# Objective
Common run conditions can be very useful for quick and ergonomic changes to when a system runs.
Specifically what I'd like to be able to do is
```rust
use bevy::prelude::*;
use bevy::input::common_conditions::input_toggle_active;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_plugin(
bevy_inspector_egui::quick::WorldInspectorPlugin::default()
.run_if(input_toggle_active(true, KeyCode::Escape)
)
.run();
}
```
## Solution
- add `bevy_input::common_conditions` module with `input_toggle_active`, `input_pressed`, `input_just_pressed`, `input_just_released`
## Changelog
- added common run conditions for `bevy_input`
- you can now use `.add_system(jump.run_if(input_just_pressed(KeyCode::Space)))`
# Objective
NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.
"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).
## Solution
This adds "base sets" as a variant of `SystemSet`:
A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:
```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
A,
B,
}
```
**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build.
**Base sets cannot belong to other sets**: this is where the word "base" comes from
Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.
```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
// X must be a normal set ... base sets cannot be added to base sets
.configure_set(X.in_base_set(MyBaseSet::A))
```
Base sets can still be configured like normal sets:
```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
```
The primary use case for base sets is enabling a "default base set":
```rust
schedule.set_default_base_set(CoreSet::Update)
// this will belong to CoreSet::Update by default
.add_system(foo)
// this will override the default base set with PostUpdate
.add_system(bar.in_base_set(CoreSet::PostUpdate))
```
This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.
---
## Changelog
- Added "base sets" and ported CoreSet to use them.
## Migration Guide
TODO
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
- Bevy should not have any "internal" execution order ambiguities. These clutter the output of user-facing error reporting, and can result in nasty, nondetermistic, very difficult to solve bugs.
- Verifying this currently involves repeated non-trivial manual work.
## Solution
- [x] add an example to quickly check this
- ~~[ ] ensure that this example panics if there are any unresolved ambiguities~~
- ~~[ ] run the example in CI 😈~~
There's one tricky ambiguity left, between UI and animation. I don't have the tools to fix this without system set configuration, so the remaining work is going to be left to #7267 or another PR after that.
```
2023-01-27T18:38:42.989405Z INFO bevy_ecs::schedule::ambiguity_detection: Execution order ambiguities detected, you might want to add an explicit dependency relation between some of these systems:
* Parallel systems:
-- "bevy_animation::animation_player" and "bevy_ui::flex::flex_node_system"
conflicts: ["bevy_transform::components::transform::Transform"]
```
## Changelog
Resolved internal execution order ambiguities for:
1. Transform propagation (ignored, we need smarter filter checking).
2. Gamepad processing (fixed).
3. bevy_winit's window handling (fixed).
4. Cascaded shadow maps and perspectives (fixed).
Also fixed a desynchronized state bug that could occur when the `Window` component is removed and then added to the same entity in a single frame.
# Objective
I found several words in code and docs are incorrect. This should be fixed.
## Solution
- Fix several minor typos
Co-authored-by: Chris Ohk <utilforever@gmail.com>
# Objective
- Fixes a bug where `just_pressed` and `just_released` in `Input<GamepadButton>` might behave incorrectly due calling `clear` 3 times in a single frame through these three different systems: `gamepad_button_event_system`, `gamepad_axis_event_system` and `gamepad_connection_system` in any order
## Solution
- Call `clear` only once and before all the above three systems, i.e. in `gamepad_event_system`
## Additional Info
- Discussion in Discord: https://discord.com/channels/691052431525675048/768253008416342076/1064621963693273279
# Objective
Currently, the `AxisSettings::new` function is unusable due to
an implementation quirk. It only allows `AxisSettings` where
the bounds that are supposed to be positive are negative!
## Solution
- We fix the bound check
- We add a test to make sure the method is usable
Seems like the error slipped through because of the relatively
verbose code style. With all those `if/else`, very long names,
range syntax, the bound check is actually hard to spot. I first
refactored a lot of code, but I left out the refactor because the
fix should be integrated independently.
---
## Changelog
- Fix `AxisSettings::new` only accepting invalid bounds
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
(github made me type out a message for the commit which looked like it was for the pr, sorry)
# Objective
- Add a way to get all of the input devices of an `Axis`, primarily useful for looping through them
## Solution
- Adds `Axis<T>::devices()` which returns a `FixedSizeIterator<Item = &T>`
- Adds a (probably unneeded) `test_axis_devices` test because tests are cool.
---
## Changelog
- Added `Axis<T>::devices()` method
## Migration Guide
Not a breaking change.
# Objective
The [documentation for `ButtonSettingsError`](https://docs.rs/bevy/0.9.0/bevy/input/gamepad/enum.ButtonSettingsError.html) incorrectly describes the valid range of values as `0.0..=2.0`, probably because it was copied from `AxisSettingsError`. The actual range, as seen in the functions that return it and in its own `thiserror` description, is `0.0..=1.0`.
