# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
In some scenarios it can be useful to check if a task has been finished without polling it. I added a function called `is_finished` to check if a task has been finished.
## Solution
Since `async_task` supports it out of the box, it is just a simple wrapper function.
---
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
- Proactive changing of code to comply with warnings generated by beta of rustlang version of cargo clippy.
## Solution
- Code changed as recommended by `rustup update`, `rustup default beta`, `cargo run -p ci -- clippy`.
- Tested using `beta` and `stable`. No clippy warnings in either after changes made.
---
## Changelog
- Warnings fixed were: `clippy::explicit-auto-deref` (present in 11 files), `clippy::needless-borrow` (present in 2 files), and `clippy::only-used-in-recursion` (only 1 file).
# Objective
- #4466 broke local tasks running.
- Fixes https://github.com/bevyengine/bevy/issues/6120
## Solution
- Add system for ticking local executors on main thread into bevy_core where the tasks pools are initialized.
- Add ticking local executors into thread executors
## Changelog
- tick all thread local executors in task pool.
## Notes
- ~~Not 100% sure about this PR. Ticking the local executor for the main thread in scope feels a little kludgy as it requires users of bevy_tasks to be calling scope periodically for those tasks to make progress.~~ took this out in favor of a system that ticks the local executors.
# Objective
Fixes https://github.com/bevyengine/bevy/issues/6306
## Solution
Change the failing assert and expand example to explain when ordering is deterministic or not.
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
# Objective
- Add ability to create nested spawns. This is needed for stageless. The current executor spawns tasks for each system early and runs the system by communicating through a channel. In stageless we want to spawn the task late, so that archetypes can be updated right before the task is run. The executor is run on a separate task, so this enables the scope to be passed to the spawned executor.
- Fixes#4301
## Solution
- Instantiate a single threaded executor on the scope and use that instead of the LocalExecutor. This allows the scope to be Send, but still able to spawn tasks onto the main thread the scope is run on. This works because while systems can access nonsend data. The systems themselves are Send. Because of this change we lose the ability to spawn nonsend tasks on the scope, but I don't think this is being used anywhere. Users would still be able to use spawn_local on TaskPools.
- Steals the lifetime tricks the `std:🧵:scope` uses to allow nested spawns, but disallow scope to be passed to tasks or threads not associated with the scope.
- Change the storage for the tasks to a `ConcurrentQueue`. This is to allow a &Scope to be passed for spawning instead of a &mut Scope. `ConcurrentQueue` was chosen because it was already in our dependency tree because `async_executor` depends on it.
- removed the optimizations for 0 and 1 spawned tasks. It did improve those cases, but made the cases of more than 1 task slower.
---
## Changelog
Add ability to nest spawns
```rust
fn main() {
let pool = TaskPool::new();
pool.scope(|scope| {
scope.spawn(async move {
// calling scope.spawn from an spawn task was not possible before
scope.spawn(async move {
// do something
});
});
})
}
```
## Migration Guide
If you were using explicit lifetimes and Passing Scope you'll need to specify two lifetimes now.
```rust
fn scoped_function<'scope>(scope: &mut Scope<'scope, ()>) {}
// should become
fn scoped_function<'scope>(scope: &Scope<'_, 'scope, ()>) {}
```
`scope.spawn_local` changed to `scope.spawn_on_scope` this should cover cases where you needed to run tasks on the local thread, but does not cover spawning Nonsend Futures.
## TODO
* [x] think real hard about all the lifetimes
* [x] add doc about what 'env and 'scope mean.
* [x] manually check that the single threaded task pool still works
* [x] Get updated perf numbers
* [x] check and make sure all the transmutes are necessary
* [x] move commented out test into a compile fail test
* [x] look through the tests for scope on std and see if I should add any more tests
Co-authored-by: Michael Hsu <myhsu@benjaminelectric.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
As of Rust 1.59, `std:🧵:available_parallelism` has been stabilized. As of Rust 1.61, the API matches `num_cpus::get` by properly handling Linux's cgroups and other sandboxing mechanisms.
As bevy does not have an established MSRV, we can replace `num_cpus` in `bevy_tasks` and reduce our dependency tree by one dep.
## Solution
Replace `num_cpus` with `std:🧵:available_parallelism`. Wrap it to have a fallback in the case it errors out and have it operate in the same manner as `num_cpus` did.
This however removes `physical_core_count` from the API, though we are currently not using it in any way in first-party crates.
---
## Changelog
Changed: `bevy_tasks::logical_core_count` -> `bevy_tasks::available_parallelism`.
Removed: `bevy_tasks::physical_core_count`.
## Migration Guide
`bevy_tasks::logical_core_count` and `bevy_tasks::physical_core_count` have been removed. `logical_core_count` has been replaced with `bevy_tasks::available_parallelism`, which works identically. If `bevy_tasks::physical_core_count` is required, the `num_cpus` crate can be used directly, as these two were just aliases for `num_cpus` APIs.
# Objective
Fixes Issue #6005.
## Solution
Replaced WorldQuery with ReadOnlyWorldQuery on F generic in Query filters and QueryState to restrict its trait bound.
