightly clippy lints should be fixed before they get stable and break CI
## Solution
- fix new clippy lints
- ignore `significant_drop_in_scrutinee` since it isn't relevant in our loop https://github.com/rust-lang/rust-clippy/issues/8987
```rust
for line in io::stdin().lines() {
...
}
```
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
- Fix a type inference regression introduced by #3001
- Make read only bounds on world queries more user friendly
ptrification required you to write `Q::Fetch: ReadOnlyFetch` as `for<'w> QueryFetch<'w, Q>: ReadOnlyFetch` which has the same type inference problem as `for<'w> QueryFetch<'w, Q>: FilterFetch<'w>` had, i.e. the following code would error:
```rust
#[derive(Component)]
struct Foo;
fn bar(a: Query<(&Foo, Without<Foo>)>) {
foo(a);
}
fn foo<Q: WorldQuery>(a: Query<Q, ()>)
where
for<'w> QueryFetch<'w, Q>: ReadOnlyFetch,
{
}
```
`for<..>` bounds are also rather user unfriendly..
## Solution
Remove the `ReadOnlyFetch` trait in favour of a `ReadOnlyWorldQuery` trait, and remove `WorldQueryGats::ReadOnlyFetch` in favor of `WorldQuery::ReadOnly` allowing the previous code snippet to be written as:
```rust
#[derive(Component)]
struct Foo;
fn bar(a: Query<(&Foo, Without<Foo>)>) {
foo(a);
}
fn foo<Q: ReadOnlyWorldQuery>(a: Query<Q, ()>) {}
```
This avoids the `for<...>` bound which makes the code simpler and also fixes the type inference issue.
The reason for moving the two functions out of `FetchState` and into `WorldQuery` is to allow the world query `&mut T` to share a `State` with the `&T` world query so that it can have `type ReadOnly = &T`. Presumably it would be possible to instead have a `ReadOnlyRefMut<T>` world query and then do `type ReadOnly = ReadOnlyRefMut<T>` much like how (before this PR) we had a `ReadOnlyWriteFetch<T>`. A side benefit of the current solution in this PR is that it will likely make it easier in the future to support an API such as `Query<&mut T> -> Query<&T>`. The primary benefit IMO is just that `ReadOnlyRefMut<T>` and its associated fetch would have to reimplement all of the logic that the `&T` world query impl does but this solution avoids that :)
---
## Changelog/Migration Guide
The trait `ReadOnlyFetch` has been replaced with `ReadOnlyWorldQuery` along with the `WorldQueryGats::ReadOnlyFetch` assoc type which has been replaced with `<WorldQuery::ReadOnly as WorldQueryGats>::Fetch`
- Any where clauses such as `QueryFetch<Q>: ReadOnlyFetch` should be replaced with `Q: ReadOnlyWorldQuery`.
- Any custom world query impls should implement `ReadOnlyWorldQuery` insead of `ReadOnlyFetch`
Functions `update_component_access` and `update_archetype_component_access` have been moved from the `FetchState` trait to `WorldQuery`
- Any callers should now call `Q::update_component_access(state` instead of `state.update_component_access` (and `update_archetype_component_access` respectively)
- Any custom world query impls should move the functions from the `FetchState` impl to `WorldQuery` impl
`WorldQuery` has been made an `unsafe trait`, `FetchState` has been made a safe `trait`. (I think this is how it should have always been, but regardless this is _definitely_ necessary now that the two functions have been moved to `WorldQuery`)
- If you have a custom `FetchState` impl make it a normal `impl` instead of `unsafe impl`
- If you have a custom `WorldQuery` impl make it an `unsafe impl`, if your code was sound before it is going to still be sound
# Objective
the code in these fns are always identical so stop having two functions
## Solution
make them the same function
---
## Changelog
change `matches_archetype` and `matches_table` to `fn matches_component_set(&self, &SparseArray<ComponentId, usize>) -> bool` then do extremely boring updating of all `FetchState` impls
## Migration Guide
- move logic of `matches_archetype` and `matches_table` into `matches_component_set` in any manual `FetchState` impls
Required for https://github.com/bevyengine/bevy/pull/4402.
# Objective
- derived `SystemParam` implementations were never `ReadOnlySystemParamFetch`
- We want them to be, e.g. for `EventReader`
## Solution
- If possible, 'forward' the impl of `ReadOnlySystemParamFetch`.
# Objective
The `Ptr` types gives free access to the underlying `NonNull<u8>`, which adds more publicly visible pointer wrangling than there needs to be. There are also a few edge cases where Ptr types could be more readily utilized for properly validating the soundness of ECS operations.
