CI-capable version of #9086
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
# Objective
Fixes#6689.
## Solution
Add `single-threaded` as an optional non-default feature to `bevy_ecs`
and `bevy_tasks` that:
- disable the `ParallelExecutor` as a default runner
- disables the multi-threaded `TaskPool`
- internally replace `QueryParIter::for_each` calls with
`Query::for_each`.
Removed the `Mutex` and `Arc` usage in the single-threaded task pool.
![image](https://user-images.githubusercontent.com/3137680/202833253-dd2d520f-75e6-4c7b-be2d-5ce1523cbd38.png)
## Future Work/TODO
Create type aliases for `Mutex`, `Arc` that change to single-threaaded
equivalents where possible.
---
## Changelog
Added: Optional default feature `multi-theaded` to that enables
multithreaded parallelism in the engine. Disabling it disables all
multithreading in exchange for higher single threaded performance. Does
nothing on WASM targets.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Attempting to build `bevy_tasks` produces the following error:
```
error[E0599]: no method named `is_finished` found for struct `async_executor::Task` in the current scope
--> /[...]]/bevy/crates/bevy_tasks/src/task.rs:51:16
|
51 | self.0.is_finished()
| ^^^^^^^^^^^ method not found in `async_executor::Task<T>`
```
It looks like this was introduced along with `Task::is_finished`, which delegates to `async_task::Task::is_finished`. However, the latter was only introduced in `async-task` 4.2.0; `bevy_tasks` does not explicitly depend on `async-task` but on `async-executor` ^1.3.0, which in turn depends on `async-task` ^4.0.0.
## Solution
Add an explicit dependency on `async-task` ^4.2.0.
# Objective
- Add ability to create nested spawns. This is needed for stageless. The current executor spawns tasks for each system early and runs the system by communicating through a channel. In stageless we want to spawn the task late, so that archetypes can be updated right before the task is run. The executor is run on a separate task, so this enables the scope to be passed to the spawned executor.
- Fixes#4301
## Solution
- Instantiate a single threaded executor on the scope and use that instead of the LocalExecutor. This allows the scope to be Send, but still able to spawn tasks onto the main thread the scope is run on. This works because while systems can access nonsend data. The systems themselves are Send. Because of this change we lose the ability to spawn nonsend tasks on the scope, but I don't think this is being used anywhere. Users would still be able to use spawn_local on TaskPools.
- Steals the lifetime tricks the `std:🧵:scope` uses to allow nested spawns, but disallow scope to be passed to tasks or threads not associated with the scope.
- Change the storage for the tasks to a `ConcurrentQueue`. This is to allow a &Scope to be passed for spawning instead of a &mut Scope. `ConcurrentQueue` was chosen because it was already in our dependency tree because `async_executor` depends on it.
- removed the optimizations for 0 and 1 spawned tasks. It did improve those cases, but made the cases of more than 1 task slower.
---
## Changelog
Add ability to nest spawns
```rust
fn main() {
let pool = TaskPool::new();
pool.scope(|scope| {
scope.spawn(async move {
// calling scope.spawn from an spawn task was not possible before
scope.spawn(async move {
// do something
});
});
})
}
```
## Migration Guide
If you were using explicit lifetimes and Passing Scope you'll need to specify two lifetimes now.
```rust
fn scoped_function<'scope>(scope: &mut Scope<'scope, ()>) {}
// should become
fn scoped_function<'scope>(scope: &Scope<'_, 'scope, ()>) {}
```
`scope.spawn_local` changed to `scope.spawn_on_scope` this should cover cases where you needed to run tasks on the local thread, but does not cover spawning Nonsend Futures.
## TODO
* [x] think real hard about all the lifetimes
* [x] add doc about what 'env and 'scope mean.
* [x] manually check that the single threaded task pool still works
* [x] Get updated perf numbers
* [x] check and make sure all the transmutes are necessary
* [x] move commented out test into a compile fail test
* [x] look through the tests for scope on std and see if I should add any more tests
Co-authored-by: Michael Hsu <myhsu@benjaminelectric.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
As of Rust 1.59, `std:🧵:available_parallelism` has been stabilized. As of Rust 1.61, the API matches `num_cpus::get` by properly handling Linux's cgroups and other sandboxing mechanisms.
