mirror of
https://github.com/bevyengine/bevy
synced 2024-12-29 22:43:14 +00:00
38 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Carter Anderson
|
015f2c69ca
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ``` |
||
VitalyR
|
eb19a9ea0b
|
Migrate UI bundles to required components (#15898)
# Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Pablo Reinhardt
|
d96a9d15f6
|
Migrate from Query::single and friends to Single (#15872)
# Objective - closes #15866 ## Solution - Simply migrate where possible. ## Testing - Expect that CI will do most of the work. Examples is another way of testing this, as most of the work is in that area. --- ## Notes For now, this PR doesn't migrate `QueryState::single` and friends as for now, this look like another issue. So for example, QueryBuilders that used single or `World::query` that used single wasn't migrated. If there is a easy way to migrate those, please let me know. Most of the uses of `Query::single` were removed, the only other uses that I found was related to tests of said methods, so will probably be removed when we remove `Query::single`. |
||
ickshonpe
|
6f7d0e5725
|
split up TextStyle (#15857)
# Objective Currently text is recomputed unnecessarily on any changes to its color, which is extremely expensive. ## Solution Split up `TextStyle` into two separate components `TextFont` and `TextColor`. ## Testing I added this system to `many_buttons`: ```rust fn set_text_colors_changed(mut colors: Query<&mut TextColor>) { for mut text_color in colors.iter_mut() { text_color.set_changed(); } } ``` reports ~4fps on main, ~50fps with this PR. ## Migration Guide `TextStyle` has been renamed to `TextFont` and its `color` field has been moved to a separate component named `TextColor` which newtypes `Color`. |
||
UkoeHB
|
c2c19e5ae4
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Joona Aalto
|
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
Tero Laxström
|
522d82b21a
|
Fixing text sizes for examples (#15190)
# Objective - Fixes #14265 ## Solution - Go through Pixel Eagle examples (and examples all in all) - If default size is used it is usually left there - If size of font is touched try dividing with 1.2 and round it to nearest whole number ## Testing - Run example before and after - Make sure examples text are readable or like before cosmic-text change --- ## Showcase Before: ![image](https://github.com/user-attachments/assets/beb2d5af-d1ee-4c2c-89c4-8e59c53b53b4) After: ![image](https://github.com/user-attachments/assets/fef28a8d-dc26-4e0e-9870-6b216de906e8) |
||
Pietro
|
061bee7e3c
|
fix: upgrade to winit v0.30 (#13366)
# Objective - Upgrade winit to v0.30 - Fixes https://github.com/bevyengine/bevy/issues/13331 ## Solution This is a rewrite/adaptation of the new trait system described and implemented in `winit` v0.30. ## Migration Guide The custom UserEvent is now renamed as WakeUp, used to wake up the loop if anything happens outside the app (a new [custom_user_event](https://github.com/bevyengine/bevy/pull/13366/files#diff-2de8c0a8d3028d0059a3d80ae31b2bbc1cde2595ce2d317ea378fe3e0cf6ef2d) shows this behavior. The internal `UpdateState` has been removed and replaced internally by the AppLifecycle. When changed, the AppLifecycle is sent as an event. The `UpdateMode` now accepts only two values: `Continuous` and `Reactive`, but the latter exposes 3 new properties to enable reactive to device, user or window events. The previous `UpdateMode::Reactive` is now equivalent to `UpdateMode::reactive()`, while `UpdateMode::ReactiveLowPower` to `UpdateMode::reactive_low_power()`. The `ApplicationLifecycle` has been renamed as `AppLifecycle`, and now contains the possible values of the application state inside the event loop: * `Idle`: the loop has not started yet * `Running` (previously called `Started`): the loop is running * `WillSuspend`: the loop is going to be suspended * `Suspended`: the loop is suspended * `WillResume`: the loop is going to be resumed Note: the `Resumed` state has been removed since the resumed app is just running. Finally, now that `winit` enables this, it extends the `WinitPlugin` to support custom events. ## Test platforms - [x] Windows - [x] MacOs - [x] Linux (x11) - [x] Linux (Wayland) - [x] Android - [x] iOS - [x] WASM/WebGPU - [x] WASM/WebGL2 ## Outstanding issues / regressions - [ ] iOS: build failed in CI - blocking, but may just be flakiness - [x] Cross-platform: when the window is maximised, changes in the scale factor don't apply, to make them apply one has to make the window smaller again. (Re-maximising keeps the updated scale factor) - non-blocking, but good to fix - [ ] Android: it's pretty easy to quickly open and close the app and then the music keeps playing when suspended. - non-blocking but worrying - [ ] Web: the application will hang when switching tabs - Not new, duplicate of https://github.com/bevyengine/bevy/issues/13486 - [ ] Cross-platform?: Screenshot failure, `ERROR present_frames: wgpu_core::present: No work has been submitted for this frame before` taking the first screenshot, but after pressing space - non-blocking, but good to fix --------- Co-authored-by: François <francois.mockers@vleue.com> |
||