## Solution
Update the doc comments to reflect the correct range.
Co-authored-by: Sol Toder <ajaxgb@gmail.com>
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
Adds support for reflecting many more of the input types. This allows those types to be used via scripting, `bevy-inspector-egui`, etc. These types are registered by the `InputPlugin` so that they're automatically available to anyone who wants to use them
Closes#6223
## Solution
Many types now have `#[derive(Reflect, FromReflect)]` added to them in `bevy_input`. Additionally, `#[reflect(traits...)]` has been added for applicable traits to the types.
This PR does not add reflection support for types which have private fields. Notably, `Touch` and `Touches` don't implement `Reflect`/`FromReflect`.
This adds the "glam" feature to the `bevy_reflect` dependency for package `bevy_input`. Since `bevy_input` transitively depends on `glam` already, all this brings in are the reflection `impl`s.
## Migration Guide
- `Input<T>` now implements `Reflect` via `#[reflect]` instead of `#[reflect_value]`. This means it now exposes its private fields via the `Reflect` trait rather than being treated as a value type. For code that relies on the `Input<T>` struct being treated as a value type by reflection, it is still possible to wrap the `Input<T>` type with a wrapper struct and apply `#[reflect_value]` to it.
- As a reminder, private fields exposed via reflection are not subject to any stability guarantees.
---
## Changelog
Added
- Implemented `Reflect` + `FromReflect` for many input-related types. These types are automatically registered when adding the `InputPlugin`.
# Objective
Fixes#6339.
## Solution
This PR adds a new type, `GamepadInfo`, which holds metadata associated with a particular `Gamepad`. The `Gamepads` resource now holds a `HashMap<Gamepad, GamepadInfo>`. The `GamepadInfo` is created when the gamepad backend (by default `bevy_gilrs`) emits a "gamepad connected" event.
The `gamepad_viewer` example has been updated to showcase the new functionality.
Before:
![bevy-gamepad-old](https://user-images.githubusercontent.com/86984145/197359427-2130a3c0-bd8a-4683-ae24-2a9eaa98b586.png)
After:
![bevy-gamepad-new](https://user-images.githubusercontent.com/86984145/197359429-f7963163-df26-4906-af7f-6186fe3bd338.png)
---
## Changelog
### Added
- Added `GamepadInfo`.
- Added `Gamepads::name()`, which returns the name of the specified gamepad if it exists.
### Changed
- `GamepadEventType::Connected` is now a tuple variant with a single field of type `GamepadInfo`.
- Since `GamepadInfo` is not `Copy`, `GamepadEventType` is no longer `Copy`. The same is true of `GamepadEvent` and `GamepadEventRaw`.
## Migration Guide
- Pattern matches on `GamepadEventType::Connected` will need to be updated, as the form of the variant has changed.
- Code that requires `GamepadEvent`, `GamepadEventRaw` or `GamepadEventType` to be `Copy` will need to be updated.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/3418
## Solution
Originally a rebase of https://github.com/bevyengine/bevy/pull/3446. Work was originally done by mfdorst, who should receive considerable credit. Then the error types were extensively reworked by targrub.
## Migration Guide
`AxisSettings` now has a `new()`, which may return an `AxisSettingsError`.
`AxisSettings` fields made private; now must be accessed through getters and setters. There's a dead zone, from `.deadzone_upperbound()` to `.deadzone_lowerbound()`, and a live zone, from `.deadzone_upperbound()` to `.livezone_upperbound()` and from `.deadzone_lowerbound()` to `.livezone_lowerbound()`.
`AxisSettings` setters no longer panic.
`ButtonSettings` fields made private; now must be accessed through getters and setters.
`ButtonSettings` now has a `new()`, which may return a `ButtonSettingsError`.
Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
# Objective
- `process_touch_event` in `bevy_input` don't update position info. `TouchPhase::Ended` and `TouchPhase::Cancelled` should use the position info from `pressed`. Otherwise, it'll not update. The position info is updated from `TouchPhase::Moved`.
## Solution
- Use updated touch info.
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, feel free to skip this section.
- Fixed: bevy_input, fix process touch event, update touch info
# Objective
The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.
This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).
## Solution
This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity).
This means you can remove all cases of `exclusive_system()`:
```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```
I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:
```rust
fn some_exclusive_system(
world: &mut World,
transforms: &mut QueryState<&Transform>,
state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
for transform in transforms.iter(world) {
println!("{transform:?}");
}
let (time, players) = state.get(world);
for player in players.iter() {
println!("{player:?}");
}
}
```
Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.