As bevy does not have an established MSRV, we can replace `num_cpus` in `bevy_tasks` and reduce our dependency tree by one dep.
## Solution
Replace `num_cpus` with `std:🧵:available_parallelism`. Wrap it to have a fallback in the case it errors out and have it operate in the same manner as `num_cpus` did.
This however removes `physical_core_count` from the API, though we are currently not using it in any way in first-party crates.
---
## Changelog
Changed: `bevy_tasks::logical_core_count` -> `bevy_tasks::available_parallelism`.
Removed: `bevy_tasks::physical_core_count`.
## Migration Guide
`bevy_tasks::logical_core_count` and `bevy_tasks::physical_core_count` have been removed. `logical_core_count` has been replaced with `bevy_tasks::available_parallelism`, which works identically. If `bevy_tasks::physical_core_count` is required, the `num_cpus` crate can be used directly, as these two were just aliases for `num_cpus` APIs.
Right now, a direct reference to the target TaskPool is required to launch tasks on the pools, despite the three newtyped pools (AsyncComputeTaskPool, ComputeTaskPool, and IoTaskPool) effectively acting as global instances. The need to pass a TaskPool reference adds notable friction to spawning subtasks within existing tasks. Possible use cases for this may include chaining tasks within the same pool like spawning separate send/receive I/O tasks after waiting on a network connection to be established, or allowing cross-pool dependent tasks like starting dependent multi-frame computations following a long I/O load.
Other task execution runtimes provide static access to spawning tasks (i.e. `tokio::spawn`), which is notably easier to use than the reference passing required by `bevy_tasks` right now.
This PR makes does the following:
* Adds `*TaskPool::init` which initializes a `OnceCell`'ed with a provided TaskPool. Failing if the pool has already been initialized.
* Adds `*TaskPool::get` which fetches the initialized global pool of the respective type or panics. This generally should not be an issue in normal Bevy use, as the pools are initialized before they are accessed.
* Updated default task pool initialization to either pull the global handles and save them as resources, or if they are already initialized, pull the a cloned global handle as the resource.
This should make it notably easier to build more complex task hierarchies for dependent tasks. It should also make writing bevy-adjacent, but not strictly bevy-only plugin crates easier, as the global pools ensure it's all running on the same threads.
One alternative considered is keeping a thread-local reference to the pool for all threads in each pool to enable the same `tokio::spawn` interface. This would spawn tasks on the same pool that a task is currently running in. However this potentially leads to potential footgun situations where long running blocking tasks run on `ComputeTaskPool`.
# Objective
Fixes#1529
Run bevy_ecs in miri
## Solution
- Don't set thread names when running in miri rust-lang/miri/issues/1717
- Update `event-listener` to `2.5.2` as previous versions have UB that is detected by miri: [event-listener commit](1fa31c553e)
- Ignore memory leaks when running in miri as they are impossible to track down rust-lang/miri/issues/1481
- Make `table_add_remove_many` test less "many" because miri is really quite slow :)
- Make CI run `RUSTFLAGS="-Zrandomize-layout" MIRIFLAGS="-Zmiri-ignore-leaks -Zmiri-tag-raw-pointers -Zmiri-disable-isolation" cargo +nightly miri test -p bevy_ecs`
# Objective
- Document that the error codes will be rendered on the bevy website (see bevyengine/bevy-website#216)
- Some Cargo.toml files did not include the license or a description field
## Solution
- Readme for the errors crate
- Mark internal/development crates with `publish = false`
- Add missing license/descriptions to some crates
- [x] merge bevyengine/bevy-website#216
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.
Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.
* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
* Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive.
* People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach.
* I like keeping the root clean and noise free
* There is precedent for putting the apache and mit license text in sub folders (amethyst)
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.
As a follow-up we should update the website to properly describe the new license.
Closes#2373
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.
* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7
Based on https://github.com/bevyengine/bevy/pull/2455
# Objective
Reduce compilation time
# Solution
Remove unused dependencies. While this PR doesn't remove any crates from `Cargo.lock`, it may unlock more build parallelism.
* Switch from the deprecated `multitask` crate to `async-executor`
* async-executor appears to be essentially multitask 0.3
* use block_on in futures_lite instead of pollster because futures_lite is already in the dependency list of async-executor