Alice Cecile
|
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
Alice Cecile
|
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
Thierry Berger
|
ced216f59a
|
Update winit dependency to 0.29 (#10702)
# Objective - Update winit dependency to 0.29 ## Changelog ### KeyCode changes - Removed `ScanCode`, as it was [replaced by KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292). - `ReceivedCharacter.char` is now a `SmolStr`, [relevant doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text). - Changed most `KeyCode` values, and added more. KeyCode has changed meaning. With this PR, it refers to physical position on keyboard rather than the printed letter on keyboard keys. In practice this means: - On QWERTY keyboard layouts, nothing changes - On any other keyboard layout, `KeyCode` no longer reflects the label on key. - This is "good". In bevy 0.12, when you used WASD for movement, users with non-QWERTY keyboards couldn't play your game! This was especially bad for non-latin keyboards. Now, WASD represents the physical keys. A French player will press the ZQSD keys, which are near each other, Kyrgyz players will use "Цфыв". - This is "bad" as well. You can't know in advance what the label of the key for input is. Your UI says "press WASD to move", even if in reality, they should be pressing "ZQSD" or "Цфыв". You also no longer can use `KeyCode` for text inputs. In any case, it was a pretty bad API for text input. You should use `ReceivedCharacter` now instead. ### Other changes - Use `web-time` rather than `instant` crate. (https://github.com/rust-windowing/winit/pull/2836) - winit did split `run_return` in `run_onDemand` and `pump_events`, I did the same change in bevy_winit and used `pump_events`. - Removed `return_from_run` from `WinitSettings` as `winit::run` now returns on supported platforms. - I left the example "return_after_run" as I think it's still useful. - This winit change is done partly to allow to create a new window after quitting all windows: https://github.com/emilk/egui/issues/1918 ; this PR doesn't address. - added `width` and `height` properties in the `canvas` from wasm example (https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168) ## Known regressions (important follow ups?) - Provide an API for reacting when a specific key from current layout was released. - possible solutions: use winit::Key from winit::KeyEvent ; mapping between KeyCode and Key ; or . - We don't receive characters through alt+numpad (e.g. alt + 151 = "ù") anymore ; reproduced on winit example "ime". maybe related to https://github.com/rust-windowing/winit/issues/2945 - (windows) Window content doesn't refresh at all when resizing. By reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect we should just fire a `window.request_redraw();` from `AboutToWait`, and handle actual redrawing within `RedrawRequested`. I'm not sure how to move all that code so I'd appreciate it to be a follow up. - (windows) unreleased winit fix for using set_control_flow in AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm not sure what the implications are, but that feels bad 🤔 ## Follow up I'd like to avoid bloating this PR, here are a few follow up tasks worthy of a separate PR, or new issue to track them once this PR is closed, as they would either complicate reviews, or at risk of being controversial: - remove CanvasParentResizePlugin (https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856) - avoid mentionning explicitly winit in docs from bevy_window ? - NamedKey integration on bevy_input: https://github.com/rust-windowing/winit/pull/3143 introduced a new NamedKey variant. I implemented it only on the converters but we'd benefit making the same changes to bevy_input. - Add more info in KeyboardInput https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313 - https://github.com/bevyengine/bevy/pull/9905 added a workaround on a bug allegedly fixed by winit 0.29. We should check if it's still necessary. - update to raw_window_handle 0.6 - blocked by wgpu - Rename `KeyCode` to `PhysicalKeyCode` https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015 - remove `instant` dependency, [replaced by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd need to update to : - fastrand >= 2.0 - [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7 - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0 - Verify license, see [discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800) - we might be missing a short notice or description of changes made - Consider using https://github.com/rust-windowing/cursor-icon directly rather than vendoring it in bevy. - investigate [this unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986) (`winit_window.canvas().unwrap();`) - Use more good things about winit's update - https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428 ## Migration Guide This PR should have one. |
||
