Commit graph

46 commits

Author SHA1 Message Date
andristarr
70d9dfdc48
Adding explanation for loading additonal audio formats to example (#12998)
# Objective

Fixes #12900

## Solution

Added comment to example indicating that additional audio formats are
supported when the feature is added.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-20 02:15:06 +00:00
Remi Godin
df76fd4a1b
Programmed soundtrack example (#12774)
Created soundtrack example, fade-in and fade-out features, added new
assets, and updated credits.

# Objective
- Fixes #12651 

## Solution
- Created a resource to hold the track list. 
- The audio assets are then loaded by the asset server and added to the
track list.
- Once the game is in a specific state, an `AudioBundle` is spawned and
plays the appropriate track.
- The audio volume starts at zero and is then incremented gradually
until it reaches full volume.
- Once the game state changes, the current track fades out, and a new
one fades in at the same time, offering a relatively seamless
transition.
- Once a track is completely faded out, it is despawned from the app.
- Game state changes are simulated through a `Timer` for simplicity.
- Track change system is only run if there is a change in the
`GameState` resource.
- All tracks are used according to their respective licenses.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-03-29 20:32:30 +00:00
Rob Parrett
0746b8eb4c
Fix green colors becoming darker in various examples (#12328)
# Objective

Fixes #12225

Prior to the `bevy_color` port, `GREEN` used to mean "full green." But
it is now a much darker color matching the css1 spec.

## Solution

Change usages of `basic::GREEN` or `css::GREEN` to `LIME` to restore the
examples to their former colors.

This also removes the duplicate definition of `GREEN` from `css`. (it
was already re-exported from `basic`)

## Note

A lot of these examples could use nicer colors. I'm not trying to do
that here.

"Dark Grey" will be tackled separately and has its own tracking issue.
2024-03-05 23:42:03 +00:00
Alice Cecile
599e5e4e76
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective

- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.

## Solution

I've chosen to use the polymorphic `Color` type as our standard
user-facing API.

- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes

Incidental improvements to ease migration:

- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`

## Migration Guide

Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.

These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.

TODO...

- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
Alice Cecile
de004da8d5
Rename bevy_render::Color to LegacyColor (#12069)
# Objective

The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.

## Solution

To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.

However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.

As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.

## Migration Guide

THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.

This change should not be shipped to end users: delete this section in
the final migration guide!

---------

Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
2024-02-24 21:35:32 +00:00
Carter Anderson
dd619a1087
New Exposure and Lighting Defaults (and calibrate examples) (#11868)
# Objective

After adding configurable exposure, we set the default ev100 value to
`7` (indoor). This brought us out of sync with Blender's configuration
and defaults. This PR changes the default to `9.7` (bright indoor or
very overcast outdoors), as I calibrated in #11577. This feels like a
very reasonable default.

The other changes generally center around tweaking Bevy's lighting
defaults and examples to play nicely with this number, alongside a few
other tweaks and improvements.

Note that for artistic reasons I have reverted some examples, which
changed to directional lights in #11581, back to point lights.
 
Fixes #11577 

---

## Changelog

- Changed `Exposure::ev100` from `7` to `9.7` to better match Blender
- Renamed `ExposureSettings` to `Exposure`
- `Camera3dBundle` now includes `Exposure` for discoverability
- Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the
middle-to-top of those ranges instead of near the bottom
- Added new `AMBIENT_DAYLIGHT` constant and set that as the new
`DirectionalLight` default illuminance.
- `PointLight` and `SpotLight` now have a default `intensity` of
1,000,000 lumens. This makes them actually useful in the context of the
new "semi-outdoor" exposure and puts them in the "cinema lighting"
category instead of the "common household light" category. They are also
reasonably close to the Blender default.
- `AmbientLight` default has been bumped from `20` to `80`.

## Migration Guide

- The increased `Exposure::ev100` means that all existing 3D lighting
will need to be adjusted to match (DirectionalLights, PointLights,
SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust
the `Exposure::ev100` on your cameras to work nicely with your current
lighting values. If you are currently relying on default intensity
values, you might need to change the intensity to achieve the same
effect. Note that in Bevy 0.12, point/spot lights had a different hard
coded ev100 value than directional lights. In Bevy 0.13, they use the
same ev100, so if you have both in your scene, the _scale_ between these
light types has changed and you will likely need to adjust one or both
of them.
2024-02-15 20:42:48 +00:00
Doonv
dc9b486650
Change light defaults & fix light examples (#11581)
# Objective

Fix https://github.com/bevyengine/bevy/issues/11577.

## Solution

Fix the examples, add a few constants to make setting light values
easier, and change the default lighting settings to be more realistic.
(Now designed for an overcast day instead of an indoor environment)

---

I did not include any example-related changes in here.

## Changelogs (not including breaking changes)

### bevy_pbr

- Added `light_consts` module (included in prelude), which contains
common lux and lumen values for lights.
- Added `AmbientLight::NONE` constant, which is an ambient light with a
brightness of 0.
- Added non-EV100 variants for `ExposureSettings`'s EV100 constants,
which allow easier construction of an `ExposureSettings` from a EV100
constant.

## Breaking changes

### bevy_pbr

The several default lighting values were changed:

- `PointLight`'s default `intensity` is now `2000.0`
- `SpotLight`'s default `intensity` is now `2000.0`
- `DirectionalLight`'s default `illuminance` is now
`light_consts::lux::OVERCAST_DAY` (`1000.`)
- `AmbientLight`'s default `brightness` is now `20.0`
2024-02-14 20:43:10 +00:00
Joona Aalto
0166db33f7
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective

#11431 and #11688 implemented meshing support for Bevy's new geometric
primitives. The next step is to deprecate the shapes in
`bevy_render::mesh::shape` and to later remove them completely for 0.14.

## Solution

Deprecate the shapes and reduce code duplication by utilizing the
primitive meshing API for the old shapes where possible.

Note that some shapes have behavior that can't be exactly reproduced
with the new primitives yet:

- `Box` is more of an AABB with min/max extents
- `Plane` supports a subdivision count
- `Quad` has a `flipped` property

These types have not been changed to utilize the new primitives yet.

---

## Changelog

- Deprecated all shapes in `bevy_render::mesh::shape`
- Changed all examples to use new primitives for meshing

## Migration Guide

Bevy has previously used rendering-specific types like `UVSphere` and
`Quad` for primitive mesh shapes. These have now been deprecated to use
the geometric primitives newly introduced in version 0.13.

Some examples:

```rust
let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0));
let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0));

let before = meshes.add(shape::Quad::default());
let after = meshes.add(Rectangle::default());

let before = meshes.add(shape::Plane::from_size(5.0));
// The surface normal can now also be specified when using `new`
let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0));

let before = meshes.add(
    Mesh::try_from(shape::Icosphere {
        radius: 0.5,
        subdivisions: 5,
    })
    .unwrap(),
);
let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap());
```
2024-02-08 18:01:34 +00:00
Rob Parrett
29224768e4
Optional override for global spatial scale (#10419)
# Objective

Fixes #10414.

That issue and its comments do a great job of laying out the case for
this.

## Solution

Added an optional `spatial_scale` field to `PlaybackSettings`, which
overrides the default value set on `AudioPlugin`.

## Changelog

- `AudioPlugin::spatial_scale` has been renamed to
`default_spatial_scale`.
- `SpatialScale` is no longer a resource and is wrapped by
`DefaultSpatialScale`.
- Added an optional `spatial_scale` to `PlaybackSettings`.

## Migration Guide

`AudioPlugin::spatial_scale` has been renamed to `default_spatial_scale`
and the default spatial scale can now be overridden on individual audio
sources with `PlaybackSettings::spatial_scale`.

If you were modifying or reading `SpatialScale` at run time, use
`DefaultSpatialScale` instead.

```rust
// before
app.add_plugins(DefaultPlugins.set(AudioPlugin {
    spatial_scale: SpatialScale::new(AUDIO_SCALE),
    ..default()
}));

// after
app.add_plugins(DefaultPlugins.set(AudioPlugin {
    default_spatial_scale: SpatialScale::new(AUDIO_SCALE),
    ..default()
}));
```
2024-01-25 16:29:35 +00:00
AxiomaticSemantics
2ebf5a303e
Remove TypeUuid (#11497)
# Objective
TypeUuid is deprecated, remove it.

## Migration Guide
Convert any uses of `#[derive(TypeUuid)]` with `#[derive(TypePath]` for
more complex uses see the relevant
[documentation](https://docs.rs/bevy/latest/bevy/prelude/trait.TypePath.html)
for more information.

---------

Co-authored-by: ebola <dev@axiomatic>
2024-01-25 16:16:58 +00:00
JMS55
fcd7c0fc3d
Exposure settings (adopted) (#11347)
Rebased and finished version of
https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie
for adjusting all the examples, and the many other people who helped
write this PR (@superdump , @coreh , among others) :)

Fixes https://github.com/bevyengine/bevy/issues/8369

---

## Changelog
- Added a `brightness` control to `Skybox`.
- Added an `intensity` control to `EnvironmentMapLight`.
- Added `ExposureSettings` and `PhysicalCameraParameters` for
controlling exposure of 3D cameras.
- Removed the baked-in `DirectionalLight` exposure Bevy previously
hardcoded internally.

## Migration Guide
- If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness`
and `intensity` controls to adjust their strength.
- All 3D scene will now have different apparent brightnesses due to Bevy
implementing proper exposure controls. You will have to adjust the
intensity of your lights and/or your camera exposure via the new
`ExposureSettings` component to compensate.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com>
Co-authored-by: Marco Buono <thecoreh@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
2024-01-16 14:53:21 +00:00
Joona Aalto
a795de30b4
Use impl Into<A> for Assets::add (#10878)
# Motivation

When spawning entities into a scene, it is very common to create assets
like meshes and materials and to add them via asset handles. A common
setup might look like this:

```rust
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    commands.spawn(PbrBundle {
        mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
        material: materials.add(StandardMaterial::from(Color::RED)),
        ..default()
    });
}
```

Let's take a closer look at the part that adds the assets using `add`.

```rust
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
```

Here, "mesh" and "material" are both repeated three times. It's very
explicit, but I find it to be a bit verbose. In addition to being more
code to read and write, the extra characters can sometimes also lead to
the code being formatted to span multiple lines even though the core
task, adding e.g. a primitive mesh, is extremely simple.