## Solution
- Replace `*Ptr(Mut)::inner` with `cast` which requires a concrete type to give the pointer. This function could also have a `debug_assert` with an alignment check to ensure that the pointer is aligned properly, but is currently not included.
- Use `OwningPtr::read` in ECS macros over casting the inner pointer around.
# Objective
avoid naming collisions with user structs when deriving ``system_param``.
## Solution
~rename the fetch struct created by ``#[derive(system_param)]`` from ``{}State`` to ``{}SysParamState``.~
place the fetch struct into an anonymous scope.
## Migration Guide
For code that was using a system param's fetch struct, such as ``EventReader``'s ``EventReaderState``, the fetch struct can now be identified via the SystemParam trait associated type ``Fetch``, e.g. for ``EventReader<T>`` it can be identified as ``<EventReader<'static, 'static, T> as SystemParam>::Fetch``
# Objective
This code currently fails to compile with error ``the name `T` is already used for a generic parameter in this item's generic parameters``, because `T` is also used in code generated by `derive(Bundle)`.
```rust
#[derive(Bundle)]
struct MyBundle<T: Component> {
component: T,
}
```
## Solution
Add double underscores to type parameter names in `derive(Bundle)`.
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
## Objective
This fixes#1686.
`size_hint` can be useful even if a little niche. For example,
`collect::<Vec<_>>()` uses the `size_hint` of Iterator it collects from
to pre-allocate a memory slice large enough to not require re-allocating
when pushing all the elements of the iterator.
## Solution
To this effect I made the following changes:
* Add a `IS_ARCHETYPAL` associated constant to the `Fetch` trait,
this constant tells us when it is safe to assume that the `Fetch`
relies exclusively on archetypes to filter queried entities
* Add `IS_ARCHETYPAL` to all the implementations of `Fetch`
* Use that constant in `QueryIter::size_hint` to provide a more useful
## Migration guide
The new associated constant is an API breaking change. For the user,
if they implemented a custom `Fetch`, it means they have to add this
associated constant to their implementation. Either `true` if it doesn't limit
the number of entities returned in a query beyond that of archetypes, or
`false` for when it does.
# Objective
When using `derive(WorldQuery)`, then clippy complains with the following:
```rust
warning: missing documentation for a struct
--> src\wild_boar_type\marker_vital_status.rs:35:17
|
35 | #[derive(Debug, WorldQuery)]
| ^^^^^^^^^^
|
= note: this warning originates in the derive macro `WorldQuery` (in Nightly builds, run with -Z macro-backtrace for more info)
```
## Solution
* Either `#[doc(hidden)]` or
* Add a generic documentation line to it.
I don't know what is preferred, but I'd gladly add it in here.
## Objective
Fixes#4122.
## Solution
Inherit the visibility of the struct being derived for the `xxItem`, `xxFetch`, `xxState` structs.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Add a system parameter `ParamSet` to be used as container for conflicting parameters.
## Solution
Added two methods to the SystemParamState trait, which gives the access used by the parameter. Did the implementation. Added some convenience methods to FilteredAccessSet. Changed `get_conflicts` to return every conflicting component instead of breaking on the first conflicting `FilteredAccess`.
Co-authored-by: bilsen <40690317+bilsen@users.noreply.github.com>
# Objective
- Fixes#3300
- `RunSystem` is messy
## Solution
- Adds the trick theorised in https://github.com/bevyengine/bevy/issues/3300#issuecomment-991791234
P.S. I also want this for an experimental refactoring of `Assets`, to remove the duplication of `Events<AssetEvent<T>>`
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fix the ugliness of the `config` api.
- Supercedes #2440, #2463, #2491
## Solution
- Since #2398, capturing closure systems have worked.
- Use those instead where we needed config before
- Remove the rest of the config api.
- Related: #2777
# Objective
- Closes#786
- Closes#2252
- Closes#2588
This PR implements a derive macro that allows users to define their queries as structs with named fields.