Mateusz Wachowiak
|
1f97717a3d
|
Rename Input to ButtonInput (#10859)
# Objective - Resolves #10853 ## Solution - ~~Changed the name of `Input` struct to `PressableInput`.~~ - Changed the name of `Input` struct to `ButtonInput`. ## Migration Guide - Breaking Change: Users need to rename `Input` to `ButtonInput` in their projects. |
||
Aevyrie
|
1918608b02
|
Update default ClearColor to better match Bevy's branding (#10339)
# Objective - Changes the default clear color to match the code block color on Bevy's website. ## Solution - Changed the clear color, updated text in examples to ensure adequate contrast. Inconsistent usage of white text color set to use the default color instead, which is already white. - Additionally, updated the `3d_scene` example to make it look a bit better, and use bevy's branding colors. ![image](https://github.com/bevyengine/bevy/assets/2632925/540a22c0-826c-4c33-89aa-34905e3e313a) |
||
Nico Burns
|
b995827013
|
Have a separate implicit viewport node per root node + make viewport node Display::Grid (#9637)
# Objective Make `bevy_ui` "root" nodes more intuitive to use/style by: - Removing the implicit flexbox styling (such as stretch alignment) that is applied to them, and replacing it with more intuitive CSS Grid styling (notably with stretch alignment disabled in both axes). - Making root nodes layout independently of each other. Instead of there being a single implicit "viewport" node that all root nodes are children of, there is now an implicit "viewport" node *per root node*. And layout of each tree is computed separately. ## Solution - Remove the global implicit viewport node, and instead create an implicit viewport node for each user-specified root node. - Keep track of both the user-specified root nodes and the implicit viewport nodes in a separate `Vec`. - Use the window's size as the `available_space` parameter to `Taffy.compute_layout` rather than setting it on the implicit viewport node (and set the viewport to `height: 100%; width: 100%` to make this "just work"). --- ## Changelog - Bevy UI now lays out root nodes independently of each other in separate layout contexts. - The implicit viewport node (which contains each user-specified root node) is now `Display::Grid` with `align_items` and `justify_items` both set to `Start`. ## Migration Guide - Bevy UI now lays out root nodes independently of each other in separate layout contexts. If you were relying on your root nodes being able to affect each other's layouts, then you may need to wrap them in a single root node. - The implicit viewport node (which contains each user-specified root node) is now `Display::Grid` with `align_items` and `justify_items` both set to `Start`. You may need to add `height: Val::Percent(100.)` to your root nodes if you were previously relying on being implicitly set. |
||
Nico Burns
|
08bf1a6c2e
|
Flatten UI Style properties that use Size + remove Size (#8548)
# Objective - Simplify API and make authoring styles easier See: https://github.com/bevyengine/bevy/issues/8540#issuecomment-1536177102 ## Solution - The `size`, `min_size`, `max_size`, and `gap` properties have been replaced by `width`, `height`, `min_width`, `min_height`, `max_width`, `max_height`, `row_gap`, and `column_gap` properties --- ## Changelog - Flattened `Style` properties that have a `Size` value directly into `Style` ## Migration Guide - The `size`, `min_size`, `max_size`, and `gap` properties have been replaced by the `width`, `height`, `min_width`, `min_height`, `max_width`, `max_height`, `row_gap`, and `column_gap` properties. Use the new properties instead. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
François
|
e0e5f3acd4
|
add a default font (#8445)
# Objective - Have a default font ## Solution - Add a font based on FiraMono containing only ASCII characters and use it as the default font - It is behind a feature `default_font` enabled by default - I also updated examples to use it, but not UI examples to still show how to use a custom font --- ## Changelog * If you display text without using the default handle provided by `TextStyle`, the text will be displayed |
||
Carter Anderson
|
aefe1f0739
|
Schedule-First: the new and improved add_systems (#8079)
Co-authored-by: Mike <mike.hsu@gmail.com> |
||
