Commit graph

189 commits

Author SHA1 Message Date
hshrimp
8316d89699
rename QuerySingle to Single (#15507)
# Objective

- Fixes #15504
2024-09-29 03:26:28 +00:00
MiniaczQ
c1486654d7
QuerySingle family of system params (#15476)
# Objective

Add the following system params:
- `QuerySingle<D, F>` - Valid if only one matching entity exists,
- `Option<QuerySingle<D, F>>` - Valid if zero or one matching entity
exists.

As @chescock pointed out, we don't need `Mut` variants.

Fixes: #15264

## Solution

Implement the type and both variants of system params.
Also implement `ReadOnlySystemParam` for readonly queries.

Added a new ECS example `fallible_params` which showcases `SingleQuery`
usage.
In the future we might want to add `NonEmptyQuery`,
`NonEmptyEventReader` and `Res` to it (or maybe just stop at mentioning
it).

## Testing

Tested with the example.
There is a lot of warning spam so we might want to implement #15391.
2024-09-28 19:35:27 +00:00
Zachary Harrold
d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
hshrimp
35d10866b8
Rename init_component & friends (#15454)
# Objective

- Fixes #15451 

## Migration Guide

- `World::init_component` has been renamed to `register_component`.
- `World::init_component_with_descriptor` has been renamed to
`register_component_with_descriptor`.
- `World::init_bundle` has been renamed to `register_bundle`.
- `Components::init_component` has been renamed to `register_component`.
- `Components::init_component_with_descriptor` has been renamed to
`register_component_with_descriptor`.
- `Components::init_resource` has been renamed to `register_resource`.
- `Components::init_non_send` had been renamed to `register_non_send`.
2024-09-26 22:47:28 +00:00
Clar Fon
efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See #15375 for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00
Christian Hughes
c7ec456e50
Support systems that take references as input (#15184)
# Objective

- Fixes #14924
- Closes #9584

## Solution

- We introduce a new trait, `SystemInput`, that serves as a type
function from the `'static` form of the input, to its lifetime'd
version, similarly to `SystemParam` or `WorldQuery`.
- System functions now take the lifetime'd wrapped version,
`SystemInput::Param<'_>`, which prevents the issue presented in #14924
(i.e. `InRef<T>`).
- Functions for running systems now take the lifetime'd unwrapped
version, `SystemInput::Inner<'_>` (i.e. `&T`).
- Due to the above change, system piping had to be re-implemented as a
standalone type, rather than `CombinatorSystem` as it was previously.
- Removes the `Trigger<'static, E, B>` transmute in observer runner
code.

## Testing

- All current tests pass.
- Added additional tests and doc-tests.

---

## Showcase

```rust
let mut world = World::new();

let mut value = 2;

// Currently possible:
fn square(In(input): In<usize>) -> usize {
    input * input
}
value = world.run_system_once_with(value, square);

// Now possible:
fn square_mut(InMut(input): InMut<usize>) {
    *input *= *input;
}
world.run_system_once_with(&mut value, square_mut);

// Or:
fn square_ref(InRef(input): InRef<usize>) -> usize {
    *input * *input
}
value = world.run_system_once_with(&value, square_ref);
```

## Migration Guide

- All current explicit usages of the following types must be changed in
the way specified:
    - `SystemId<I, O>` to `SystemId<In<I>, O>`
    - `System<In = T>` to `System<In = In<T>>`
    - `IntoSystem<I, O, M>` to `IntoSystem<In<I>, O, M>`
    - `Condition<M, T>` to `Condition<M, In<T>>`
- `In<Trigger<E, B>>` is no longer a valid input parameter type. Use
`Trigger<E, B>` directly, instead.

---------

Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
2024-09-23 17:37:29 +00:00
Adam
9bda913e36
Remove redundent information and optimize dynamic allocations in Table (#12929)
# Objective

- fix #12853
- Make `Table::allocate` faster

## Solution
The PR consists of multiple steps:

1) For the component data: create a new data-structure that's similar to
`BlobVec` but doesn't store `len` & `capacity` inside of it: "BlobArray"
(name suggestions welcome)
2) For the `Tick` data: create a new data-structure that's similar to
`ThinSlicePtr` but supports dynamic reallocation: "ThinArrayPtr" (name
suggestions welcome)
3) Create a new data-structure that's very similar to `Column` that
doesn't store `len` & `capacity` inside of it: "ThinColumn"
4) Adjust the `Table` implementation to use `ThinColumn` instead of
`Column`

The result is that only one set of `len` & `capacity` is stored in
`Table`, in `Table::entities`

### Notes Regarding Performance
Apart from shaving off some excess memory in `Table`, the changes have
also brought noteworthy performance improvements:
The previous implementation relied on `Vec::reserve` &
`BlobVec::reserve`, but that redundantly repeated the same if statement
(`capacity` == `len`). Now that check could be made at the `Table` level
because the capacity and length of all the columns are synchronized;
saving N branches per allocation. The result is a respectable
performance improvement per every `Table::reserve` (and subsequently
`Table::allocate`) call.