A way to address this is by using `.into()`:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }.into()),
material: materials.add(Color::RED.into()),
```

This is fine, but from the names and the type of `meshes`, we already
know what the type should be. It's very clear that `Cube` should be
turned into a `Mesh` because of the context it's used in. `.into()` is
just seven characters, but it's so common that it quickly adds up and
gets annoying.

It would be nice if you could skip all of the conversion and let Bevy
handle it for you:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
```

# Objective

Make adding assets more ergonomic by making `Assets::add` take an `impl
Into<A>` instead of `A`.

## Solution

`Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this
works:

```rust
    commands.spawn(PbrBundle {
        mesh: meshes.add(shape::Cube { size: 1.0 }),
        material: materials.add(Color::RED),
        ..default()
    });
```

I also changed all examples to use this API, which increases consistency
as well because `Mesh::from` and `into` were being used arbitrarily even
in the same file. This also gets rid of some lines of code because
formatting is nicer.

---

## Changelog

- `Assets::add` now takes an `impl Into<A>` instead of `A`
- Examples don't use `T::from(K)` or `K.into()` when adding assets

## Migration Guide

Some `into` calls that worked previously might now be broken because of
the new trait bounds. You need to either remove `into` or perform the
conversion explicitly with `from`:

```rust
// Doesn't compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()),

// These compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }),
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
```

## Concerns

I believe the primary concerns might be:

1. Is this too implicit?
2. Does this increase codegen bloat?

Previously, the two APIs were using `into` or `from`, and now it's
"nothing" or `from`. You could argue that `into` is slightly more
explicit than "nothing" in cases like the earlier examples where a
`Color` gets converted to e.g. a `StandardMaterial`, but I personally
don't think `into` adds much value even in this case, and you could
still see the actual type from the asset type.

As for codegen bloat, I doubt it adds that much, but I'm not very
familiar with the details of codegen. I personally value the user-facing
code reduction and ergonomics improvements that these changes would
provide, but it might be worth checking the other effects in more
detail.

Another slight concern is migration pain; apps might have a ton of
`into` calls that would need to be removed, and it did take me a while
to do so for Bevy itself (maybe around 20-40 minutes). However, I think
the fact that there *are* so many `into` calls just highlights that the
API could be made nicer, and I'd gladly migrate my own projects for it.
2024-01-08 22:14:43 +00:00
Tygyh
1568d4a415
Reorder impl to be the same as the trait (#11076)
# Objective

- Make the implementation order consistent between all sources to fit
the order in the trait.

## Solution

- Change the implementation order.
2023-12-24 17:43:55 +00:00
Thierry Berger
ced216f59a
Update winit dependency to 0.29 (#10702)
# Objective

- Update winit dependency to 0.29

## Changelog

### KeyCode changes

- Removed `ScanCode`, as it was [replaced by
KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292).
- `ReceivedCharacter.char` is now a `SmolStr`, [relevant
doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text).
- Changed most `KeyCode` values, and added more.

KeyCode has changed meaning. With this PR, it refers to physical
position on keyboard rather than the printed letter on keyboard keys.

In practice this means:
- On QWERTY keyboard layouts, nothing changes
- On any other keyboard layout, `KeyCode` no longer reflects the label
on key.
- This is "good". In bevy 0.12, when you used WASD for movement, users
with non-QWERTY keyboards couldn't play your game! This was especially
bad for non-latin keyboards. Now, WASD represents the physical keys. A
French player will press the ZQSD keys, which are near each other,
Kyrgyz players will use "Цфыв".
- This is "bad" as well. You can't know in advance what the label of the
key for input is. Your UI says "press WASD to move", even if in reality,
they should be pressing "ZQSD" or "Цфыв". You also no longer can use
`KeyCode` for text inputs. In any case, it was a pretty bad API for text
input. You should use `ReceivedCharacter` now instead.

### Other changes
- Use `web-time` rather than `instant` crate.
(https://github.com/rust-windowing/winit/pull/2836)
- winit did split `run_return` in `run_onDemand` and `pump_events`, I
did the same change in bevy_winit and used `pump_events`.
- Removed `return_from_run` from `WinitSettings` as `winit::run` now
returns on supported platforms.
- I left the example "return_after_run" as I think it's still useful.
- This winit change is done partly to allow to create a new window after
quitting all windows: https://github.com/emilk/egui/issues/1918 ; this
PR doesn't address.
- added `width` and `height` properties in the `canvas` from wasm
example
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168)

## Known regressions (important follow ups?)
- Provide an API for reacting when a specific key from current layout
was released.
- possible solutions: use winit::Key from winit::KeyEvent ; mapping
between KeyCode and Key ; or .
- We don't receive characters through alt+numpad (e.g. alt + 151 = "ù")
anymore ; reproduced on winit example "ime". maybe related to
https://github.com/rust-windowing/winit/issues/2945
- (windows) Window content doesn't refresh at all when resizing. By
reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect
we should just fire a `window.request_redraw();` from `AboutToWait`, and
handle actual redrawing within `RedrawRequested`. I'm not sure how to
move all that code so I'd appreciate it to be a follow up.
- (windows) unreleased winit fix for using set_control_flow in
AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm
not sure what the implications are, but that feels bad 🤔

## Follow up 

I'd like to avoid bloating this PR, here are a few follow up tasks
worthy of a separate PR, or new issue to track them once this PR is
closed, as they would either complicate reviews, or at risk of being
controversial:
- remove CanvasParentResizePlugin
(https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856)
- avoid mentionning explicitly winit in docs from bevy_window ?
- NamedKey integration on bevy_input:
https://github.com/rust-windowing/winit/pull/3143 introduced a new
NamedKey variant. I implemented it only on the converters but we'd
benefit making the same changes to bevy_input.
- Add more info in KeyboardInput
https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313
- https://github.com/bevyengine/bevy/pull/9905 added a workaround on a
bug allegedly fixed by winit 0.29. We should check if it's still
necessary.
- update to raw_window_handle 0.6
  - blocked by wgpu
- Rename `KeyCode` to `PhysicalKeyCode`
https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015
- remove `instant` dependency, [replaced
by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd
need to update to :
  - fastrand >= 2.0
- [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7
    - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0
- Verify license, see
[discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800)
  - we might be missing a short notice or description of changes made
- Consider using https://github.com/rust-windowing/cursor-icon directly
rather than vendoring it in bevy.
- investigate [this
unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986)
(`winit_window.canvas().unwrap();`)
- Use more good things about winit's update
- https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428
## Migration Guide

This PR should have one.
2023-12-21 07:40:47 +00:00
Mateusz Wachowiak
1f97717a3d
Rename Input to ButtonInput (#10859)
# Objective

- Resolves #10853 

## Solution

- ~~Changed the name of `Input` struct to `PressableInput`.~~
- Changed the name of `Input` struct to `ButtonInput`.

## Migration Guide

- Breaking Change: Users need to rename `Input` to `ButtonInput` in
their projects.
2023-12-06 20:32:34 +00:00
Rob Parrett
39c68e3f92
More ergonomic spatial audio (#9800)
# Objective

Spatial audio was heroically thrown together at the last minute for Bevy
0.10, but right now it's a bit of a pain to use -- users need to
manually update audio sinks with the position of the listener / emitter.

Hopefully the migration guide entry speaks for itself.

## Solution

Add a new `SpatialListener` component and automatically update sinks
with the position of the listener and and emitter.

## Changelog

`SpatialAudioSink`s are now automatically updated with positions of
emitters and listeners.

## Migration Guide

Spatial audio now automatically uses the transform of the `AudioBundle`
and of an entity with a `SpatialListener` component.

If you were manually scaling emitter/listener positions, you can use the
`spatial_scale` field of `AudioPlugin` instead.

```rust

// Old

commands.spawn(
    SpatialAudioBundle {
        source: asset_server.load("sounds/Windless Slopes.ogg"),
        settings: PlaybackSettings::LOOP,
        spatial: SpatialSettings::new(listener_position, gap, emitter_position),
    },
);

fn update(
    emitter_query: Query<(&Transform, &SpatialAudioSink)>,
    listener_query: Query<&Transform, With<Listener>>,
) {
    let listener = listener_query.single();

    for (transform, sink) in &emitter_query {
        sink.set_emitter_position(transform.translation);
        sink.set_listener_position(*listener, gap);
    }
}

// New

commands.spawn((
    SpatialBundle::from_transform(Transform::from_translation(emitter_position)),
    AudioBundle {
        source: asset_server.load("sounds/Windless Slopes.ogg"),
        settings: PlaybackSettings::LOOP.with_spatial(true),
    },
));

commands.spawn((
    SpatialBundle::from_transform(Transform::from_translation(listener_position)),
    SpatialListener::new(gap),
));
```

## Discussion

I removed `SpatialAudioBundle` because the `SpatialSettings` component
was made mostly redundant, and without that it was identical to
`AudioBundle`.

`SpatialListener` is a bare component and not a bundle which is feeling
like a maybe a strange choice. That happened from a natural aversion
both to nested bundles and to duplicating `Transform` etc in bundles and
from figuring that it is likely to just be tacked on to some other
bundle (player, head, camera) most of the time.

Let me know what you think about these things / everything else.