JoJoJet
|
fd1af7c8b8
|
Replace multiple calls to add_system with add_systems (#8001)
|
||
Aceeri
|
ddfafab971 |
Windows as Entities (#5589)
# Objective Fix https://github.com/bevyengine/bevy/issues/4530 - Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component. - Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open) ## Solution - Move all properties of window descriptor to ~components~ a component. - Replace `WindowId` with `Entity`. - ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~ Check each field individually to see what we need to update, events are still kept for user convenience. --- ## Changelog - `WindowDescriptor` renamed to `Window`. - Width/height consolidated into a `WindowResolution` component. - Requesting maximization/minimization is done on the [`Window::state`] field. - `WindowId` is now `Entity`. ## Migration Guide - Replace `WindowDescriptor` with `Window`. - Change `width` and `height` fields in a `WindowResolution`, either by doing ```rust WindowResolution::new(width, height) // Explicitly // or using From<_> for tuples for convenience (1920., 1080.).into() ``` - Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so: ```rust let window = commands.spawn(Window { ... }).id(); // open window commands.entity(window).despawn(); // close window ``` ## Unresolved - ~How do we tell when a window is minimized by a user?~ ~Currently using the `Resize(0, 0)` as an indicator of minimization.~ No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized. ## Future work - Move `exit_on_close` functionality out from windowing and into app(?) - https://github.com/bevyengine/bevy/issues/5621 - https://github.com/bevyengine/bevy/issues/7099 - https://github.com/bevyengine/bevy/issues/7098 Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
Carter Anderson
|
1bb751cb8d |
Plugins own their settings. Rework PluginGroup trait. (#6336)
# Objective Fixes #5884 #2879 Alternative to #2988 #5885 #2886 "Immutable" Plugin settings are currently represented as normal ECS resources, which are read as part of plugin init. This presents a number of problems: 1. If a user inserts the plugin settings resource after the plugin is initialized, it will be silently ignored (and use the defaults instead) 2. Users can modify the plugin settings resource after the plugin has been initialized. This creates a false sense of control over settings that can no longer be changed. (1) and (2) are especially problematic and confusing for the `WindowDescriptor` resource, but this is a general problem. ## Solution Immutable Plugin settings now live on each Plugin struct (ex: `WindowPlugin`). PluginGroups have been reworked to support overriding plugin values. This also removes the need for the `add_plugins_with` api, as the `add_plugins` api can use the builder pattern directly. Settings that can be used at runtime continue to be represented as ECS resources. Plugins are now configured like this: ```rust app.add_plugin(AssetPlugin { watch_for_changes: true, ..default() }) ``` PluginGroups are now configured like this: ```rust app.add_plugins(DefaultPlugins .set(AssetPlugin { watch_for_changes: true, ..default() }) ) ``` This is an alternative to #2988, which is similar. But I personally prefer this solution for a couple of reasons: * ~~#2988 doesn't solve (1)~~ #2988 does solve (1) and will panic in that case. I was wrong! * This PR directly ties plugin settings to Plugin types in a 1:1 relationship, rather than a loose "setup resource" <-> plugin coupling (where the setup resource is consumed by the first plugin that uses it). * I'm not a huge fan of overloading the ECS resource concept and implementation for something that has very different use cases and constraints. ## Changelog - PluginGroups can now be configured directly using the builder pattern. Individual plugin values can be overridden by using `plugin_group.set(SomePlugin {})`, which enables overriding default plugin values. - `WindowDescriptor` plugin settings have been moved to `WindowPlugin` and `AssetServerSettings` have been moved to `AssetPlugin` - `app.add_plugins_with` has been replaced by using `add_plugins` with the builder pattern. ## Migration Guide The `WindowDescriptor` settings have been moved from a resource to `WindowPlugin::window`: ```rust // Old (Bevy 0.8) app .insert_resource(WindowDescriptor { width: 400.0, ..default() }) .add_plugins(DefaultPlugins) // New (Bevy 0.9) app.add_plugins(DefaultPlugins.set(WindowPlugin { window: WindowDescriptor { width: 400.0, ..default() }, ..default() })) ``` The `AssetServerSettings` resource has been removed in favor of direct `AssetPlugin` configuration: ```rust // Old (Bevy 0.8) app .insert_resource(AssetServerSettings { watch_for_changes: true, ..default() }) .add_plugins(DefaultPlugins) // New (Bevy 0.9) app.add_plugins(DefaultPlugins.set(AssetPlugin { watch_for_changes: true, ..default() })) ``` `add_plugins_with` has been replaced by `add_plugins` in combination with the builder pattern: ```rust // Old (Bevy 0.8) app.add_plugins_with(DefaultPlugins, |group| group.disable::<AssetPlugin>()); // New (Bevy 0.9) app.add_plugins(DefaultPlugins.build().disable::<AssetPlugin>()); ``` |
||