## Migration Guide
Query filter (`F`) generics are now bound by `ReadOnlyWorldQuery`, rather than `WorldQuery`. If for some reason you were requesting `Query<&A, &mut B>`, please use `Query<&A, With<B>>` instead.
# Objective
- Added a bunch of backticks to things that should have them, like equations, abstract variable names,
- Changed all small x, y, and z to capitals X, Y, Z.
This might be more annoying than helpful; Feel free to refuse this PR.
Right now, a direct reference to the target TaskPool is required to launch tasks on the pools, despite the three newtyped pools (AsyncComputeTaskPool, ComputeTaskPool, and IoTaskPool) effectively acting as global instances. The need to pass a TaskPool reference adds notable friction to spawning subtasks within existing tasks. Possible use cases for this may include chaining tasks within the same pool like spawning separate send/receive I/O tasks after waiting on a network connection to be established, or allowing cross-pool dependent tasks like starting dependent multi-frame computations following a long I/O load.
Other task execution runtimes provide static access to spawning tasks (i.e. `tokio::spawn`), which is notably easier to use than the reference passing required by `bevy_tasks` right now.
This PR makes does the following:
* Adds `*TaskPool::init` which initializes a `OnceCell`'ed with a provided TaskPool. Failing if the pool has already been initialized.
* Adds `*TaskPool::get` which fetches the initialized global pool of the respective type or panics. This generally should not be an issue in normal Bevy use, as the pools are initialized before they are accessed.
* Updated default task pool initialization to either pull the global handles and save them as resources, or if they are already initialized, pull the a cloned global handle as the resource.
This should make it notably easier to build more complex task hierarchies for dependent tasks. It should also make writing bevy-adjacent, but not strictly bevy-only plugin crates easier, as the global pools ensure it's all running on the same threads.
One alternative considered is keeping a thread-local reference to the pool for all threads in each pool to enable the same `tokio::spawn` interface. This would spawn tasks on the same pool that a task is currently running in. However this potentially leads to potential footgun situations where long running blocking tasks run on `ComputeTaskPool`.
# Objective
- The single threaded task pool is not documented
- This doesn't warn in CI as it's feature gated for wasm, but I'm tired of seeing the warnings when building in wasm
## Solution
- Document it
# Objective
Fixes#1529
Run bevy_ecs in miri
## Solution
- Don't set thread names when running in miri rust-lang/miri/issues/1717
- Update `event-listener` to `2.5.2` as previous versions have UB that is detected by miri: [event-listener commit](1fa31c553e)
- Ignore memory leaks when running in miri as they are impossible to track down rust-lang/miri/issues/1481
- Make `table_add_remove_many` test less "many" because miri is really quite slow :)
- Make CI run `RUSTFLAGS="-Zrandomize-layout" MIRIFLAGS="-Zmiri-ignore-leaks -Zmiri-tag-raw-pointers -Zmiri-disable-isolation" cargo +nightly miri test -p bevy_ecs`
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
This PR is part of the issue #3492.
# Objective
- Add and update the bevy_tasks documentation to achieve a 100% documentation coverage (sans `prelude` module)
- Add the #![warn(missing_docs)] lint to keep the documentation coverage for the future.
## Solution
- Add and update the bevy_math documentation.
- Add the #![warn(missing_docs)] lint.
- Added doctest wherever there should be in the missing docs.
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_tasks` crate.
Fixes#2566Fixes#3005
There are only READMEs in the 4 crates here (with the exception of bevy itself).
Those 4 crates are ecs, reflect, tasks, and transform.
These should each now include their respective README files.
Co-authored-by: Hoidigan <57080125+Hoidigan@users.noreply.github.com>
Co-authored-by: Daniel Nelsen <57080125+Hoidigan@users.noreply.github.com>
# Objective
- CI jobs are starting to fail due to `clippy::bool-assert-comparison` and `clippy::single_component_path_imports` being triggered.
## Solution
- Fix all uses where `asset_eq!(<condition>, <bool>)` could be replace by `assert!`
- Move the `#[allow()]` for `single_component_path_imports` to `#![allow()]` at the start of the files.
This PR is easiest to review commit by commit.
Followup on https://github.com/bevyengine/bevy/pull/1309#issuecomment-767310084
- [x] Switch from a bash script to an xtask rust workspace member.
- Results in ~30s longer CI due to compilation of the xtask itself
- Enables Bevy contributors on any platform to run `cargo ci` to run linting -- if the default available Rust is the same version as on CI, then the command should give an identical result.
- [x] Use the xtask from official CI so there's only one place to update.
- [x] Bonus: Run clippy on the _entire_ workspace (existing CI setup was missing the `--workspace` flag
- [x] Clean up newly-exposed clippy errors
~#1388 builds on this to clean up newly discovered clippy errors -- I thought it might be nicer as a separate PR.~ Nope, merged it into this one so CI would pass.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
While generally speaking the calling thread would have picked up the task first anyways, I don't think it makes much sense usually to block the calling thread until another thread wakes and does the work.
* Switch from the deprecated `multitask` crate to `async-executor`
* async-executor appears to be essentially multitask 0.3
* use block_on in futures_lite instead of pollster because futures_lite is already in the dependency list of async-executor