---------

Co-authored-by: Mike <mike.hsu@gmail.com>
2023-10-09 19:43:56 +00:00
Carter Anderson
5eb292dc10
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal

## Why Does Bevy Need A New Asset System?

Asset pipelines are a central part of the gamedev process. Bevy's
current asset system is missing a number of features that make it
non-viable for many classes of gamedev. After plenty of discussions and
[a long community feedback
period](https://github.com/bevyengine/bevy/discussions/3972), we've
identified a number missing features:

* **Asset Preprocessing**: it should be possible to "preprocess" /
"compile" / "crunch" assets at "development time" rather than when the
game starts up. This enables offloading expensive work from deployed
apps, faster asset loading, less runtime memory usage, etc.
* **Per-Asset Loader Settings**: Individual assets cannot define their
own loaders that override the defaults. Additionally, they cannot
provide per-asset settings to their loaders. This is a huge limitation,
as many asset types don't provide all information necessary for Bevy
_inside_ the asset. For example, a raw PNG image says nothing about how
it should be sampled (ex: linear vs nearest).
* **Asset `.meta` files**: assets should have configuration files stored
adjacent to the asset in question, which allows the user to configure
asset-type-specific settings. These settings should be accessible during
the pre-processing phase. Modifying a `.meta` file should trigger a
re-processing / re-load of the asset. It should be possible to configure
asset loaders from the meta file.
* **Processed Asset Hot Reloading**: Changes to processed assets (or
their dependencies) should result in re-processing them and re-loading
the results in live Bevy Apps.
* **Asset Dependency Tracking**: The current bevy_asset has no good way
to wait for asset dependencies to load. It punts this as an exercise for
consumers of the loader apis, which is unreasonable and error prone.
There should be easy, ergonomic ways to wait for assets to load and
block some logic on an asset's entire dependency tree loading.
* **Runtime Asset Loading**: it should be (optionally) possible to load
arbitrary assets dynamically at runtime. This necessitates being able to
deploy and run the asset server alongside Bevy Apps on _all platforms_.
For example, we should be able to invoke the shader compiler at runtime,
stream scenes from sources like the internet, etc. To keep deployed
binaries (and startup times) small, the runtime asset server
configuration should be configurable with different settings compared to
the "pre processor asset server".
* **Multiple Backends**: It should be possible to load assets from
arbitrary sources (filesystems, the internet, remote asset serves, etc).
* **Asset Packing**: It should be possible to deploy assets in
compressed "packs", which makes it easier and more efficient to
distribute assets with Bevy Apps.
* **Asset Handoff**: It should be possible to hold a "live" asset
handle, which correlates to runtime data, without actually holding the
asset in memory. Ex: it must be possible to hold a reference to a GPU
mesh generated from a "mesh asset" without keeping the mesh data in CPU
memory
* **Per-Platform Processed Assets**: Different platforms and app
distributions have different capabilities and requirements. Some
platforms need lower asset resolutions or different asset formats to
operate within the hardware constraints of the platform. It should be
possible to define per-platform asset processing profiles. And it should
be possible to deploy only the assets required for a given platform.

These features have architectural implications that are significant
enough to require a full rewrite. The current Bevy Asset implementation
got us this far, but it can take us no farther. This PR defines a brand
new asset system that implements most of these features, while laying
the foundations for the remaining features to be built.

## Bevy Asset V2

Here is a quick overview of the features introduced in this PR.
* **Asset Preprocessing**: Preprocess assets at development time into
more efficient (and configurable) representations
* **Dependency Aware**: Dependencies required to process an asset are
tracked. If an asset's processed dependency changes, it will be
reprocessed
* **Hot Reprocessing/Reloading**: detect changes to asset source files,
reprocess them if they have changed, and then hot-reload them in Bevy
Apps.
* **Only Process Changes**: Assets are only re-processed when their
source file (or meta file) has changed. This uses hashing and timestamps
to avoid processing assets that haven't changed.
* **Transactional and Reliable**: Uses write-ahead logging (a technique
commonly used by databases) to recover from crashes / forced-exits.
Whenever possible it avoids full-reprocessing / only uncompleted
transactions will be reprocessed. When the processor is running in
parallel with a Bevy App, processor asset writes block Bevy App asset
reads. Reading metadata + asset bytes is guaranteed to be transactional
/ correctly paired.
* **Portable / Run anywhere / Database-free**: The processor does not
rely on an in-memory database (although it uses some database techniques
for reliability). This is important because pretty much all in-memory
databases have unsupported platforms or build complications.
* **Configure Processor Defaults Per File Type**: You can say "use this
processor for all files of this type".
* **Custom Processors**: The `Processor` trait is flexible and
unopinionated. It can be implemented by downstream plugins.
* **LoadAndSave Processors**: Most asset processing scenarios can be
expressed as "run AssetLoader A, save the results using AssetSaver X,
and then load the result using AssetLoader B". For example, load this
png image using `PngImageLoader`, which produces an `Image` asset and
then save it using `CompressedImageSaver` (which also produces an
`Image` asset, but in a compressed format), which takes an `Image` asset
as input. This means if you have an `AssetLoader` for an asset, you are
already half way there! It also means that you can share AssetSavers
across multiple loaders. Because `CompressedImageSaver` accepts Bevy's
generic Image asset as input, it means you can also use it with some
future `JpegImageLoader`.
* **Loader and Saver Settings**: Asset Loaders and Savers can now define
their own settings types, which are passed in as input when an asset is
loaded / saved. Each asset can define its own settings.
* **Asset `.meta` files**: configure asset loaders, their settings,
enable/disable processing, and configure processor settings
* **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex:
if an asset contains a `Handle<Image>`) are tracked by the asset server.
An event is emitted when an asset and all of its dependencies have been
loaded
* **Unprocessed Asset Loading**: Assets do not require preprocessing.
They can be loaded directly. A processed asset is just a "normal" asset
with some extra metadata. Asset Loaders don't need to know or care about
whether or not an asset was processed.
* **Async Asset IO**: Asset readers/writers use async non-blocking
interfaces. Note that because Rust doesn't yet support async traits,
there is a bit of manual Boxing / Future boilerplate. This will
hopefully be removed in the near future when Rust gets async traits.
* **Pluggable Asset Readers and Writers**: Arbitrary asset source
readers/writers are supported, both by the processor and the asset
server.
* **Better Asset Handles**
* **Single Arc Tree**: Asset Handles now use a single arc tree that
represents the lifetime of the asset. This makes their implementation
simpler, more efficient, and allows us to cheaply attach metadata to
handles. Ex: the AssetPath of a handle is now directly accessible on the
handle itself!
* **Const Typed Handles**: typed handles can be constructed in a const
context. No more weird "const untyped converted to typed at runtime"
patterns!
* **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed
`Handle<T>` is now much smaller in memory and `AssetId<T>` is even
smaller.
* **Weak Handle Usage Reduction**: In general Handles are now considered
to be "strong". Bevy features that previously used "weak `Handle<T>`"
have been ported to `AssetId<T>`, which makes it statically clear that
the features do not hold strong handles (while retaining strong type
information). Currently Handle::Weak still exists, but it is very
possible that we can remove that entirely.
* **Efficient / Dense Asset Ids**: Assets now have efficient dense
runtime asset ids, which means we can avoid expensive hash lookups.
Assets are stored in Vecs instead of HashMaps. There are now typed and
untyped ids, which means we no longer need to store dynamic type
information in the ID for typed handles. "AssetPathId" (which was a
nightmare from a performance and correctness standpoint) has been
entirely removed in favor of dense ids (which are retrieved for a path
on load)
* **Direct Asset Loading, with Dependency Tracking**: Assets that are
defined at runtime can still have their dependencies tracked by the
Asset Server (ex: if you create a material at runtime, you can still
wait for its textures to load). This is accomplished via the (currently
optional) "asset dependency visitor" trait. This system can also be used
to define a set of assets to load, then wait for those assets to load.
* **Async folder loading**: Folder loading also uses this system and
immediately returns a handle to the LoadedFolder asset, which means
folder loading no longer blocks on directory traversals.
* **Improved Loader Interface**: Loaders now have a specific "top level
asset type", which makes returning the top-level asset simpler and
statically typed.
* **Basic Image Settings and Processing**: Image assets can now be
processed into the gpu-friendly Basic Universal format. The ImageLoader
now has a setting to define what format the image should be loaded as.
Note that this is just a minimal MVP ... plenty of additional work to do
here. To demo this, enable the `basis-universal` feature and turn on
asset processing.
* **Simpler Audio Play / AudioSink API**: Asset handle providers are
cloneable, which means the Audio resource can mint its own handles. This
means you can now do `let sink_handle = audio.play(music)` instead of
`let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that
this might still be replaced by
https://github.com/bevyengine/bevy/pull/8424.
**Removed Handle Casting From Engine Features**: Ex: FontAtlases no
longer use casting between handle types

## Using The New Asset System

### Normal Unprocessed Asset Loading

By default the `AssetPlugin` does not use processing. It behaves pretty
much the same way as the old system.

If you are defining a custom asset, first derive `Asset`:

```rust
#[derive(Asset)]
struct Thing {
    value: String,
}
```

Initialize the asset:
```rust
app.init_asset:<Thing>()
```

Implement a new `AssetLoader` for it:

```rust
#[derive(Default)]
struct ThingLoader;

#[derive(Serialize, Deserialize, Default)]
pub struct ThingSettings {
    some_setting: bool,
}

impl AssetLoader for ThingLoader {
    type Asset = Thing;
    type Settings = ThingSettings;

    fn load<'a>(
        &'a self,
        reader: &'a mut Reader,
        settings: &'a ThingSettings,
        load_context: &'a mut LoadContext,
    ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> {
        Box::pin(async move {
            let mut bytes = Vec::new();
            reader.read_to_end(&mut bytes).await?;
            // convert bytes to value somehow
            Ok(Thing {
                value 
            })
        })
    }

    fn extensions(&self) -> &[&str] {
        &["thing"]
    }
}
```

Note that this interface will get much cleaner once Rust gets support
for async traits. `Reader` is an async futures_io::AsyncRead. You can
stream bytes as they come in or read them all into a `Vec<u8>`,
depending on the context. You can use `let handle =
load_context.load(path)` to kick off a dependency load, retrieve a
handle, and register the dependency for the asset.