TimJentzsch
|
1738527902 |
Make the default background color of NodeBundle transparent (#6211)
# Objective Closes #6202. The default background color for `NodeBundle` is currently white. However, it's very rare that you actually want a white background color. Instead, you often want a background color specific to the style of your game or a transparent background (e.g. for UI layout nodes). ## Solution `Default` is not derived for `NodeBundle` anymore, but explicitly specified. The default background color is now transparent (`Color::NONE.into()`) as this is the most common use-case, is familiar from the web and makes specifying a layout for your UI less tedious. --- ## Changelog - Changed the default `NodeBundle.background_color` to be transparent (`Color::NONE.into()`). ## Migration Guide If you want a `NodeBundle` with a white background color, you must explicitly specify it: Before: ```rust let node = NodeBundle { ..default() } ``` After: ```rust let node = NodeBundle { background_color: Color::WHITE.into(), ..default() } ``` |
||
Alice Cecile
|
481eec2c92 |
Rename UiColor to BackgroundColor (#6087)
# Objective Fixes #6078. The `UiColor` component is unhelpfully named: it is unclear, ambiguous with border color and ## Solution Rename the `UiColor` component (and associated fields) to `BackgroundColor` / `background_colorl`. ## Migration Guide `UiColor` has been renamed to `BackgroundColor`. This change affects `NodeBundle`, `ButtonBundle` and `ImageBundle`. In addition, the corresponding field on `ExtractedUiNode` has been renamed to `background_color` for consistency. |
||
Carter Anderson
|
01aedc8431 |
Spawn now takes a Bundle (#6054)
# Objective Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands). ## Solution All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input: ```rust // before: commands .spawn() .insert((A, B, C)); world .spawn() .insert((A, B, C); // after commands.spawn((A, B, C)); world.spawn((A, B, C)); ``` All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api. By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`). This improves spawn performance by over 10%: ![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png) To take this measurement, I added a new `world_spawn` benchmark. Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main. **Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).** --- ## Changelog - All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input - All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api - World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior. ## Migration Guide ```rust // Old (0.8): commands .spawn() .insert_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): commands.spawn_bundle((A, B, C)); // New (0.9) commands.spawn((A, B, C)); // Old (0.8): let entity = commands.spawn().id(); // New (0.9) let entity = commands.spawn_empty().id(); // Old (0.8) let entity = world.spawn().id(); // New (0.9) let entity = world.spawn_empty(); ``` |
||
ira
|
9f906fdc8b |
Improve ergonomics and reduce boilerplate around creating text elements. (#5343)
# Objective
Creating UI elements is very boilerplate-y with lots of indentation.
This PR aims to reduce boilerplate around creating text elements.
## Changelog
* Renamed `Text::with_section` to `from_section`.
It no longer takes a `TextAlignment` as argument, as the vast majority of cases left it `Default::default()`.
* Added `Text::from_sections` which creates a `Text` from a list of `TextSections`.
Reduces line-count and reduces indentation by one level.
* Added `Text::with_alignment`.
A builder style method for setting the `TextAlignment` of a `Text`.
* Added `TextSection::new`.
Does not reduce line count, but reduces character count and made it easier to read. No more `.to_string()` calls!
* Added `TextSection::from_style` which creates an empty `TextSection` with a style.
No more empty strings! Reduces indentation.
* Added `TextAlignment::CENTER` and friends.
* Added methods to `TextBundle`. `from_section`, `from_sections`, `with_text_alignment` and `with_style`.
## Note for reviewers.
Because of the nature of these changes I recommend setting diff view to 'split'.
~~Look for the book icon~~ cog in the top-left of the Files changed tab.
Have fun reviewing ❤️
<sup> >:D </sup>
## Migration Guide
`Text::with_section` was renamed to `from_section` and no longer takes a `TextAlignment` as argument.