## Example
```rust
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct NumQuery<'w, T: Component, P: Component> {
entity: Entity,
u: UNumQuery<'w>,
generic: GenericQuery<'w, T, P>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct UNumQuery<'w> {
u_16: &'w u16,
u_32_opt: Option<&'w u32>,
}
#[derive(WorldQuery)]
#[world_query(derive(Debug))]
struct GenericQuery<'w, T: Component, P: Component> {
generic: (&'w T, &'w P),
}
#[derive(WorldQuery)]
#[world_query(filter)]
struct NumQueryFilter<T: Component, P: Component> {
_u_16: With<u16>,
_u_32: With<u32>,
_or: Or<(With<i16>, Changed<u16>, Added<u32>)>,
_generic_tuple: (With<T>, With<P>),
_without: Without<Option<u16>>,
_tp: PhantomData<(T, P)>,
}
fn print_nums_readonly(query: Query<NumQuery<u64, i64>, NumQueryFilter<u64, i64>>) {
for num in query.iter() {
println!("{:#?}", num);
}
}
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct MutNumQuery<'w, T: Component, P: Component> {
i_16: &'w mut i16,
i_32_opt: Option<&'w mut i32>,
}
fn print_nums(mut query: Query<MutNumQuery, NumQueryFilter<u64, i64>>) {
for num in query.iter_mut() {
println!("{:#?}", num);
}
}
```
## TODOs:
- [x] Add support for `&T` and `&mut T`
- [x] Test
- [x] Add support for optional types
- [x] Test
- [x] Add support for `Entity`
- [x] Test
- [x] Add support for nested `WorldQuery`
- [x] Test
- [x] Add support for tuples
- [x] Test
- [x] Add support for generics
- [x] Test
- [x] Add support for query filters
- [x] Test
- [x] Add support for `PhantomData`
- [x] Test
- [x] Refactor `read_world_query_field_type_info`
- [x] Properly document `readonly` attribute for nested queries and the static assertions that guarantee safety
- [x] Test that we never implement `ReadOnlyFetch` for types that need mutable access
- [x] Test that we insert static assertions for nested `WorldQuery` that a user marked as readonly
# Objective
`all_tuples` panics when the start count is set to anything other than 0 or 1. Fix this bug.
## Solution
Originally part of #2381, this PR fixes the slice indexing used by the proc macro.
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
# Objective
A user on Discord couldn't derive SystemParam for this Struct:
```rs
#[derive(SystemParam)]
pub struct SpatialQuery<'w, 's, Q: WorldQuery + Send + Sync + 'static, F: WorldQuery + Send + Sync + 'static = ()>
where
F::Fetch: FilterFetch,
{
query: Query<'w, 's, (C, &'static Transform), F>,
}
```
## Solution
1. The `where`-clause is now also copied to the `SystemParamFetch` impl Block.
2. The `SystemParamState` impl Block no longer gets any defaults for generics
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
# Objective
Emitting compile errors produces cleaner messages than panicking in a proc-macro.
## Solution
- Replace match-with-panic code with call to new `bevy_macro_utils::get_named_struct_fields` function
- Replace one use of match-with-panic for enums with inline match
_Aside:_ I'm also the maintainer of [`darling`](https://docs.rs/darling), a crate which provides a serde-like API for parsing macro inputs. I avoided using it here because it seemed like overkill, but if there are plans to add lots more attributes/macros then that might be a good way of offloading macro error handling.
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This updates the `pipelined-rendering` branch to use the latest `bevy_ecs` from `main`. This accomplishes a couple of goals:
1. prepares for upcoming `custom-shaders` branch changes, which were what drove many of the recent bevy_ecs changes on `main`
2. prepares for the soon-to-happen merge of `pipelined-rendering` into `main`. By including bevy_ecs changes now, we make that merge simpler / easier to review.
I split this up into 3 commits:
1. **add upstream bevy_ecs**: please don't bother reviewing this content. it has already received thorough review on `main` and is a literal copy/paste of the relevant folders (the old folders were deleted so the directories are literally exactly the same as `main`).
2. **support manual buffer application in stages**: this is used to enable the Extract step. we've already reviewed this once on the `pipelined-rendering` branch, but its worth looking at one more time in the new context of (1).
3. **support manual archetype updates in QueryState**: same situation as (2).
This is a rather simple but wide change, and it involves adding a new `bevy_app_macros` crate. Let me know if there is a better way to do any of this!
---
# Objective
- Allow adding and accessing sub-apps by using a label instead of an index
## Solution
- Migrate the bevy label implementation and derive code to the `bevy_utils` and `bevy_macro_utils` crates and then add a new `SubAppLabel` trait to the `bevy_app` crate that is used when adding or getting a sub-app from an app.
# Objective
Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).
For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)
## Solution
Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).
The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.
## Why is this a draft?
The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.
This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime). I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.
Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
This is an updated version of #1434 PR. I've encountered this macro problem while trying to use @woubuc's bevy-event-set crate.
Co-authored-by: Piotr Balcer <piotr@balcer.eu>