#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_asset` crate.
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene.
For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits.
In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section).
To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.
The examples are all ported over and operational with a few exceptions:
* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
# Objective
Make it easier to build and use an asset path with `format!()`. This can be useful for accessing assets in a loop.
Enabled by this PR:
```rust
let monkey_handle = asset_server.get_handle(&format!("models/monkey/Monkey.gltf#Mesh0/Primitive0"));
let monkey_handle = asset_server.get_handle(format!("models/monkey/Monkey.gltf#Mesh0/Primitive0"));
```
Before this PR:
```rust
let monkey_handle = asset_server.get_handle(format!("models/monkey/Monkey.gltf#Mesh0/Primitive0").as_str());
```
It's just a tiny improvement in ergonomics, but i ran into it and was wondering why the function does not accept a `String` and Bevy is all about simplicity/ergonomics, right? 😄😉
## Solution
Implement `Into<HandleId>` for `String` and `&String`.
# Objective
- there are a few new versions for `ron`, `winit`, `ndk`, `raw-window-handle`
- `cargo-deny` is failing due to new security issues / duplicated dependencies
## Solution
- Update our dependencies
- Note all new security issues, with which of Bevy direct dependency it comes from
- Update duplicate crate list, with which of Bevy direct dependency it comes from
`notify` is not updated here as it's in #2993
# Objective
- New clippy lints with rust 1.57 are failing
## Solution
- Fixed clippy lints following suggestions
- I ignored clippy in old renderer because there was many and it will be removed soon
## Shader Imports
This adds "whole file" shader imports. These come in two flavors:
### Asset Path Imports
```rust
// /assets/shaders/custom.wgsl
#import "shaders/custom_material.wgsl"
[[stage(fragment)]]
fn fragment() -> [[location(0)]] vec4<f32> {
return get_color();
}
```
```rust
// /assets/shaders/custom_material.wgsl
[[block]]
struct CustomMaterial {
color: vec4<f32>;
};
[[group(1), binding(0)]]
var<uniform> material: CustomMaterial;
```
### Custom Path Imports
Enables defining custom import paths. These are intended to be used by crates to export shader functionality:
```rust
// bevy_pbr2/src/render/pbr.wgsl
#import bevy_pbr::mesh_view_bind_group
#import bevy_pbr::mesh_bind_group
[[block]]
struct StandardMaterial {
base_color: vec4<f32>;
emissive: vec4<f32>;
perceptual_roughness: f32;
metallic: f32;
reflectance: f32;
flags: u32;
};
/* rest of PBR fragment shader here */
```
```rust
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut bevy_app::App) {
let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap();
shaders.set_untracked(
MESH_BIND_GROUP_HANDLE,
Shader::from_wgsl(include_str!("mesh_bind_group.wgsl"))
.with_import_path("bevy_pbr::mesh_bind_group"),
);
shaders.set_untracked(
MESH_VIEW_BIND_GROUP_HANDLE,
Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl"))
.with_import_path("bevy_pbr::mesh_view_bind_group"),
);
```
By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention.
Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that.
## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin
This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials.
## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache
This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`.
## RenderCommands are now fallible
This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet".
# Next Steps
* Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct)
* Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders
* Move shader import logic into the asset preprocessor once bevy gets support for that.
Fixes#3132
# Objective
Document that `AssetServer::load()` is asynchronous.
## Solution
Document that `AssetServer::load()` is asynchronous, and that the asset
will not be immediately available once the call returns. Instead,
explain that the user must call `AssetServer::get_load_state()` to
monitor the loading state of an asset.
# Objective
- `bevy_ecs` exposes as an optional feature `bevy_reflect`. Disabling it doesn't compile.
- `bevy_asset` exposes as an optional feature `filesystem_watcher`. Disabling it doesn't compile. It is also not possible to disable this feature from Bevy
## Solution
- Fix compilation errors when disabling the default features. Make it possible to disable the feature `filesystem_watcher` from Bevy
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
This changes how render logic is composed to make it much more modular. Previously, all extraction logic was centralized for a given "type" of rendered thing. For example, we extracted meshes into a vector of ExtractedMesh, which contained the mesh and material asset handles, the transform, etc. We looked up bindings for "drawn things" using their index in the `Vec<ExtractedMesh>`. This worked fine for built in rendering, but made it hard to reuse logic for "custom" rendering. It also prevented us from reusing things like "extracted transforms" across contexts.