Use `with_alignment` to set the alignment instead.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
|
||
Carter Anderson
|
f487407e07 |
Camera Driven Rendering (#4745)
This adds "high level camera driven rendering" to Bevy. The goal is to give users more control over what gets rendered (and where) without needing to deal with render logic. This will make scenarios like "render to texture", "multiple windows", "split screen", "2d on 3d", "3d on 2d", "pass layering", and more significantly easier. Here is an [example of a 2d render sandwiched between two 3d renders (each from a different perspective)](https://gist.github.com/cart/4fe56874b2e53bc5594a182fc76f4915): ![image](https://user-images.githubusercontent.com/2694663/168411086-af13dec8-0093-4a84-bdd4-d4362d850ffa.png) Users can now spawn a camera, point it at a RenderTarget (a texture or a window), and it will "just work". Rendering to a second window is as simple as spawning a second camera and assigning it to a specific window id: ```rust // main camera (main window) commands.spawn_bundle(Camera2dBundle::default()); // second camera (other window) commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Window(window_id), ..default() }, ..default() }); ``` Rendering to a texture is as simple as pointing the camera at a texture: ```rust commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle), ..default() }, ..default() }); ``` Cameras now have a "render priority", which controls the order they are drawn in. If you want to use a camera's output texture as a texture in the main pass, just set the priority to a number lower than the main pass camera (which defaults to `0`). ```rust // main pass camera with a default priority of 0 commands.spawn_bundle(Camera2dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { target: RenderTarget::Texture(image_handle.clone()), priority: -1, ..default() }, ..default() }); commands.spawn_bundle(SpriteBundle { texture: image_handle, ..default() }) ``` Priority can also be used to layer to cameras on top of each other for the same RenderTarget. This is what "2d on top of 3d" looks like in the new system: ```rust commands.spawn_bundle(Camera3dBundle::default()); commands.spawn_bundle(Camera2dBundle { camera: Camera { // this will render 2d entities "on top" of the default 3d camera's render priority: 1, ..default() }, ..default() }); ``` There is no longer the concept of a global "active camera". Resources like `ActiveCamera<Camera2d>` and `ActiveCamera<Camera3d>` have been replaced with the camera-specific `Camera::is_active` field. This does put the onus on users to manage which cameras should be active. Cameras are now assigned a single render graph as an "entry point", which is configured on each camera entity using the new `CameraRenderGraph` component. The old `PerspectiveCameraBundle` and `OrthographicCameraBundle` (generic on camera marker components like Camera2d and Camera3d) have been replaced by `Camera3dBundle` and `Camera2dBundle`, which set 3d and 2d default values for the `CameraRenderGraph` and projections. ```rust // old 3d perspective camera commands.spawn_bundle(PerspectiveCameraBundle::default()) // new 3d perspective camera commands.spawn_bundle(Camera3dBundle::default()) ``` ```rust // old 2d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_2d()) // new 2d orthographic camera commands.spawn_bundle(Camera2dBundle::default()) ``` ```rust // old 3d orthographic camera commands.spawn_bundle(OrthographicCameraBundle::new_3d()) // new 3d orthographic camera commands.spawn_bundle(Camera3dBundle { projection: OrthographicProjection { scale: 3.0, scaling_mode: ScalingMode::FixedVertical, ..default() }.into(), ..default() }) ``` Note that `Camera3dBundle` now uses a new `Projection` enum instead of hard coding the projection into the type. There are a number of motivators for this change: the render graph is now a part of the bundle, the way "generic bundles" work in the rust type system prevents nice `..default()` syntax, and changing projections at runtime is much easier with an enum (ex for editor scenarios). I'm open to discussing this choice, but I'm relatively certain we will all come to the same conclusion here. Camera2dBundle and Camera3dBundle are much clearer than being generic on marker components / using non-default constructors. If you want to run a custom render graph on a camera, just set the `CameraRenderGraph` component: ```rust commands.spawn_bundle(Camera3dBundle { camera_render_graph: CameraRenderGraph::new(some_render_graph_name), ..default() }) ``` Just note that if the graph requires data from specific components to work (such as `Camera3d` config, which is provided in the `Camera3dBundle`), make sure the relevant components have been added. Speaking of using components to configure graphs / passes, there are a number of new configuration options: ```rust commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // overrides the default global clear color clear_color: ClearColorConfig::Custom(Color::RED), ..default() }, ..default() }) commands.spawn_bundle(Camera3dBundle { camera_3d: Camera3d { // disables clearing clear_color: ClearColorConfig::None, ..default() }, ..default() }) ``` Expect to see more of the "graph configuration Components on Cameras" pattern in the future. By popular demand, UI no longer requires