Then just register the loader in your Bevy app:

```rust
app.init_asset_loader::<ThingLoader>()
```

Now just add your `Thing` asset files into the `assets` folder and load
them like this:

```rust
fn system(asset_server: Res<AssetServer>) {
    let handle = Handle<Thing> = asset_server.load("cool.thing");
}
```

You can check load states directly via the asset server:

```rust
if asset_server.load_state(&handle) == LoadState::Loaded { }
```

You can also listen for events:

```rust
fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) {
    for event in events.iter() {
        if event.is_loaded_with_dependencies(&handle) {
        }
    }
}
```

Note the new `AssetEvent::LoadedWithDependencies`, which only fires when
the asset is loaded _and_ all dependencies (and their dependencies) have
loaded.

Unlike the old asset system, for a given asset path all `Handle<T>`
values point to the same underlying Arc. This means Handles can cheaply
hold more asset information, such as the AssetPath:

```rust
// prints the AssetPath of the handle
info!("{:?}", handle.path())
```

### Processed Assets

Asset processing can be enabled via the `AssetPlugin`. When developing
Bevy Apps with processed assets, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))
```

This runs the `AssetProcessor` in the background with hot-reloading. It
reads assets from the `assets` folder, processes them, and writes them
to the `.imported_assets` folder. Asset loads in the Bevy App will wait
for a processed version of the asset to become available. If an asset in
the `assets` folder changes, it will be reprocessed and hot-reloaded in
the Bevy App.

When deploying processed Bevy apps, do this:

```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::processed()))
```

This does not run the `AssetProcessor` in the background. It behaves
like `AssetPlugin::unprocessed()`, but reads assets from
`.imported_assets`.

When the `AssetProcessor` is running, it will populate sibling `.meta`
files for assets in the `assets` folder. Meta files for assets that do
not have a processor configured look like this:

```rust
(
    meta_format_version: "1.0",
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

This is metadata for an image asset. For example, if you have
`assets/my_sprite.png`, this could be the metadata stored at
`assets/my_sprite.png.meta`. Meta files are totally optional. If no
metadata exists, the default settings will be used.

In short, this file says "load this asset with the ImageLoader and use
the file extension to determine the image type". This type of meta file
is supported in all AssetPlugin modes. If in `Unprocessed` mode, the
asset (with the meta settings) will be loaded directly. If in
`ProcessedDev` mode, the asset file will be copied directly to the
`.imported_assets` folder. The meta will also be copied directly to the
`.imported_assets` folder, but with one addition:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 12415480888597742505,
        full_hash: 14344495437905856884,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: FromExtension,
        ),
    ),
)
```

`processed_info` contains `hash` (a direct hash of the asset and meta
bytes), `full_hash` (a hash of `hash` and the hashes of all
`process_dependencies`), and `process_dependencies` (the `path` and
`full_hash` of every process_dependency). A "process dependency" is an
asset dependency that is _directly_ used when processing the asset.
Images do not have process dependencies, so this is empty.

When the processor is enabled, you can use the `Process` metadata
config:

```rust
(
    meta_format_version: "1.0",
    asset: Process(
        processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>",
        settings: (
            loader_settings: (
                format: FromExtension,
            ),
            saver_settings: (
                generate_mipmaps: true,
            ),
        ),
    ),
)
```

This configures the asset to use the `LoadAndSave` processor, which runs
an AssetLoader and feeds the result into an AssetSaver (which saves the
given Asset and defines a loader to load it with). (for terseness
LoadAndSave will likely get a shorter/friendlier type name when [Stable
Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common
processor type, but arbitrary processors are supported.

`CompressedImageSaver` saves an `Image` in the Basis Universal format
and configures the ImageLoader to load it as basis universal. The
`AssetProcessor` will read this meta, run it through the LoadAndSave
processor, and write the basis-universal version of the image to
`.imported_assets`. The final metadata will look like this:

```rust
(
    meta_format_version: "1.0",
    processed_info: Some((
        hash: 905599590923828066,
        full_hash: 9948823010183819117,
        process_dependencies: [],
    )),
    asset: Load(
        loader: "bevy_render::texture::image_loader::ImageLoader",
        settings: (
            format: Format(Basis),
        ),
    ),
)
```

To try basis-universal processing out in Bevy examples, (for example
`sprite.rs`), change `add_plugins(DefaultPlugins)` to
`add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run
with the `basis-universal` feature enabled: `cargo run
--features=basis-universal --example sprite`.

To create a custom processor, there are two main paths:
1. Use the `LoadAndSave` processor with an existing `AssetLoader`.
Implement the `AssetSaver` trait, register the processor using
`asset_processor.register_processor::<LoadAndSave<ImageLoader,
CompressedImageSaver>>(image_saver.into())`.
2. Implement the `Process` trait directly and register it using:
`asset_processor.register_processor(thing_processor)`.

You can configure default processors for file extensions like this:

```rust
asset_processor.set_default_processor::<ThingProcessor>("thing")
```

There is one more metadata type to be aware of:

```rust
(
    meta_format_version: "1.0",
    asset: Ignore,
)
```

This will ignore the asset during processing / prevent it from being
written to `.imported_assets`.

The AssetProcessor stores a transaction log at `.imported_assets/log`
and uses it to gracefully recover from unexpected stops. This means you
can force-quit the processor (and Bevy Apps running the processor in
parallel) at arbitrary times!

`.imported_assets` is "local state". It should _not_ be checked into
source control. It should also be considered "read only". In practice,
you _can_ modify processed assets and processed metadata if you really
need to test something. But those modifications will not be represented
in the hashes of the assets, so the processed state will be "out of
sync" with the source assets. The processor _will not_ fix this for you.
Either revert the change after you have tested it, or delete the
processed files so they can be re-populated.

## Open Questions

There are a number of open questions to be discussed. We should decide
if they need to be addressed in this PR and if so, how we will address
them:

### Implied Dependencies vs Dependency Enumeration

There are currently two ways to populate asset dependencies:
* **Implied via AssetLoaders**: if an AssetLoader loads an asset (and
retrieves a handle), a dependency is added to the list.
* **Explicit via the optional Asset::visit_dependencies**: if
`server.load_asset(my_asset)` is called, it will call
`my_asset.visit_dependencies`, which will grab dependencies that have
been manually defined for the asset via the Asset trait impl (which can
be derived).

This means that defining explicit dependencies is optional for "loaded
assets". And the list of dependencies is always accurate because loaders
can only produce Handles if they register dependencies. If an asset was
loaded with an AssetLoader, it only uses the implied dependencies. If an
asset was created at runtime and added with
`asset_server.load_asset(MyAsset)`, it will use
`Asset::visit_dependencies`.

However this can create a behavior mismatch between loaded assets and
equivalent "created at runtime" assets if `Assets::visit_dependencies`
doesn't exactly match the dependencies produced by the AssetLoader. This
behavior mismatch can be resolved by completely removing "implied loader
dependencies" and requiring `Asset::visit_dependencies` to supply
dependency data. But this creates two problems:
* It makes defining loaded assets harder and more error prone: Devs must
remember to manually annotate asset dependencies with `#[dependency]`
when deriving `Asset`. For more complicated assets (such as scenes), the
derive likely wouldn't be sufficient and a manual `visit_dependencies`
impl would be required.
* Removes the ability to immediately kick off dependency loads: When
AssetLoaders retrieve a Handle, they also immediately kick off an asset
load for the handle, which means it can start loading in parallel
_before_ the asset finishes loading. For large assets, this could be
significant. (although this could be mitigated for processed assets if
we store dependencies in the processed meta file and load them ahead of
time)

### Eager ProcessorDev Asset Loading

I made a controversial call in the interest of fast startup times ("time
to first pixel") for the "processor dev mode configuration". When
initializing the AssetProcessor, current processed versions of unchanged
assets are yielded immediately, even if their dependencies haven't been
checked yet for reprocessing. This means that
non-current-state-of-filesystem-but-previously-valid assets might be
returned to the App first, then hot-reloaded if/when their dependencies
change and the asset is reprocessed.

Is this behavior desirable? There is largely one alternative: do not
yield an asset from the processor to the app until all of its
dependencies have been checked for changes. In some common cases (load
dependency has not changed since last run) this will increase startup
time. The main question is "by how much" and is that slower startup time
worth it in the interest of only yielding assets that are true to the
current state of the filesystem. Should this be configurable? I'm
starting to think we should only yield an asset after its (historical)
dependencies have been checked for changes + processed as necessary, but
I'm curious what you all think.

### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs?

In this implementation AssetPaths are the only canonical asset
identifier (just like the previous Bevy Asset system and Godot). Moving
assets will result in re-scans (and currently reprocessing, although
reprocessing can easily be avoided with some changes). Asset
renames/moves will break code and assets that rely on specific paths,
unless those paths are fixed up.

Do we want / need "stable asset uuids"? Introducing them is very
possible:
1. Generate a UUID and include it in .meta files
2. Support UUID in AssetPath
3. Generate "asset indices" which are loaded on startup and map UUIDs to
paths.
4 (maybe). Consider only supporting UUIDs for processed assets so we can
generate quick-to-load indices instead of scanning meta files.

The main "pro" is that assets referencing UUIDs don't need to be
migrated when a path changes. The main "con" is that UUIDs cannot be
"lazily resolved" like paths. They need a full view of all assets to
answer the question "does this UUID exist". Which means UUIDs require
the AssetProcessor to fully finish startup scans before saying an asset
doesnt exist. And they essentially require asset pre-processing to use
in apps, because scanning all asset metadata files at runtime to resolve
a UUID is not viable for medium-to-large apps. It really requires a
pre-generated UUID index, which must be loaded before querying for
assets.

I personally think this should be investigated in a separate PR. Paths
aren't going anywhere ... _everyone_ uses filesystems (and
filesystem-like apis) to manage their asset source files. I consider
them permanent canonical asset information. Additionally, they behave
well for both processed and unprocessed asset modes. Given that Bevy is
supporting both, this feels like the right canonical ID to start with.
UUIDS (and maybe even other indexed-identifier types) can be added later
as necessary.

### Folder / File Naming Conventions

All asset processing config currently lives in the `.imported_assets`
folder. The processor transaction log is in `.imported_assets/log`.
Processed assets are added to `.imported_assets/Default`, which will
make migrating to processed asset profiles (ex: a
`.imported_assets/Mobile` profile) a non-breaking change. It also allows
us to create top-level files like `.imported_assets/log` without it
being interpreted as an asset. Meta files currently have a `.meta`
suffix. Do we like these names and conventions?

### Should the `AssetPlugin::processed_dev` configuration enable
`watch_for_changes` automatically?

Currently it does (which I think makes sense), but it does make it the
only configuration that enables watch_for_changes by default.

### Discuss on_loaded High Level Interface:

This PR includes a very rough "proof of concept" `on_loaded` system
adapter that uses the `LoadedWithDependencies` event in combination with
`asset_server.load_asset` dependency tracking to support this pattern