I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```
## Related
- #2923
- #3001
- #3946
## Changelog
- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.
## Migration Guide
Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:
```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```
Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:
```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```
Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
let mut transforms = world.query::<&Transform>();
for transform in transforms.iter(world) {
}
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
for transform in transforms.iter(world) {
}
}
```
# Objective
Add traits to events in `bevy_input` and `bevy_windows`: `Copy`, `Serialize`/`Deserialize`, `PartialEq`, and `Eq`, as requested in https://github.com/bevyengine/bevy/issues/6022, https://github.com/bevyengine/bevy/issues/6023, https://github.com/bevyengine/bevy/issues/6024.
## Solution
Added the traits to events in `bevy_input` and `bevy_windows`. Added dependency of `serde` in `Cargo.toml` of `bevy_input`.
## Migration Guide
If one has been `.clone()`'ing `bevy_input` events, Clippy will now complain about that. Just remove `.clone()` to solve.
## Other Notes
Some events in `bevy_input` had `f32` fields, so `Eq` trait was not derived for them.
Some events in `bevy_windows` had `String` fields, so `Copy` trait was not derived for them.
Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
# Objective
- I'm currently working on being able to call methods on reflect types (https://github.com/jakobhellermann/bevy_reflect_fns)
- for that, I'd like to add methods to the `Input<KeyCode>` resource (which I'm doing by registering type data)
- implementing `Reflect` is currently a requirement for having type data in the `TypeRegistry`
## Solution
- derive `Reflect` for `KeyCode` and `Input`
- uses `#[reflect_value]` for `Input`, since it's fields aren't supposed to be observable
- using reflect_value would need `Clone` bounds on `T`, but since all the methods (`.pressed` etc) already require `T: Copy`, I unified everything to requiring `Copy`
- add `Send + Sync + 'static` bounds, also required by reflect derive
## Unrelated improvements
I can extract into a separate PR if needed.
- the `Reflect` derive would previously ignore `#[reflect_value]` and only accept `#[reflect_value()]` which was a bit confusing
- the generated code used `val.clone()` on a reference, which is fine if `val` impls `Clone`, but otherwise also compiles with a worse error message. Change to `std::clone::Clone::clone(val)` instead which gives a neat `T does not implement Clone` error
# Objective
- The `Gamepad` type is a tiny value-containing type that implements `Copy`.
- By convention, references to `Copy` types should be avoided, as they can introduce overhead and muddle the semantics of what's going on.
- This allows us to reduce boilerplate reference manipulation and lifetimes in user facing code.
## Solution
- Make assorted methods on `Gamepads` take / return a raw `Gamepad`, rather than `&Gamepad`.
## Migration Guide
- `Gamepads::iter` now returns an iterator of `Gamepad`. rather than an iterator of `&Gamepad`.
- `Gamepads::contains` now accepts a `Gamepad`, rather than a `&Gamepad`.
# Objective
Extend the scope of Gamepad to accommodate devices that have more inputs than a typical controller.
## Solution
Add additional enum variants to both _GamepadButtonType_ and _GamepadAxisType_ that supports up to 255 more non-standard buttons/axis respectively.
## Personal motivation
I have been writing an alternative to the GILRS crate, and with this simple change to the source code, It will be a trivial thing to direct new devices through the bevy systems, even when they do not always behave exactly like your typical controller.
# Objective
- While generating https://github.com/jakobhellermann/bevy_reflect_ts_type_export/blob/main/generated/types.ts, I noticed that some types that implement `Reflect` did not register themselves
- `Viewport` isn't reflect but can be (there's a TODO)
## Solution
- register all reflected types
- derive `Reflect` for `Viewport`
## Changelog
- more types are not registered in the type registry
- remove `Serialize`, `Deserialize` impls from `Viewport`
I also decided to remove the `Serialize, Deserialize` from the `Viewport`, since they were (AFAIK) only used for reflection, which now is done without serde. So this is technically a breaking change for people who relied on that impl directly.
Personally I don't think that every bevy type should implement `Serialize, Deserialize`, as that would lead to a ton of code generation that mostly isn't necessary because we can do the same with `Reflect`, but if this is deemed controversial I can remove it from this PR.
## Migration Guide
- `KeyCode` now implements `Reflect` not as `reflect_value`, but with proper struct reflection. The `Serialize` and `Deserialize` impls were removed, now that they are no longer required for scene serialization.
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- I wanted to have controls independent from keyboard layout and found that bevy doesn't have a proper implementation for that
## Solution
- I created a `ScanCode` enum with two hundreds scan codes and updated `keyboard_input_system` to include and update `ResMut<Input<ScanCode>>`
- closes both https://github.com/bevyengine/bevy/issues/2052 and https://github.com/bevyengine/bevy/issues/862
Co-authored-by: Bleb1k <91003089+Bleb1k@users.noreply.github.com>
# Objective
- Fixes#5544
- Part of the splitting process of #3692.