a dedicated camera. `UiCameraBundle` has been removed. `Camera2dBundle` and `Camera3dBundle` now both default to rendering UI as part of their own render graphs. To disable UI rendering for a camera, disable it using the CameraUi component: ```rust commands .spawn_bundle(Camera3dBundle::default()) .insert(CameraUi { is_enabled: false, ..default() }) ``` ## Other Changes * The separate clear pass has been removed. We should revisit this for things like sky rendering, but I think this PR should "keep it simple" until we're ready to properly support that (for code complexity and performance reasons). We can come up with the right design for a modular clear pass in a followup pr. * I reorganized bevy_core_pipeline into Core2dPlugin and Core3dPlugin (and core_2d / core_3d modules). Everything is pretty much the same as before, just logically separate. I've moved relevant types (like Camera2d, Camera3d, Camera3dBundle, Camera2dBundle) into their relevant modules, which is what motivated this reorganization. * I adapted the `scene_viewer` example (which relied on the ActiveCameras behavior) to the new system. I also refactored bits and pieces to be a bit simpler. * All of the examples have been ported to the new camera approach. `render_to_texture` and `multiple_windows` are now _much_ simpler. I removed `two_passes` because it is less relevant with the new approach. If someone wants to add a new "layered custom pass with CameraRenderGraph" example, that might fill a similar niche. But I don't feel much pressure to add that in this pr. * Cameras now have `target_logical_size` and `target_physical_size` fields, which makes finding the size of a camera's render target _much_ simpler. As a result, the `Assets<Image>` and `Windows` parameters were removed from `Camera::world_to_screen`, making that operation much more ergonomic. * Render order ambiguities between cameras with the same target and the same priority now produce a warning. This accomplishes two goals: 1. Now that there is no "global" active camera, by default spawning two cameras will result in two renders (one covering the other). This would be a silent performance killer that would be hard to detect after the fact. By detecting ambiguities, we can provide a helpful warning when this occurs. 2. Render order ambiguities could result in unexpected / unpredictable render results. Resolving them makes sense. ## Follow Up Work * Per-Camera viewports, which will make it possible to render to a smaller area inside of a RenderTarget (great for something like splitscreen) * Camera-specific MSAA config (should use the same "overriding" pattern used for ClearColor) * Graph Based Camera Ordering: priorities are simple, but they make complicated ordering constraints harder to express. We should consider adopting a "graph based" camera ordering model with "before" and "after" relationships to other cameras (or build it "on top" of the priority system). * Consider allowing graphs to run subgraphs from any nest level (aka a global namespace for graphs). Right now the 2d and 3d graphs each need their own UI subgraph, which feels "fine" in the short term. But being able to share subgraphs between other subgraphs seems valuable. * Consider splitting `bevy_core_pipeline` into `bevy_core_2d` and `bevy_core_3d` packages. Theres a shared "clear color" dependency here, which would need a new home. |
||
Mark Schmale
|
1ba7429371 |
Doc/module style doc blocks for examples (#4438)
# Objective Provide a starting point for #3951, or a partial solution. Providing a few comment blocks to discuss, and hopefully find better one in the process. ## Solution Since I am pretty new to pretty much anything in this context, I figured I'd just start with a draft for some file level doc blocks. For some of them I found more relevant details (or at least things I considered interessting), for some others there is less. ## Changelog - Moved some existing comments from main() functions in the 2d examples to the file header level - Wrote some more comment blocks for most other 2d examples TODO: - [x] 2d/sprite_sheet, wasnt able to come up with something good yet - [x] all other example groups... Also: Please let me know if the commit style is okay, or to verbose. I could certainly squash these things, or add more details if needed. I also hope its okay to raise this PR this early, with just a few files changed. Took me long enough and I dont wanted to let it go to waste because I lost motivation to do the whole thing. Additionally I am somewhat uncertain over the style and contents of the commets. So let me know what you thing please. |
||
KDecay
|
989fb8a78d |
Move Rect to bevy_ui and rename it to UiRect (#4276)
# Objective - Closes #335. - Related #4285. - Part of the splitting process of #3503. ## Solution - Move `Rect` to `bevy_ui` and rename it to `UiRect`. ## Reasons - `Rect` is only used in `bevy_ui` and therefore calling it `UiRect` makes the intent clearer. - We have two types that are called `Rect` currently and it's missleading (see `bevy_sprite::Rect` and #335). - Discussion in #3503. ## Changelog ### Changed - The `Rect` type got moved from `bevy_math` to `bevy_ui` and renamed to `UiRect`. ## Migration Guide - The `Rect` type got renamed to `UiRect`. To migrate you just have to change every occurrence of `Rect` to `UiRect`. Co-authored-by: KDecay <KDecayMusic@protonmail.com> |
||