```rust
fn main() {
    App::new()
        .init_asset::<MyAssets>()
        .add_systems(Update, on_loaded(create_array_texture))
        .run();
}

#[derive(Asset, Clone)]
struct MyAssets {
    #[dependency]
    picture_of_my_cat: Handle<Image>,
    #[dependency]
    picture_of_my_other_cat: Handle<Image>,
}

impl FromWorld for ArrayTexture {
    fn from_world(world: &mut World) -> Self {
        picture_of_my_cat: server.load("meow.png"),
        picture_of_my_other_cat: server.load("meeeeeeeow.png"),
    }
}

fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) {
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_cat.clone(),  
        ..default()
    });
    
    commands.spawn(SpriteBundle {
        texture: my_assets.picture_of_my_other_cat.clone(),  
        ..default()
    });
}

```

The implementation is _very_ rough. And it is currently unsafe because
`bevy_ecs` doesn't expose some internals to do this safely from inside
`bevy_asset`. There are plenty of unanswered questions like:
* "do we add a Loadable" derive? (effectively automate the FromWorld
implementation above)
* Should `MyAssets` even be an Asset? (largely implemented this way
because it elegantly builds on `server.load_asset(MyAsset { .. })`
dependency tracking).

We should think hard about what our ideal API looks like (and if this is
a pattern we want to support). Not necessarily something we need to
solve in this PR. The current `on_loaded` impl should probably be
removed from this PR before merging.

## Clarifying Questions

### What about Assets as Entities?

This Bevy Asset V2 proposal implementation initially stored Assets as
ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used
`Entity` as the asset id and Asset values were just ECS components.
There are plenty of compelling reasons to do this:
1. Easier to inline assets in Bevy Scenes (as they are "just" normal
entities + components)
2. More flexible queries: use the power of the ECS to filter assets (ex:
`Query<Mesh, With<Tree>>`).
3. Extensible. Users can add arbitrary component data to assets.
4. Things like "component visualization tools" work out of the box to
visualize asset data.

However Assets as Entities has a ton of caveats right now:
* We need to be able to allocate entity ids without a direct World
reference (aka rework id allocator in Entities ... i worked around this
in my prototypes by just pre allocating big chunks of entities)
* We want asset change events in addition to ECS change tracking ... how
do we populate them when mutations can come from anywhere? Do we use
Changed queries? This would require iterating over the change data for
all assets every frame. Is this acceptable or should we implement a new
"event based" component change detection option?
* Reconciling manually created assets with asset-system managed assets
has some nuance (ex: are they "loaded" / do they also have that
component metadata?)
* "how do we handle "static" / default entity handles" (ties in to the
Entity Indices discussion:
https://github.com/bevyengine/bevy/discussions/8319). This is necessary
for things like "built in" assets and default handles in things like
SpriteBundle.
* Storing asset information as a component makes it easy to "invalidate"
asset state by removing the component (or forcing modifications).
Ideally we have ways to lock this down (some combination of Rust type
privacy and ECS validation)

In practice, how we store and identify assets is a reasonably
superficial change (porting off of Assets as Entities and implementing
dedicated storage + ids took less than a day). So once we sort out the
remaining challenges the flip should be straightforward. Additionally, I
do still have "Assets as Entities" in my commit history, so we can reuse
that work. I personally think "assets as entities" is a good endgame,
but it also doesn't provide _significant_ value at the moment and it
certainly isn't ready yet with the current state of things.

### Why not Distill?

[Distill](https://github.com/amethyst/distill) is a high quality fully
featured asset system built in Rust. It is very natural to ask "why not
just use Distill?".

It is also worth calling out that for awhile, [we planned on adopting
Distill / I signed off on
it](https://github.com/bevyengine/bevy/issues/708).

However I think Bevy has a number of constraints that make Distill
adoption suboptimal:
* **Architectural Simplicity:**
* Distill's processor requires an in-memory database (lmdb) and RPC
networked API (using Cap'n Proto). Each of these introduces API
complexity that increases maintenance burden and "code grokability".
Ignoring tests, documentation, and examples, Distill has 24,237 lines of
Rust code (including generated code for RPC + database interactions). If
you ignore generated code, it has 11,499 lines.
* Bevy builds the AssetProcessor and AssetServer using pluggable
AssetReader/AssetWriter Rust traits with simple io interfaces. They do
not necessitate databases or RPC interfaces (although Readers/Writers
could use them if that is desired). Bevy Asset V2 (at the time of
writing this PR) is 5,384 lines of Rust code (ignoring tests,
documentation, and examples). Grain of salt: Distill does have more
features currently (ex: Asset Packing, GUIDS, remote-out-of-process
asset processor). I do plan to implement these features in Bevy Asset V2
and I personally highly doubt they will meaningfully close the 6115
lines-of-code gap.
* This complexity gap (which while illustrated by lines of code, is much
bigger than just that) is noteworthy to me. Bevy should be hackable and
there are pillars of Distill that are very hard to understand and
extend. This is a matter of opinion (and Bevy Asset V2 also has
complicated areas), but I think Bevy Asset V2 is much more approachable
for the average developer.
* Necessary disclaimer: counting lines of code is an extremely rough
complexity metric. Read the code and form your own opinions.
* **Optional Asset Processing:** Not all Bevy Apps (or Bevy App
developers) need / want asset preprocessing. Processing increases the
complexity of the development environment by introducing things like
meta files, imported asset storage, running processors in the
background, waiting for processing to finish, etc. Distill _requires_
preprocessing to work. With Bevy Asset V2 processing is fully opt-in.
The AssetServer isn't directly aware of asset processors at all.
AssetLoaders only care about converting bytes to runtime Assets ... they
don't know or care if the bytes were pre-processed or not. Processing is
"elegantly" (forgive my self-congratulatory phrasing) layered on top and
builds on the existing Asset system primitives.
* **Direct Filesystem Access to Processed Asset State:** Distill stores
processed assets in a database. This makes debugging / inspecting the
processed outputs harder (either requires special tooling to query the
database or they need to be "deployed" to be inspected). Bevy Asset V2,
on the other hand, stores processed assets in the filesystem (by default
... this is configurable). This makes interacting with the processed
state more natural. Note that both Godot and Unity's new asset system
store processed assets in the filesystem.
* **Portability**: Because Distill's processor uses lmdb and RPC
networking, it cannot be run on certain platforms (ex: lmdb is a
non-rust dependency that cannot run on the web, some platforms don't
support running network servers). Bevy should be able to process assets
everywhere (ex: run the Bevy Editor on the web, compile + process
shaders on mobile, etc). Distill does partially mitigate this problem by
supporting "streaming" assets via the RPC protocol, but this is not a
full solve from my perspective. And Bevy Asset V2 can (in theory) also
stream assets (without requiring RPC, although this isn't implemented
yet)

Note that I _do_ still think Distill would be a solid asset system for
Bevy. But I think the approach in this PR is a better solve for Bevy's
specific "asset system requirements".

### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the
point?

"True async file io" has limited / spotty platform support. async-fs
(and the rust async ecosystem generally ... ex Tokio) currently use
async wrappers over std::fs that offload blocking requests to separate
threads. This may feel unsatisfying, but it _does_ still provide value
because it prevents our task pools from blocking on file system
operations (which would prevent progress when there are many tasks to
do, but all threads in a pool are currently blocking on file system
ops).

Additionally, using async APIs for our AssetReaders and AssetWriters
also provides value because we can later add support for "true async
file io" for platforms that support it. _And_ we can implement other
"true async io" asset backends (such as networked asset io).

## Draft TODO

- [x] Fill in missing filesystem event APIs: file removed event (which
is expressed as dangling RenameFrom events in some cases), file/folder
renamed event
- [x] Assets without loaders are not moved to the processed folder. This
breaks things like referenced `.bin` files for GLTFs. This should be
configurable per-non-asset-type.
- [x] Initial implementation of Reflect and FromReflect for Handle. The
"deserialization" parity bar is low here as this only worked with static
UUIDs in the old impl ... this is a non-trivial problem. Either we add a
Handle::AssetPath variant that gets "upgraded" to a strong handle on
scene load or we use a separate AssetRef type for Bevy scenes (which is
converted to a runtime Handle on load). This deserves its own discussion
in a different pr.
- [x] Populate read_asset_bytes hash when run by the processor (a bit of
a special case .. when run by the processor the processed meta will
contain the hash so we don't need to compute it on the spot, but we
don't want/need to read the meta when run by the main AssetServer)
- [x] Delay hot reloading: currently filesystem events are handled
immediately, which creates timing issues in some cases. For example hot
reloading images can sometimes break because the image isn't finished