I'm hesitant to give exact numbers because I don't have a lot of
experience in profiling and benchmarking, but these are the results I
got so far:

*`add_remove_big/table` benchmark after the implementation:*


![after_add_remove_big_table](https://github.com/bevyengine/bevy/assets/46227443/b667da29-1212-4020-8bb0-ec0f15bb5f8a)

*`add_remove_big/table` benchmark in main branch (measured in comparison
to the implementation):*


![main_add_remove_big_table](https://github.com/bevyengine/bevy/assets/46227443/41abb92f-3112-4e01-b935-99696eb2fe58)

*`add_remove_very_big/table` benchmark after the implementation:*


![after_add_remove_very_big](https://github.com/bevyengine/bevy/assets/46227443/f268a155-295b-4f55-ab02-f8a9dcc64fc2)

*`add_remove_very_big/table` benchmark in main branch (measured in
comparison to the implementation):*


![main_add_remove_very_big](https://github.com/bevyengine/bevy/assets/46227443/78b4e3a6-b255-47c9-baee-1a24c25b9aea)

cc @james7132 to verify

---

## Changelog

- New data-structure that's similar to `BlobVec` but doesn't store `len`
& `capacity` inside of it: `BlobArray`
- New data-structure that's similar to `ThinSlicePtr` but supports
dynamic allocation:`ThinArrayPtr`
- New data-structure that's very similar to `Column` that doesn't store
`len` & `capacity` inside of it: `ThinColumn`
- Adjust the `Table` implementation to use `ThinColumn` instead of
`Column`
- New benchmark: `add_remove_very_big` to benchmark the performance of
spawning a lot of entities with a lot of components (15) each

## Migration Guide

`Table` now uses `ThinColumn` instead of `Column`. That means that
methods that previously returned `Column`, will now return `ThinColumn`
instead.

`ThinColumn` has a much more limited and low-level API, but you can
still achieve the same things in `ThinColumn` as you did in `Column`.
For example, instead of calling `Column::get_added_tick`, you'd call
`ThinColumn::get_added_ticks_slice` and index it to get the specific
added tick.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-09-16 22:52:05 +00:00
BD103
6ec6a55645
Unify crate-level preludes (#15080)
# Objective

- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!

## Solution

Format all preludes based on the following rules:

1. All preludes should have brief documentation in the format of:
   > The _name_ prelude.
   >
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)

## Testing

- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠

---------

Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-09-08 17:10:57 +00:00
Zachary Harrold
bc13161416
Migrated NonZero* to NonZero<*> (#14978)
# Objective

- Fixes #14974

## Solution

- Replace all* instances of `NonZero*` with `NonZero<*>`

## Testing

- CI passed locally.

---

## Notes

Within the `bevy_reflect` implementations for `std` types,
`impl_reflect_value!()` will continue to use the type aliases instead,
as it inappropriately parses the concrete type parameter as a generic
argument. If the `ZeroablePrimitive` trait was stable, or the macro
could be modified to accept a finite list of types, then we could fully
migrate.
2024-08-30 02:37:47 +00:00
Carter Anderson
9cdb915809
Required Components (#14791)
## Introduction

This is the first step in my [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437).

Fixes https://github.com/bevyengine/bevy/issues/7272 #14800.

Bevy's current Bundles as the "unit of construction" hamstring the UI
user experience and have been a pain point in the Bevy ecosystem
generally when composing scenes:

* They are an additional _object defining_ concept, which must be
learned separately from components. Notably, Bundles _are not present at
runtime_, which is confusing and limiting.
* They can completely erase the _defining component_ during Bundle init.
For example, `ButtonBundle { style: Style::default(), ..default() }`
_makes no mention_ of the `Button` component symbol, which is what makes
the Entity a "button"!
* They are not capable of representing "dependency inheritance" without
completely non-viable / ergonomically crushing nested bundles. This
limitation is especially painful in UI scenarios, but it applies to
everything across the board.
* They introduce a bunch of additional nesting when defining scenes,
making them ugly to look at
* They introduce component name "stutter": `SomeBundle { component_name:
ComponentName::new() }`
* They require copious sprinklings of `..default()` when spawning them
in Rust code, due to the additional layer of nesting

**Required Components** solve this by allowing you to define which
components a given component needs, and how to construct those
components when they aren't explicitly provided.