To make rendering more modular, I made a number of changes:
* Entities now drive rendering:
* We extract "render components" from "app components" and store them _on_ entities. No more centralized uber lists! We now have true "ECS-driven rendering"
* To make this perform well, I implemented #2673 in upstream Bevy for fast batch insertions into specific entities. This was merged into the `pipelined-rendering` branch here: #2815
* Reworked the `Draw` abstraction:
* Generic `PhaseItems`: each draw phase can define its own type of "rendered thing", which can define its own "sort key"
* Ported the 2d, 3d, and shadow phases to the new PhaseItem impl (currently Transparent2d, Transparent3d, and Shadow PhaseItems)
* `Draw` trait and and `DrawFunctions` are now generic on PhaseItem
* Modular / Ergonomic `DrawFunctions` via `RenderCommands`
* RenderCommand is a trait that runs an ECS query and produces one or more RenderPass calls. Types implementing this trait can be composed to create a final DrawFunction. For example the DrawPbr DrawFunction is created from the following DrawCommand tuple. Const generics are used to set specific bind group locations:
```rust
pub type DrawPbr = (
SetPbrPipeline,
SetMeshViewBindGroup<0>,
SetStandardMaterialBindGroup<1>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* The new `custom_shader_pipelined` example illustrates how the commands above can be reused to create a custom draw function:
```rust
type DrawCustom = (
SetCustomMaterialPipeline,
SetMeshViewBindGroup<0>,
SetTransformBindGroup<2>,
DrawMesh,
);
```
* ExtractComponentPlugin and UniformComponentPlugin:
* Simple, standardized ways to easily extract individual components and write them to GPU buffers
* Ported PBR and Sprite rendering to the new primitives above.
* Removed staging buffer from UniformVec in favor of direct Queue usage
* Makes UniformVec much easier to use and more ergonomic. Completely removes the need for custom render graph nodes in these contexts (see the PbrNode and view Node removals and the much simpler call patterns in the relevant Prepare systems).
* Added a many_cubes_pipelined example to benchmark baseline 3d rendering performance and ensure there were no major regressions during this port. Avoiding regressions was challenging given that the old approach of extracting into centralized vectors is basically the "optimal" approach. However thanks to a various ECS optimizations and render logic rephrasing, we pretty much break even on this benchmark!
* Lifetimeless SystemParams: this will be a bit divisive, but as we continue to embrace "trait driven systems" (ex: ExtractComponentPlugin, UniformComponentPlugin, DrawCommand), the ergonomics of `(Query<'static, 'static, (&'static A, &'static B, &'static)>, Res<'static, C>)` were getting very hard to bear. As a compromise, I added "static type aliases" for the relevant SystemParams. The previous example can now be expressed like this: `(SQuery<(Read<A>, Read<B>)>, SRes<C>)`. If anyone has better ideas / conflicting opinions, please let me know!
* RunSystem trait: a way to define Systems via a trait with a SystemParam associated type. This is used to implement the various plugins mentioned above. I also added SystemParamItem and QueryItem type aliases to make "trait stye" ecs interactions nicer on the eyes (and fingers).
* RenderAsset retrying: ensures that render assets are only created when they are "ready" and allows us to create bind groups directly inside render assets (which significantly simplified the StandardMaterial code). I think ultimately we should swap this out on "asset dependency" events to wait for dependencies to load, but this will require significant asset system changes.
* Updated some built in shaders to account for missing MeshUniform fields
A few minor changes to fix warnings emitted from clippy on the nightly toolchain, including redundant_allocation, unwrap_or_else_default, and collapsible_match, fixes#2698
# Objective
- We currently depends on ndk 0.2, 0.3, 0.4
- Only 0.2 dependencies comes from Bevy itself
## Solution
- Replace #1371
- Update Bevy to ndk-glue 0.4
- Also fixes duplicate dependency CI issue
# Objective
notify 5.0.0-pre.11 breaks the interface again, but apparently in a way that's similar to how it used to be
## Solution
Bump `bevy_asset` dependency on notify to `5.0.0-pre.11` and fix the errors that crop up.
It looks like `pre.11` was mentioned in #2528 by @mockersf but there's no mention of why `pre.10` was chosen ultimately.
# Objective
- Remove all the `.system()` possible.
- Check for remaining missing cases.
## Solution
- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.
You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.
Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.
* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
* Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive.
* People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach.
* I like keeping the root clean and noise free
* There is precedent for putting the apache and mit license text in sub folders (amethyst)
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.
As a follow-up we should update the website to properly describe the new license.
Closes#2373
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.
* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7
Based on https://github.com/bevyengine/bevy/pull/2455
# Objective
Reduce compilation time
# Solution
Remove unused dependencies. While this PR doesn't remove any crates from `Cargo.lock`, it may unlock more build parallelism.
# Objective
Fixes a possible deadlock between `AssetServer::get_asset_loader` / `AssetServer::add_loader`
A thread could take the `extension_to_loader_index` read lock,
and then have the `server.loader` write lock taken in add_loader
before it can. Then add_loader can't take the extension_to_loader_index
lock, and the program deadlocks.
To be more precise:
## Step 1: Thread 1 grabs the `extension_to_loader_index` lock on lines 138..139:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L133-L145)
## Step 2: Thread 2 grabs the `server.loader` write lock on line 107:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L103-L116)
## Step 3: Deadlock, since Thread 1 wants to grab `server.loader` on line 141...:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L133-L145)
... and Thread 2 wants to grab 'extension_to_loader_index` on lines 111..112:
3a1867a92e/crates/bevy_asset/src/asset_server.rs (L103-L116)
## Solution
Fixed by descoping the extension_to_loader_index lock, since
`get_asset_loader` doesn't need to hold the read lock on the extensions map for the duration,
just to get a copyable usize. The block might not be needed,
I think I could have gotten away with just inserting a `copied()`
call into the chain, but I wanted to make the reasoning clear for
future maintainers.