writing. We should add a delay, likely similar to the [implementation in
this PR](https://github.com/bevyengine/bevy/pull/8503).
- [x] Port old platform-specific AssetIo implementations to the new
AssetReader interface (currently missing Android and web)
- [x] Resolve on_loaded unsafety (either by removing the API entirely or
removing the unsafe)
- [x]  Runtime loader setting overrides
- [x] Remove remaining unwraps that should be error-handled. There are
number of TODOs here
- [x] Pretty AssetPath Display impl
- [x] Document more APIs
- [x] Resolve spurious "reloading because it has changed" events (to
repro run load_gltf with `processed_dev()`)
- [x] load_dependency hot reloading currently only works for processed
assets. If processing is disabled, load_dependency changes are not hot
reloaded.
- [x] Replace AssetInfo dependency load/fail counters with
`loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from
(potentially) breaking counters. Storing this will also enable
"dependency reloaded" events (see [Next Steps](#next-steps))
- [x] Re-add filesystem watcher cargo feature gate (currently it is not
optional)
- [ ] Migration Guide
- [ ] Changelog

## Followup TODO

- [ ] Replace "eager unchanged processed asset loading" behavior with
"don't returned unchanged processed asset until dependencies have been
checked".
- [ ] Add true `Ignore` AssetAction that does not copy the asset to the
imported_assets folder.
- [ ] Finish "live asset unloading" (ex: free up CPU asset memory after
uploading an image to the GPU), rethink RenderAssets, and port renderer
features. The `Assets` collection uses `Option<T>` for asset storage to
support its removal. (1) the Option might not actually be necessary ...
might be able to just remove from the collection entirely (2) need to
finalize removal apis
- [ ] Try replacing the "channel based" asset id recycling with
something a bit more efficient (ex: we might be able to use raw atomic
ints with some cleverness)
- [ ] Consider adding UUIDs to processed assets (scoped just to helping
identify moved assets ... not exposed to load queries ... see [Next
Steps](#next-steps))
- [ ] Store "last modified" source asset and meta timestamps in
processed meta files to enable skipping expensive hashing when the file
wasn't changed
- [ ] Fix "slow loop" handle drop fix 
- [ ] Migrate to TypeName
- [x] Handle "loader preregistration". See #9429

## Next Steps

* **Configurable per-type defaults for AssetMeta**: It should be
possible to add configuration like "all png image meta should default to
using nearest sampling" (currently this hard-coded per-loader/processor
Settings::default() impls). Also see the "Folder Meta" bullet point.
* **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical
asset ids" discussion in [Open Questions](#open-questions) and the
relevant bullet point in [Draft TODO](#draft-todo). Even without
canonical ids, folder renames could avoid reprocessing in some cases.
* **Multiple Asset Sources**: Expand AssetPath to support "asset source
names" and support multiple AssetReaders in the asset server (ex:
`webserver://some_path/image.png` backed by an Http webserver
AssetReader). The "default" asset reader would use normal
`some_path/image.png` paths. Ideally this works in combination with
multiple AssetWatchers for hot-reloading
* **Stable Type Names**: this pr removes the TypeUuid requirement from
assets in favor of `std::any::type_name`. This makes defining assets
easier (no need to generate a new uuid / use weird proc macro syntax).
It also makes reading meta files easier (because things have "friendly
names"). We also use type names for components in scene files. If they
are good enough for components, they are good enough for assets. And
consistency across Bevy pillars is desirable. However,
`std::any::type_name` is not guaranteed to be stable (although in
practice it is). We've developed a [stable type
path](https://github.com/bevyengine/bevy/pull/7184) to resolve this,
which should be adopted when it is ready.
* **Command Line Interface**: It should be possible to run the asset
processor in a separate process from the command line. This will also
require building a network-server-backed AssetReader to communicate
between the app and the processor. We've been planning to build a "bevy
cli" for awhile. This seems like a good excuse to build it.
* **Asset Packing**: This is largely an additive feature, so it made
sense to me to punt this until we've laid the foundations in this PR.
* **Per-Platform Processed Assets**: It should be possible to generate
assets for multiple platforms by supporting multiple "processor
profiles" per asset (ex: compress with format X on PC and Y on iOS). I
think there should probably be arbitrary "profiles" (which can be
separate from actual platforms), which are then assigned to a given
platform when generating the final asset distribution for that platform.
Ex: maybe devs want a "Mobile" profile that is shared between iOS and
Android. Or a "LowEnd" profile shared between web and mobile.
* **Versioning and Migrations**: Assets, Loaders, Savers, and Processors
need to have versions to determine if their schema is valid. If an asset
/ loader version is incompatible with the current version expected at
runtime, the processor should be able to migrate them. I think we should
try using Bevy Reflect for this, as it would allow us to load the old
version as a dynamic Reflect type without actually having the old Rust
type. It would also allow us to define "patches" to migrate between
versions (Bevy Reflect devs are currently working on patching). The
`.meta` file already has its own format version. Migrating that to new
versions should also be possible.
* **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write
type) currently used by AssetPath can still result in String clones that
aren't actually necessary (cloning an Owned Cow clones the contents).
Bevy's asset system requires cloning AssetPaths in a number of places,
which result in actual clones of the internal Strings. This is not
efficient. AssetPath internals should be reworked to exhibit truer
cow-like-behavior that reduces String clones to the absolute minimum.
* **Consider processor-less processing**: In theory the AssetServer
could run processors "inline" even if the background AssetProcessor is
disabled. If we decide this is actually desirable, we could add this.
But I don't think its a priority in the short or medium term.
* **Pre-emptive dependency loading**: We could encode dependencies in
processed meta files, which could then be used by the Asset Server to
kick of dependency loads as early as possible (prior to starting the
actual asset load). Is this desirable? How much time would this save in
practice?
* **Optimize Processor With UntypedAssetIds**: The processor exclusively
uses AssetPath to identify assets currently. It might be possible to
swap these out for UntypedAssetIds in some places, which are smaller /
cheaper to hash and compare.
* **One to Many Asset Processing**: An asset source file that produces
many assets currently must be processed into a single "processed" asset
source. If labeled assets can be written separately they can each have
their own configured savers _and_ they could be loaded more granularly.
Definitely worth exploring!
* **Automatically Track "Runtime-only" Asset Dependencies**: Right now,
tracking "created at runtime" asset dependencies requires adding them
via `asset_server.load_asset(StandardMaterial::default())`. I think with
some cleverness we could also do this for
`materials.add(StandardMaterial::default())`, making tracking work
"everywhere". There are challenges here relating to change detection /
ensuring the server is made aware of dependency changes. This could be
expensive in some cases.
* **"Dependency Changed" events**: Some assets have runtime artifacts
that need to be re-generated when one of their dependencies change (ex:
regenerate a material's bind group when a Texture needs to change). We
are generating the dependency graph so we can definitely produce these
events. Buuuuut generating these events will have a cost / they could be
high frequency for some assets, so we might want this to be opt-in for
specific cases.
* **Investigate Storing More Information In Handles**: Handles can now
store arbitrary information, which makes it cheaper and easier to
access. How much should we move into them? Canonical asset load states
(via atomics)? (`handle.is_loaded()` would be very cool). Should we
store the entire asset and remove the `Assets<T>` collection?
(`Arc<RwLock<Option<Image>>>`?)
* **Support processing and loading files without extensions**: This is a
pretty arbitrary restriction and could be supported with very minimal
changes.
* **Folder Meta**: It would be nice if we could define per folder
processor configuration defaults (likely in a `.meta` or `.folder_meta`
file). Things like "default to linear filtering for all Images in this
folder".
* **Replace async_broadcast with event-listener?** This might be
approximately drop-in for some uses and it feels more light weight
* **Support Running the AssetProcessor on the Web**: Most of the hard
work is done here, but there are some easy straggling TODOs (make the
transaction log an interface instead of a direct file writer so we can
write a web storage backend, implement an AssetReader/AssetWriter that
reads/writes to something like LocalStorage).
* **Consider identifying and preventing circular dependencies**: This is
especially important for "processor dependencies", as processing will
silently never finish in these cases.
* **Built-in/Inlined Asset Hot Reloading**: This PR regresses
"built-in/inlined" asset hot reloading (previously provided by the
DebugAssetServer). I'm intentionally punting this because I think it can
be cleanly implemented with "multiple asset sources" by registering a
"debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset
paths) in combination with an AssetWatcher for that asset source and
support for "manually loading pats with asset bytes instead of