Aevyrie
|
b3aff9a7b1 |
Add docs and common helper functions to Windows (#4107)
# Objective - Improve documentation. - Provide helper functions for common uses of `Windows` relating to getting the primary `Window`. - Reduce repeated `Window` code. # Solution - Adds infallible `primary()` and `primary_mut()` functions with standard error text. This replaces the commonly used `get_primary().unwrap()` seen throughout bevy which has inconsistent or nonexistent error messages. - Adds `scale_factor(WindowId)` to replace repeated code blocks throughout. # Considerations - The added functions can panic if the primary window does not exist. - It is very uncommon for the primary window to not exist, as seen by the regular use of `get_primary().unwrap()`. Most users will have a single window and will need to reference the primary window in their code multiple times. - The panic provides a consistent error message to make this class of error easy to spot from the panic text. - This follows the established standard of short names for infallible-but-unlikely-to-panic functions in bevy. - Removes line noise for common usage of `Windows`. |
||
Carter Anderson
|
b6a647cc01 |
default() shorthand (#4071)
Adds a `default()` shorthand for `Default::default()` ... because life is too short to constantly type `Default::default()`. ```rust use bevy::prelude::*; #[derive(Default)] struct Foo { bar: usize, baz: usize, } // Normally you would do this: let foo = Foo { bar: 10, ..Default::default() }; // But now you can do this: let foo = Foo { bar: 10, ..default() }; ``` The examples have been adapted to use `..default()`. I've left internal crates as-is for now because they don't pull in the bevy prelude, and the ergonomics of each case should be considered individually. |
||
Carter Anderson
|
ffecb05a0a |
Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release. The examples are all ported over and operational with a few exceptions: * I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure. * Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example. * Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority. |
||
François
|
b724a0f586 |
Down with the system! (#2496)
# Objective - Remove all the `.system()` possible. - Check for remaining missing cases. ## Solution - Remove all `.system()`, fix compile errors - 32 calls to `.system()` remains, mostly internals, the few others should be removed after #2446 |
||
bjorn3
|
6d6bc2a8b4 |
Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet. You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away. Co-Authored-By: Carter Anderson <mcanders1@gmail.com> |
||
Carter Anderson
|
81b53d15d4 |
Make Commands and World apis consistent (#1703)
Resolves #1253 #1562 This makes the Commands apis consistent with World apis. This moves to a "type state" pattern (like World) where the "current entity" is stored in an `EntityCommands` builder. In general this tends to cuts down on indentation and line count. It comes at the cost of needing to type `commands` more and adding more semicolons to terminate expressions. I also added `spawn_bundle` to Commands because this is a common enough operation that I think its worth providing a shorthand. |
||
Carter Anderson
|
3a2a68852c |
Bevy ECS V2 (#1525)
# Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png) ### Simpler Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png) ### Fragment Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png) ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes ![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png) ### Schedule (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png) ### Add Remove Component (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png) ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed ![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png) ### Get Component Looks up a single component value a large number of times ![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png) |
||
Alice Cecile
|
6f5a4d9deb
|
Rename add_resource to insert_resource (#1356)
* Renamed add_resource to insert_resource * Changed usage of add_resource to insert_resource * Renamed add_thread_local_resource |
||
Jasen Borisov
|
57f9ac18d7
|
OrthographicProjection scaling mode + camera bundle refactoring (#400)
* add normalized orthographic projection * custom scale for ScaledOrthographicProjection * allow choosing base axis for ScaledOrthographicProjection * cargo fmt * add general (scaled) orthographic camera bundle FIXME: does the same "far" trick from Camera2DBundle make any sense here? * fixes * camera bundles: rename and new ortho constructors * unify orthographic projections * give PerspectiveCameraBundle constructors like those of OrthographicCameraBundle * update examples with new camera bundle syntax * rename CameraUiBundle to UiCameraBundle * update examples * ScalingMode::None * remove extra blank lines * sane default bounds for orthographic projection * fix alien_cake_addict example * reorder ScalingMode enum variants * ios example fix |
||
tigregalis
|
40b5bbd028
|
Rich text (#1245)
Rich text support (different fonts / styles within the same text section) |
||
TheRawMeatball
|
3cb2e22e89
|
Added use_dpi setting to WindowDescriptor (#1131)
Added scale_factor_override |