# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#15236
## Solution
- Use bevy_math::ops instead of std floating point operations.
## Testing
- Did you test these changes? If so, how?
Unit tests and `cargo run -p ci -- test`
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Execute `cargo run -p ci -- test` on Windows.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Windows
## Migration Guide
- Not a breaking change
- Projects should use bevy math where applicable
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- Solves the last bullet in and closes#14319
- Make better use of the `Isometry` types
- Prevent issues like #14655
- Probably simplify and clean up a lot of code through the use of Gizmos
as well (i.e. the 3D gizmos for cylinders circles & lines don't connect
well, probably due to wrong rotations)
## Solution
- go through the `bevy_gizmos` crate and give all methods a slight
workover
## Testing
- For all the changed examples I run `git switch main && cargo rr
--example <X> && git switch <BRANCH> && cargo rr --example <X>` and
compare the visual results
- Check if all doc tests are still compiling
- Check the docs in general and update them !!!
---
## Migration Guide
The gizmos methods function signature changes as follows:
- 2D
- if it took `position` & `rotation_angle` before ->
`Isometry2d::new(position, Rot2::radians(rotation_angle))`
- if it just took `position` before ->
`Isometry2d::from_translation(position)`
- 3D
- if it took `position` & `rotation` before ->
`Isometry3d::new(position, rotation)`
- if it just took `position` before ->
`Isometry3d::from_translation(position)`
# Objective
When trying to test a gizmos change I ran `cargo test -p bevy_gizmos`
and the output had a lot of noise from warnings and failed doc errors.
This was because I didn't have all of the features enabled.
## Solution
I admit this might be pedantic, and am happy if the concensus is to
reject it. Although it does reduce the lines of code, testing noise, and
the amount of code compiled. I don't think it affects the complexity of
public code, and it doesn't change much to the complexity of internal
code.
I've removed un-needed `bevy_render` imports in all of the gizmos docs
examples, there's probably other unnecessary ones there too, but I
haven't looked exhaustively. It isn't needed for those docs, and isn't
available except in a subset of `cfg` combinations.
I've also made several of the `use` statements slightly more specific. I
shouldn't have changed the public interfaces, except that
`GizmoMeshConfig` requires either `bevy_sprite` or `bevy_pbr`, as it
does nothing without them.
I've also avoided adding some systems and plugins in situations where
they can't work. An example of this is where the `light` module depends
on `all(feature = "bevy_pbr", feature = "bevy_render")`, but it has
`use` statements that only require `bevy_render`.
## Testing
During development I ran:
```
cargo check -p bevy_gizmos && cargo check -p bevy_gizmos --features=bevy_pbr && cargo check -p bevy_gizmos --features=bevy_sprite && cargo check -p bevy_gizmos --features=bevy_render
```
Afterwards I ran this just to be sure:
```
cargo check && cargo check --features=bevy_pbr && cargo check --features=bevy_sprite && cargo check --features=bevy_render
```
Finally I ran:
```
cargo test -p bevy_gizmos && cargo test -p bevy_gizmos --features=bevy_pbr && test check -p bevy_gizmos --features=bevy_sprite && cargo test -p bevy_gizmos --features=bevy_render
```
## Migration Guide
There shouldn't be any reason to migrate, although if for some reason
you use `GizmoMeshConfig` and `bevy_render` but not `bevy_pbr` or
`bevy_sprite` (such that it does nothing), then you will get an error
that it no longer exists.
# Objective
- Fixes#14142
## Solution
- Make sure a regression test is written on this case that fails for the
current code base but works with the suggested patch linked in the
aforementioned issue. After this is confirmed to be working, apply the
patch.
## Testing
- Run the regression test in both contexts, outputs were as expected.
# Objective
- Bevy currently has lot of invalid intra-doc links, let's fix them!
- Also make CI test them, to avoid future regressions.
- Helps with #1983 (but doesn't fix it, as there could still be explicit
links to docs.rs that are broken)
## Solution
- Make `cargo r -p ci -- doc-check` check fail on warnings (could also
be changed to just some specific lints)
- Manually fix all the warnings (note that in some cases it was unclear
to me what the fix should have been, I'll try to highlight them in a
self-review)
# Objective
- Make gizmos behavior consistent across platforms
## Solution
- Use `u32` instead of `usize` for resolution/subdivisions/segments/etc
fields
---
## Changelog
- Change resolutions in gizmos from `usize` to `u32`
## Migration Guide
- All gizmos now take `u32` instead of `usize` for their
resolution/subdivision/segment counts
# Objective
- Add GizmoBuilders for some primitives as discussed in #13233
## Solution
- `gizmos.primitive_2d(CIRCLE)` and `gizmos.primitive_2d(ELLIPSE)` now
return `Ellipse2dBuilder` aswell.