## Solution
- Document everything in the `gamepad.rs` file.
- Add a doc example for mocking gamepad input.
---
## Changelog
- Added and updated the documentation inside of the `gamepad.rs` file.
Generally a good idea.
I ran into this because I wanted to store `Gamepads` in a wrapper struct in https://github.com/Leafwing-Studios/leafwing-input-manager/pull/168.
This PR allows the `Debug` derive used there to continue working. I could workaround this with a custom impl, but a PR upstream seemed like the right fix.
# Objective
- Enable the `axis_dpad_to_button` gilrs filter to map hats to dpad buttons on supported remotes.
- Fixes https://github.com/Leafwing-Studios/leafwing-input-manager/issues/149
- Might have fixed the confusion related to https://github.com/bevyengine/bevy/issues/3229
## Solution
- Enables the `axis_dpad_to_button` filter in `gilrs` which will use it's remote mapping information to see if there are hats mapped to dpads for that remote model. I don't really understand the logic it uses exactly, but it is usually enabled by default in gilrs and I believe it probably leads to more intuitive mapping compared to the current situation of dpad buttons being mapped to an axis.
- Removes the `GamepadAxisType::DPadX` and `GamepadAxisType::DPadY` enum variants to avoid user confusion. Those variants should never be emitted anyway, for all supported remotes.
---
## Changelog
### Changed
- Removed `GamepadAxisType::DPadX` and `GamepadAxisType::DPadY` in favor of using `GamepadButtonType::DPad[Up/Down/Left/Right]` instead.
## Migration Guide
If your game reads gamepad events or queries the axis state of `GamePadAxisType::DPadX` or `GamePadAxisType::DPadY`, then you must migrate your code to check whether or not the `GamepadButtonType::DPadUp`, `GamepadButtonType::DPadDown`, etc. buttons were pressed instead.
Removed `const_vec2`/`const_vec3`
and replaced with equivalent `.from_array`.
# Objective
Fixes#5112
## Solution
- `encase` needs to update to `glam` as well. See teoxoy/encase#4 on progress on that.
- `hexasphere` also needs to be updated, see OptimisticPeach/hexasphere#12.
# Objective
- Fixes#5083
## Solution
I looked at the implementation of those events. I noticed that they both are adaptations of `winit`'s `DeviceEvent`/`WindowEvent` enum variants. Therefore I based the description of the items on the documentation provided by the upstream crate. I also added a link to `CursorMoved`, just like `MouseMotion` already has.
## Observations
- Looking at the implementation of `MouseMotion`, I noticed the `DeviceId` field of the `winit` event is discarded by `bevy_input`. This means that in the case a machine has multiple pointing devices, it is impossible to distinguish to which one the event is referring to. **EDIT:** just tested, `MouseMotion` events are emitted for movement of both mice.
# Objective
`bevy_ui` doesn't support correctly touch inputs because of two problems in the focus system:
- It attempts to retrieve touch input with a specific `0` id
- It doesn't retrieve touch positions and bases its focus solely on mouse position, absent from mobile devices
## Solution
I added a few methods to the `Touches` resource, allowing to check if **any** touch input was pressed, released or cancelled and to retrieve the *position* of the first pressed touch input and adapted the focus system.
I added a test button to the *iOS* example and it works correclty on emulator. I did not test on a real touch device as:
- Android is not working (https://github.com/bevyengine/bevy/issues/3249)
- I don't have an iOS device
# Objective
- Part of the splitting process of #3692.
## Solution
- Document `keyboard.rs` inside of `bevy_input`.
Co-authored-by: KDecay <KDecayMusic@protonmail.com>
# Objective
Fixes#3180, builds from https://github.com/bevyengine/bevy/pull/2898
## Solution
Support requesting a window to be closed and closing a window in `bevy_window`, and handle this in `bevy_winit`.
This is a stopgap until we move to windows as entites, which I'm sure I'll get around to eventually.
## Changelog
### Added
- `Window::close` to allow closing windows.
- `WindowClosed` to allow reacting to windows being closed.
### Changed
Replaced `bevy::system::exit_on_esc_system` with `bevy:🪟:close_on_esc`.
## Fixed
The app no longer exits when any window is closed. This difference is only observable when there are multiple windows.
## Migration Guide
`bevy::input::system::exit_on_esc_system` has been removed. Use `bevy:🪟:close_on_esc` instead.
`CloseWindow` has been removed. Use `Window::close` instead.
The `Close` variant has been added to `WindowCommand`. Handle this by closing the relevant window.