AssetReaders". The old DebugAssetServer was quite nasty and I'd love to
avoid that hackery going forward.
* **Investigate ways to remove double-parsing meta files**: Parsing meta
files currently involves parsing once with "minimal" versions of the
meta file to extract the type name of the loader/processor config, then
parsing again to parse the "full" meta. This is suboptimal. We should be
able to define custom deserializers that (1) assume the loader/processor
type name comes first (2) dynamically looks up the loader/processor
registrations to deserialize settings in-line (similar to components in
the bevy scene format). Another alternative: deserialize as dynamic
Reflect objects and then convert.
* **More runtime loading configuration**: Support using the Handle type
as a hint to select an asset loader (instead of relying on AssetPath
extensions)
* **More high level Processor trait implementations**: For example, it
might be worth adding support for arbitrary chains of "asset transforms"
that modify an in-memory asset representation between loading and
saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by
a `flip_normals` transform, then save the mesh to an efficient
compressed format).
* **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO
item](#draft-todo) for context)
* **Explore High Level Load Interfaces**: See [this
discussion](#discuss-on_loaded-high-level-interface) for one prototype.
* **Asset Streaming**: It would be great if we could stream Assets (ex:
stream a long video file piece by piece)
* **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than
they need to be because they have a Uuid enum variant. If we implement
an "id exchanging" system that trades Uuids for "efficient runtime ids",
we can cut down on the size of AssetIds, making them more efficient.
This has some open design questions, such as how to spawn entities with
"default" handle values (as these wouldn't have access to the exchange
api in the current system).
* **Asset Path Fixup Tooling**: Assets that inline asset paths inside
them will break when an asset moves. The asset system provides the
functionality to detect when paths break. We should build a framework
that enables formats to define "path migrations". This is especially
important for scene files. For editor-generated files, we should also
consider using UUIDs (see other bullet point) to avoid the need to
migrate in these cases.

---------

Co-authored-by: BeastLe9enD <beastle9end@outlook.de>
Co-authored-by: Mike <mike.hsu@gmail.com>
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2023-09-07 02:07:27 +00:00
lelo
42e6dc8987
Refactor EventReader::iter to read (#9631)
# Objective

- The current `EventReader::iter` has been determined to cause confusion
among new Bevy users. It was suggested by @JoJoJet to rename the method
to better clarify its usage.
- Solves #9624 

## Solution

- Rename `EventReader::iter` to `EventReader::read`.
- Rename `EventReader::iter_with_id` to `EventReader::read_with_id`.
- Rename `ManualEventReader::iter` to `ManualEventReader::read`.
- Rename `ManualEventReader::iter_with_id` to
`ManualEventReader::read_with_id`.

---

## Changelog

- `EventReader::iter` has been renamed to `EventReader::read`.
- `EventReader::iter_with_id` has been renamed to
`EventReader::read_with_id`.
- `ManualEventReader::iter` has been renamed to
`ManualEventReader::read`.
- `ManualEventReader::iter_with_id` has been renamed to
`ManualEventReader::read_with_id`.
- Deprecated `EventReader::iter`
- Deprecated `EventReader::iter_with_id`
- Deprecated `ManualEventReader::iter`
- Deprecated `ManualEventReader::iter_with_id`

## Migration Guide

- Existing usages of `EventReader::iter` and `EventReader::iter_with_id`
will have to be changed to `EventReader::read` and
`EventReader::read_with_id` respectively.
- Existing usages of `ManualEventReader::iter` and
`ManualEventReader::iter_with_id` will have to be changed to
`ManualEventReader::read` and `ManualEventReader::read_with_id`
respectively.
2023-08-30 14:20:03 +00:00
Василий Чай
fb9c5a6cbb
Added Pitch as an alternative sound source (#9225)
# Objective
My attempt at implementing #7515

## Solution

Added struct `Pitch` and implemented on it `Source` trait.

## Changelog

 ### Added
- File pitch.rs to bevy_audio crate
- Struct `Pitch` and type aliases for `AudioSourceBundle<Pitch>` and
`SpatialAudioSourceBundle<Pitch>`
- New example showing how to use `PitchBundle`

### Changed
- `AudioPlugin` now adds system for `Pitch` audio

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-07-29 22:29:41 +00:00
Ida "Iyes
fb4c21e3e6
bevy_audio: ECS-based API redesign (#8424)
# Objective

Improve the `bevy_audio` API to make it more user-friendly and
ECS-idiomatic. This PR is a first-pass at addressing some of the most
obvious (to me) problems. In the interest of keeping the scope small,
further improvements can be done in future PRs.

The current `bevy_audio` API is very clunky to work with, due to how it
(ab)uses bevy assets to represent audio sinks.

The user needs to write a lot of boilerplate (accessing
`Res<Assets<AudioSink>>`) and deal with a lot of cognitive overhead
(worry about strong vs. weak handles, etc.) in order to control audio
playback.

Audio playback is initiated via a centralized `Audio` resource, which
makes it difficult to keep track of many different sounds playing in a
typical game.

Further, everything carries a generic type parameter for the sound
source type, making it difficult to mix custom sound sources (such as
procedurally generated audio or unofficial formats) with regular audio
assets.

Let's fix these issues.

## Solution

Refactor `bevy_audio` to a more idiomatic ECS API. Remove the `Audio`
resource. Do everything via entities and components instead.

Audio playback data is now stored in components:
- `PlaybackSettings`, `SpatialSettings`, `Handle<AudioSource>` are now
components. The user inserts them to tell Bevy to play a sound and
configure the initial playback parameters.
- `AudioSink`, `SpatialAudioSink` are now components instead of special
magical "asset" types. They are inserted by Bevy when it actually begins
playing the sound, and can be queried for by the user in order to
control the sound during playback.

Bundles: `AudioBundle` and `SpatialAudioBundle` are available to make it
easy for users to play sounds. Spawn an entity with one of these bundles
(or insert them to a complex entity alongside other stuff) to play a
sound.

Each entity represents a sound to be played.

There is also a new "auto-despawn" feature (activated using
`PlaybackSettings`), which, if enabled, tells Bevy to despawn entities
when the sink playback finishes. This allows for "fire-and-forget" sound
playback. Users can simply
spawn entities whenever they want to play sounds and not have to worry
about leaking memory.

## Unsolved Questions

I think the current design is *fine*. I'd be happy for it to be merged.
It has some possibly-surprising usability pitfalls, but I think it is
still much better than the old `bevy_audio`. Here are some discussion
questions for things that we could further improve. I'm undecided on
these questions, which is why I didn't implement them. We should decide
which of these should be addressed in this PR, and what should be left
for future PRs. Or if they should be addressed at all.

### What happens when sounds start playing?

Currently, the audio sink components are inserted and the bundle
components are kept. Should Bevy remove the bundle components? Something
else?

The current design allows an entity to be reused for playing the same
sound with the same parameters repeatedly. This is a niche use case I'd
like to be supported, but if we have to give it up for a simpler design,
I'd be fine with that.

### What happens if users remove any of the components themselves?

As described above, currently, entities can be reused. Removing the
audio sink causes it to be "detached" (I kept the old `Drop` impl), so
the sound keeps playing. However, if the audio bundle components are not
removed, Bevy will detect this entity as a "queued" sound entity again
(has the bundle compoenents, without a sink component), just like before
playing the sound the first time, and start playing the sound again.

This behavior might be surprising? Should we do something different?

### Should mutations to `PlaybackSettings` be applied to the audio sink?

We currently do not do that. `PlaybackSettings` is just for the initial
settings when the sound starts playing. This is clearly documented.

Do we want to keep this behavior, or do we want to allow users to use
`PlaybackSettings` instead of `AudioSink`/`SpatialAudioSink` to control
sounds during playback too?

I think I prefer for them to be kept separate. It is not a bad mental
model once you understand it, and it is documented.

### Should `AudioSink` and `SpatialAudioSink` be unified into a single
component type?

They provide a similar API (via the `AudioSinkPlayback` trait) and it
might be annoying for users to have to deal with both of them. The
unification could be done using an enum that is matched on internally by
the methods. Spatial audio has extra features, so this might make it
harder to access. I think we shouldn't.

### Automatic synchronization of spatial sound properties from
Transforms?

Should Bevy automatically apply changes to Transforms to spatial audio
entities? How do we distinguish between listener and emitter? Which one
does the transform represent? Where should the other one come from?

Alternatively, leave this problem for now, and address it in a future
PR. Or do nothing, and let users deal with it, as shown in the
`spatial_audio_2d` and `spatial_audio_3d` examples.

---

## Changelog

Added:
- `AudioBundle`/`SpatialAudioBundle`, add them to entities to play
sounds.

Removed:
 - The `Audio` resource.
 - `AudioOutput` is no longer `pub`.

Changed:
 - `AudioSink`, `SpatialAudioSink` are now components instead of assets.

## Migration Guide

// TODO: write a more detailed migration guide, after the "unsolved
questions" are answered and this PR is finalized.

Before:

```rust

/// Need to store handles somewhere
#[derive(Resource)]
struct MyMusic {
    sink: Handle<AudioSink>,
}

fn play_music(
    asset_server: Res<AssetServer>,
    audio: Res<Audio>,
    audio_sinks: Res<Assets<AudioSink>>,
    mut commands: Commands,
) {
    let weak_handle = audio.play_with_settings(
        asset_server.load("music.ogg"),
        PlaybackSettings::LOOP.with_volume(0.5),
    );
    // upgrade to strong handle and store it
    commands.insert_resource(MyMusic {
        sink: audio_sinks.get_handle(weak_handle),
    });
}

fn toggle_pause_music(
    audio_sinks: Res<Assets<AudioSink>>,
    mymusic: Option<Res<MyMusic>>,
) {
    if let Some(mymusic) = &mymusic {
        if let Some(sink) = audio_sinks.get(&mymusic.sink) {
            sink.toggle();
        }
    }
}
```

Now:

```rust
/// Marker component for our music entity
#[derive(Component)]
struct MyMusic;

fn play_music(
    mut commands: Commands,
    asset_server: Res<AssetServer>,
) {
    commands.spawn((
        AudioBundle::from_audio_source(asset_server.load("music.ogg"))
            .with_settings(PlaybackSettings::LOOP.with_volume(0.5)),
        MyMusic,
    ));
}

fn toggle_pause_music(
    // `AudioSink` will be inserted by Bevy when the audio starts playing
    query_music: Query<&AudioSink, With<MyMusic>>,
) {
    if let Ok(sink) = query.get_single() {
        sink.toggle();
    }
}
```
2023-07-07 23:01:17 +00:00
radiish
1efc762924
reflect: stable type path v2 (#7184)
# Objective

- Introduce a stable alternative to
[`std::any::type_name`](https://doc.rust-lang.org/std/any/fn.type_name.html).
- Rewrite of #5805 with heavy inspiration in design.
- On the path to #5830.
- Part of solving #3327.


## Solution

- Add a `TypePath` trait for static stable type path/name information.
- Add a `TypePath` derive macro.
- Add a `impl_type_path` macro for implementing internal and foreign
types in `bevy_reflect`.

---

## Changelog

- Added `TypePath` trait.
- Added `DynamicTypePath` trait and `get_type_path` method to `Reflect`.
- Added a `TypePath` derive macro.
- Added a `bevy_reflect::impl_type_path` for implementing `TypePath` on
internal and foreign types in `bevy_reflect`.
- Changed `bevy_reflect::utility::(Non)GenericTypeInfoCell` to
`(Non)GenericTypedCell<T>` which allows us to be generic over both
`TypeInfo` and `TypePath`.
- `TypePath` is now a supertrait of `Asset`, `Material` and
`Material2d`.
- `impl_reflect_struct` needs a `#[type_path = "..."]` attribute to be
specified.
- `impl_reflect_value` needs to either specify path starting with a
double colon (`::core::option::Option`) or an `in my_crate::foo`
declaration.
- Added `bevy_reflect_derive::ReflectTypePath`.
- Most uses of `Ident` in `bevy_reflect_derive` changed to use
`ReflectTypePath`.

## Migration Guide

- Implementors of `Asset`, `Material` and `Material2d` now also need to
derive `TypePath`.
- Manual implementors of `Reflect` will need to implement the new
`get_type_path` method.

## Open Questions
- [x] ~This PR currently does not migrate any usages of
`std::any::type_name` to use `bevy_reflect::TypePath` to ease the review
process. Should it?~ Migration will be left to a follow-up PR.
- [ ] This PR adds a lot of `#[derive(TypePath)]` and `T: TypePath` to
satisfy new bounds, mostly when deriving `TypeUuid`. Should we make
`TypePath` a supertrait of `TypeUuid`? [Should we remove `TypeUuid` in
favour of
`TypePath`?](2afbd85532 (r961067892))
2023-06-05 20:31:20 +00:00
Wybe Westra
abf12f3b3b
Fixed several missing links in docs. (#8117)
Links in the api docs are nice. I noticed that there were several places
where structs / functions and other things were referenced in the docs,
but weren't linked. I added the links where possible / logical.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
2023-04-23 17:28:36 +00:00
Liam Gallagher
dff071c2a8
Ability to set a Global Volume (#7706)
# Objective

Adds a new resource to control a global volume.
Fixes #7690

---

## Solution

Added a new resource to control global volume, this is then multiplied
with an audio sources volume to get the output volume, individual audio
sources can opt out of this my enabling the `absolute_volume` field in
`PlaybackSettings`.

---

## Changelog

### Added
- `GlobalVolume` a resource to control global volume (in prelude).
- `global_volume` field to `AudioPlugin` or setting the initial value of
`GlobalVolume`.
- `Volume` enum that can be `Relative` or `Absolute`.
- `VolumeLevel` struct for defining a volume level.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-04-10 14:08:43 +00:00
Carter Anderson
aefe1f0739
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com>
2023-03-18 01:45:34 +00:00
JoJoJet
fd1af7c8b8
Replace multiple calls to add_system with add_systems (#8001) 2023-03-10 18:15:22 +00:00
François
ca1802b774 Basic spatial audio (#6028)
# Objective

- Add basic spatial audio support to Bevy
  - this is what rodio supports, so no HRTF, just simple stereo channel manipulation
  - no "built-in" ECS support: `Emitter` and `Listener` should be components that would automatically update the positions

This PR goal is to just expose rodio functionality, made possible with the recent update to rodio 0.16. A proper ECS integration opens a lot more questions, and would probably require an RFC

Also updates rodio and fixes #6122
2023-02-20 15:31:07 +00:00
dis-da-moe
0df67cdaae Add AddAudioSource trait and improve Decodable docs (#6649)
# Objective

- Fixes #6361
- Fixes #6362 
- Fixes #6364 

## Solution
- Added an example for creating a custom `Decodable` type 
- Clarified the documentation on `Decodable`
- Added an `AddAudioSource` trait and implemented it for `App`

Co-authored-by: dis-da-moe <84386186+dis-da-moe@users.noreply.github.com>
2023-01-17 22:42:00 +00:00
Lena Milizé
599ca782e3 Add a way to toggle AudioSink (#6321)
# Objective

Currently toggling an `AudioSink` (for example from a game menu) requires writing

```rs
if sink.is_paused() {
    sink.play();
} else {
    sink.pause();
}
```

It would be nicer if we could reduce this down to a single line

```rs
sink.toggle();
```

## Solution

Add an `AudioSink::toggle` method which does exactly that.

---

## Changelog

- Added `AudioSink::toggle` which can be used to toggle state of a sink.
2022-10-31 15:57:51 +00:00
Cameron
7989cb2650 Add global time scaling (#5752)
# Objective

- Make `Time` API more consistent.
- Support time accel/decel/pause.

## Solution

This is just the `Time` half of #3002. I was told that part isn't controversial.

- Give the "delta time" and "total elapsed time" methods `f32`, `f64`, and `Duration` variants with consistent naming.
- Implement accelerating / decelerating the passage of time.
- Implement stopping time.

---

## Changelog

- Changed `time_since_startup` to `elapsed` because `time.time_*` is just silly.
- Added `relative_speed` and `set_relative_speed` methods.
- Added `is_paused`, `pause`, `unpause` , and methods. (I'd prefer `resume`, but `unpause` matches `Timer` API.)
- Added `raw_*` variants of the "delta time" and "total elapsed time" methods.
- Added `first_update` method because there's a non-zero duration between startup and the first update.

## Migration Guide

- `time.time_since_startup()` -> `time.elapsed()`
- `time.seconds_since_startup()` -> `time.elapsed_seconds_f64()`
- `time.seconds_since_startup_wrapped_f32()` -> `time.elapsed_seconds_wrapped()`

If you aren't sure which to use, most systems should continue to use "scaled" time (e.g. `time.delta_seconds()`). The realtime "unscaled" time measurements (e.g. `time.raw_delta_seconds()`) are mostly for debugging and profiling.
2022-10-22 18:52:29 +00:00
ira
992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
Mark Schmale
1ba7429371 Doc/module style doc blocks for examples (#4438)
# Objective

Provide a starting point for #3951, or a partial solution. 
Providing a few comment blocks to discuss, and hopefully find better one in the process. 

## Solution

Since I am pretty new to pretty much anything in this context, I figured I'd just start with a draft for some file level doc blocks. For some of them I found more relevant details (or at least things I considered interessting), for some others there is less. 

## Changelog

- Moved some existing comments from main() functions in the 2d examples to the file header level
- Wrote some more comment blocks for most other 2d examples

TODO: 
- [x] 2d/sprite_sheet, wasnt able to come up with something good yet 
- [x] all other example groups...


Also: Please let me know if the commit style is okay, or to verbose. I could certainly squash these things, or add more details if needed. 
I also hope its okay to raise this PR this early, with just a few files changed. Took me long enough and I dont wanted to let it go to waste because I lost motivation to do the whole thing. Additionally I am somewhat uncertain over the style and contents of the commets. So let me know what you thing please.
2022-05-16 13:53:20 +00:00
François
b21c69c60e Audio control - play, pause, volume, speed, loop (#3948)
# Objective

- Add ways to control how audio is played

## Solution

- playing a sound will return a (weak) handle to an asset that can be used to control playback
- if the asset is dropped, it will detach the sink (same behaviour as now)
2022-03-01 01:12:11 +00:00
François
aeba9faf04 use ogg by default instead of mp3 (#3421)
# Objective

- mp3 feature of rodio has dependencies that are not maintained with security issues
- mp3 feature of rodio doesn't build in wasm
- mp3 feature of rodio uses internal memory allocation that cause rejection from Apple appstore

## Solution

- Use vorbis instead of mp3 by default


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-23 19:19:15 +00:00
François
b724a0f586 Down with the system! (#2496)
# Objective

- Remove all the `.system()` possible.
- Check for remaining missing cases.

## Solution

- Remove all `.system()`, fix compile errors
- 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446
2021-07-27 23:42:36 +00:00
bjorn3
6d6bc2a8b4 Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.

You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.

Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
2021-07-27 20:21:06 +00:00
Carter Anderson
841755aaf2
Adopt a Fetch pattern for SystemParams (#1074) 2020-12-15 21:57:16 -08:00
Carter Anderson
3a6f6de277
System Inputs, Outputs, Chaining, and Registration Ergo (#876)
System Inputs, Outputs, Chaining, and Registration Ergo
2020-11-16 18:18:00 -08:00
Carter Anderson
66f2f76a18
rename add_plugin_group to add_plugins (#773) 2020-11-02 19:01:17 -08:00
Nathan Stocks
9871e7e24b
Remove add_default_plugins and add MinimalPlugins for simple "headless" scenarios (#767)
Remove add_default_plugins and add MinimalPlugins for simple "headless" scenarios
2020-11-02 18:38:37 -08:00
Dashiell Elliott
0dbba3efff
Migrate to rodio 0.12 using thread local resources (#692)
Migrate to rodio 0.12 using thread local resources
2020-10-20 11:44:50 -07:00
Carter Anderson
c32e637384
Asset system rework and GLTF scene loading (#693) 2020-10-18 13:48:15 -07:00
Carter Anderson
6dadf34401 add more example comments 2020-07-28 13:45:36 -07:00
Carter Anderson
f546aad7f4 audio: rename play to play_source and queue to play 2020-07-16 14:23:57 -07:00
Carter Anderson
7bdca4e5f0 audio: rename queue_play to queue 2020-07-16 13:52:52 -07:00
Carter Anderson
3eb393548d audio: initial (very minimal) audio plugin 2020-07-16 13:46:51 -07:00