- `gizmos.primitive_3d(SPHERE)` and `gizmos.sphere()` now return the
same `SphereBuilder`.
- the `.circle_segments` method on the `SphereBuilder` that used to be
returned by `.sphere()` is now called `.segments`
- the sphere primitive gizmo now matches the `gizmos.sphere` gizmo
- `gizmos.primitive_2d(ANNULUS)` now returns a `Annulus2dBuilder`
allowing the configuration of the `segments`
- gizmos cylinders and capsules now have only 1 line per axis, similar
to `gizmos.sphere`
## Migration Guide
- Some `gizmos.primitive_nd` methods now return some or different
builders. You may need to adjust types and match statements
- Replace any calls to `circle_segments()` with `.segments()`
---------
Co-authored-by: Raphael Büttgenbach <62256001+solis-lumine-vorago@users.noreply.github.com>
# Objective
- Fixes#13412
## Solution
- Renamed `segments` in `bevy_gizmos` to `resolution` and adjusted
examples
## Migration Guide
- When working with gizmos, replace all calls to `.segments(...)` with
`.resolution(...)`
# Objective
Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This
changes `Gizmos` from being a purely immediate mode api, but allows the
user to use it as if it were an immediate mode API regardless of
schedule context.
Also allows for extending by other custom schedules by adding their own
`GizmoStorage<Clear>` and the requisite systems:
- `propagate_gizmos::<Clear>` before `update_gizmo_meshes`
- `stash_default_gizmos` when starting a clear context
- `pop_default_gizmos` when ending a clear context
- `collect_default_gizmos` when grabbing the requested gizmos
- `clear_gizmos` for clearing the context's gizmos
## Solution
Adds a generic to `Gizmos` that defaults to `Update` (the current way
gizmos works). When entering a new clear context the default `Gizmos`
gets swapped out for that context's duration so the context can collect
the gizmos requested.
Prior work: https://github.com/bevyengine/bevy/pull/9153
## To do
- [x] `FixedUpdate` should probably get its own First, Pre, Update,
Post, Last system sets for this. Otherwise users will need to make sure
to order their systems before `clear_gizmos`. This could alternatively
be fixed by moving the setup of this to `bevy_time::fixed`?
PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977
- [x] use mem::take internally for the swaps?
- [x] Better name for the `Context` generic on gizmos? `Clear`?
---
## Changelog
- Gizmos drawn in `FixedMain` now last until the next `FixedMain`
iteration runs.
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes#12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Split up from #12017, rename Bevy's direction types.
Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.
However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.
This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.
Some examples of what it looks like: (copied from #12017)
```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);
// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```
```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Direction3d::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
// After
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Dir3::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
```
```rust
// Before
self.circle(
Vec3::new(0.0, -2.0, 0.0),
Direction3d::Y,
5.0,
Color::TURQUOISE,
);
// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```
## Solution
Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.
---
## Migration Guide
The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.
## Additional Context
This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
# Objective
Split up from #12017, add an aligned version of `Direction3d` for SIMD,
and move direction types out of `primitives`.
## Solution
Add `Direction3dA` and move direction types into a new `direction`
module.
---
## Migration Guide
The `Direction2d`, `Direction3d`, and `InvalidDirectionError` types have
been moved out of `bevy::math::primitives`.
Before:
```rust
use bevy::math::primitives::Direction3d;
```
After:
```rust
use bevy::math::Direction3d;
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.
## Solution
To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.
However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.
As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.
## Migration Guide
THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.
This change should not be shipped to end users: delete this section in
the final migration guide!
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
The PR is in a reviewable state now in the sense that the basic
implementations are there. There are still some ToDos that I'm aware of:
- [x] docs for all the new structs and traits
- [x] implement `Default` and derive other useful traits for the new
structs
- [x] Take a look at the notes again (Do this after a first round of
reviews)
- [x] Take care of the repetition in the circle drawing functions
---
# Objective
- TLDR: This PR enables us to quickly draw all the newly added
primitives from `bevy_math` in immediate mode with gizmos
- Addresses #10571
## Solution
- This implements the first design idea I had that covered everything
that was mentioned in the Issue
https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197
---
## Caveats
- I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them
work with the current solution. We could impose less strict requirements
for the gizmoable objects and remove the impls afterwards if the
community doesn't like the current approach.