# Objective
- Currently `AssetServer::get_handle_path` always returns `None` since the inner hash map is never written to.
## Solution
- Inside the `load_untracked` function, insert the asset path into the map.
This is similar to #1290 (thanks @TheRawMeatball)
# Objective
- Currently, when calling any of the `AssetServer`'s `load` functions, if the extension does not exist for the given path, the returned handle's load state is always `LoadState::NotLoaded`.
- This is due to the `load_async` function early returning without properly creating a `SourceInfo` for the requested asset.
- Fixes#2261
## Solution
- Add the `SourceInfo` prior to checking for valid extension loaders. And set the `LoadState` to `Failed` if the according loader does not exist.
1) Sets `LoadState` properly on all failing cases in `AssetServer::load_async`
2) Adds more tests for sad and happy paths of asset loading
_Note_: this brings in the `tempfile` crate.
# Objective
- When creating an asset, the `update_asset_storage` function was unnecessarily creating an extraneous `Handle` to the created asset via calling `set`. This has some overhead as the `RefChange::Increment/Decrement` event was being sent.
- A similar exteraneous handle is also created in `load_async` when loading dependencies.
## Solution
- Have the implementation use `Assets::set_untracked` and `AssetServer::load_untracked` so no intermediate handle is created.
## Objective
- Fixes: #2275
- `Assets` were being flagged as 'changed' each frame regardless of if the assets were actually being updated.
## Solution
- Only have `Assets` change detection be triggered when the collection is actually modified.
- This includes utilizing `ResMut` further down the stack instead of a `&mut Assets` directly.
fixes#824fixes#1956
* marked asset loading methods as `must_use`
* fixed asset re-loading while asset is still loading to work as comment is describing code
* introduced a 1 frame delay between unused asset marking and actual asset removal
Hi, ran into this problem with the derive macro.
It fails trying to derive the Default trait when the asset does not implements it also. This is unnecessary because this plugin does not need that from the asset type, just needs to create the phantom data.
While trying to reduce load time of gltf files, I noticed most of the loading time is spent transforming bytes into an actual texture.
This PR add asynchronously loading for them using io task pool in gltf loader. It reduces loading of a large glb file from 15 seconds to 6~8 on my laptop
To allow asynchronous tasks in an asset loader, I added a reference to the task pool from the asset server in the load context, which I can use later in the loader.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Fixes#1892
The following code is a cut down version of the issue, and crashes the same way:
```rust
enum AssetLifecycleEvent <T> {
Create(T),
Free
}
fn main() {
let (sender, _receiver) = crossbeam_channel::unbounded();
sender.send(AssetLifecycleEvent::<[u32; 32000]>::Free).unwrap();
}
```
- We're creating a channel that need to be able to hold `AssetLifecycleEvent::Create(T)` which has the size of our type `T`
- The two variants of the enums have a very different size
By keeping `T` boxed while sending through the channel, it doesn't crash
This was nowhere documented inside Bevy.
Should I also mention the use case of debugging a project?
Closes#810
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
This reduces the size of executables when using bevy as dylib by
ensuring that they get codegened in bevy_assets instead of the game
itself. This by extension avoids pulling in parts of bevy_tasks and
async_task.
Before this change the breakout example was 923k big after this change
it is only 775k big for cg_clif. For cg_llvm in release mode breakout
shrinks from 356k to 316k. For cg_llvm in debug mode breakout shrinks
from 3814k to 3057k.
Error message noticed in #1475
When an asset type hasn't been added to the app but a load was attempted, the error message wasn't helpful:
```
thread 'IO Task Pool (0)' panicked at 'Failed to find AssetLifecycle for label Some("Mesh0/Primitive0"), which has an asset type 8ecbac0f-f545-4473-ad43-e1f4243af51e. Are you sure that is a registered asset type?', /.cargo/git/checkouts/bevy-f7ffde730c324c74/89a41bc/crates/bevy_asset/src/asset_server.rs:435:17
```
means that
```rust
.add_asset::<bevy::render::prelude::Mesh>()
```
needs to be added.
* type name was not given, only UUID, which may make it hard to identify type across bevy/plugins
* instruction were not helpful as the `register_asset_type` method is not public
new error message:
```
thread 'IO Task Pool (1)' panicked at 'Failed to find AssetLifecycle for label 'Some("Mesh0/Primitive0")', which has an asset type "bevy_render::mesh::mesh::Mesh" (UUID 8ecbac0f-f545-4473-ad43-e1f4243af51e). Are you sure this asset type has been added to your app builder?', /bevy/crates/bevy_asset/src/asset_server.rs:435:17
```