---
## Changelog
- implement capabilities to draw ellipses on the gizmo in general (this
was required to have some code which is able to draw the ellipse
primitive)
- refactored circle drawing code to use the more general ellipse drawing
code to keep code duplication low
- implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for
`Direction3d`
- implement trait to draw primitives with specialized details with
gizmos
- `GizmoPrimitive2d` for all the 2D primitives
- `GizmoPrimitive3d` for all the 3D primitives
- (question while writing this: Does it actually matter if we split this
in 2D and 3D? I guess it could be useful in the future if we do
something based on the main rendering mode even though atm it's kinda
useless)
---
---------
Co-authored-by: nothendev <borodinov.ilya@gmail.com>
# Objective
Fix weird visuals when drawing a gizmo with a non-normed normal.
Fixes#11401
## Solution
Just normalize right before we draw. Could do it when constructing the
builder but that seems less consistent.
## Changelog
- gizmos.circle normal is now a Direction3d instead of a Vec3.
## Migration Guide
- Pass a Direction3d for gizmos.circle normal, eg.
`Direction3d::new(vec).unwrap_or(default)` or potentially
`Direction3d::new_unchecked(vec)` if you know your vec is definitely
normalized.
# Objective
This PR aims to implement multiple configs for gizmos as discussed in
#9187.
## Solution
Configs for the new `GizmoConfigGroup`s are stored in a
`GizmoConfigStore` resource and can be accesses using a type based key
or iterated over. This type based key doubles as a standardized location
where plugin authors can put their own configuration not covered by the
standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a
default color and toggle to show all AABBs. New configs can be
registered using `app.init_gizmo_group::<T>()` during startup.
When requesting the `Gizmos<T>` system parameter the generic type
determines which config is used. The config structs are available
through the `Gizmos` system parameter allowing for easy access while
drawing your gizmos.
Internally, resources and systems used for rendering (up to an including
the extract system) are generic over the type based key and inserted on
registering a new config.
## Alternatives
The configs could be stored as components on entities with markers which
would make better use of the ECS. I also implemented this approach
([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and
believe that the ergonomic benefits of a central config store outweigh
the decreased use of the ECS.
## Unsafe Code
Implementing system parameter by hand is unsafe but seems to be required
to access the config store once and not on every gizmo draw function
call. This is critical for performance. ~Is there a better way to do
this?~
## Future Work
New gizmos (such as #10038, and ideas from #9400) will require custom
configuration structs. Should there be a new custom config for every
gizmo type, or should we group them together in a common configuration?
(for example `EditorGizmoConfig`, or something more fine-grained)
## Changelog
- Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait
- Added `init_gizmo_group` to `App`
- Added early returns to gizmo drawing increasing performance when
gizmos are disabled
- Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore`
- Changed `Gizmos` system parameter to use type based key to retrieve
config
- Changed resources and systems used for gizmo rendering to be generic
over type based key
- Changed examples (3d_gizmos, 2d_gizmos) to showcase new API
## Migration Guide
- `GizmoConfig` is no longer a resource and has to be accessed through
`GizmoConfigStore` resource. The default config group is
`DefaultGizmoGroup`, but consider using your own custom config group if
applicable.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
## Objective
- Give all the intuitive groups of gizmos their own file
- don't be a breaking change
- don't change Gizmos interface
- eventually do arcs too
- future types of gizmos should be in their own files
- see also https://github.com/bevyengine/bevy/issues/9400
## Solution
- Moved `gizmos.circle`, `gizmos.2d_circle`, and assorted helpers into
`circles.rs`
- Can also do arcs in this MR if y'all want; just figured I should do
one thing at a time.
## Changelog
- Changed
- `gizmos::CircleBuilder` moved to `gizmos::circles::Circle2dBuilder`
- `gizmos::Circle2dBuilder` moved to `gizmos::circles::Circle2dBuilder`
## Migration Guide
- change `gizmos::CircleBuilder` to `gizmos::circles::Circle2dBuilder`
- change `gizmos::Circle2dBuilder` to `gizmos::circles::Circle2dBuilder`
---------
Co-authored-by: François <mockersf@gmail.com>