This is what a `ButtonBundle` looks like with Bundles (the current
approach):

```rust
#[derive(Component, Default)]
struct Button;

#[derive(Bundle, Default)]
struct ButtonBundle {
    pub button: Button,
    pub node: Node,
    pub style: Style,
    pub interaction: Interaction,
    pub focus_policy: FocusPolicy,
    pub border_color: BorderColor,
    pub border_radius: BorderRadius,
    pub image: UiImage,
    pub transform: Transform,
    pub global_transform: GlobalTransform,
    pub visibility: Visibility,
    pub inherited_visibility: InheritedVisibility,
    pub view_visibility: ViewVisibility,
    pub z_index: ZIndex,
}

commands.spawn(ButtonBundle {
    style: Style {
        width: Val::Px(100.0),
        height: Val::Px(50.0),
        ..default()
    },
    focus_policy: FocusPolicy::Block,
    ..default()
})
```

And this is what it looks like with Required Components:

```rust
#[derive(Component)]
#[require(Node, UiImage)]
struct Button;

commands.spawn((
    Button,
    Style { 
        width: Val::Px(100.0),
        height: Val::Px(50.0),
        ..default()
    },
    FocusPolicy::Block,
));
```

With Required Components, we mention only the most relevant components.
Every component required by `Node` (ex: `Style`, `FocusPolicy`, etc) is
automatically brought in!

### Efficiency

1. At insertion/spawn time, Required Components (including recursive
required components) are initialized and inserted _as if they were
manually inserted alongside the given components_. This means that this
is maximally efficient: there are no archetype or table moves.
2. Required components are only initialized and inserted if they were
not manually provided by the developer. For the code example in the
previous section, because `Style` and `FocusPolicy` are inserted
manually, they _will not_ be initialized and inserted as part of the
required components system. Efficient!
3. The "missing required components _and_ constructors needed for an
insertion" are cached in the "archetype graph edge", meaning they aren't
computed per-insertion. When a component is inserted, the "missing
required components" list is iterated (and that graph edge (AddBundle)
is actually already looked up for us during insertion, because we need
that for "normal" insert logic too).

### IDE Integration

The `#[require(SomeComponent)]` macro has been written in such a way
that Rust Analyzer can provide type-inspection-on-hover and `F12` /
go-to-definition for required components.

### Custom Constructors

The `require` syntax expects a `Default` constructor by default, but it
can be overridden with a custom constructor:

```rust
#[derive(Component)]
#[require(
    Node,
    Style(button_style),
    UiImage
)]
struct Button;

fn button_style() -> Style {
    Style {
        width: Val::Px(100.0),
        ..default()
    }
}
```

### Multiple Inheritance

You may have noticed by now that this behaves a bit like "multiple
inheritance". One of the problems that this presents is that it is
possible to have duplicate requires for a given type at different levels
of the inheritance tree:

```rust
#[derive(Component)
struct X(usize);

#[derive(Component)]
#[require(X(x1))
struct Y;

fn x1() -> X {
    X(1)
}

#[derive(Component)]
#[require(
    Y,
    X(x2),
)]
struct Z;

fn x2() -> X {
    X(2)
}

// What version of X is inserted for Z?
commands.spawn(Z);
```

This is allowed (and encouraged), although this doesn't appear to occur
much in practice. First: only one version of `X` is initialized and
inserted for `Z`. In the case above, I think we can all probably agree
that it makes the most sense to use the `x2` constructor for `X`,
because `Y`'s `x1` constructor exists "beneath" `Z` in the inheritance
hierarchy; `Z`'s constructor is "more specific".

The algorithm is simple and predictable:

1. Use all of the constructors (including default constructors) directly
defined in the spawned component's require list
2. In the order the requires are defined in `#[require()]`, recursively
visit the require list of each of the components in the list (this is a
depth Depth First Search). When a constructor is found, it will only be
used if one has not already been found.

From a user perspective, just think about this as the following:

1. Specifying a required component constructor for `Foo` directly on a
spawned component `Bar` will result in that constructor being used (and
overriding existing constructors lower in the inheritance tree). This is
the classic "inheritance override" behavior people expect.
2. For cases where "multiple inheritance" results in constructor
clashes, Components should be listed in "importance order". List a
component earlier in the requirement list to initialize its inheritance
tree earlier.

Required Components _does_ generally result in a model where component
values are decoupled from each other at construction time. Notably, some
existing Bundle patterns use bundle constructors to initialize multiple
components with shared state. I think (in general) moving away from this
is necessary:

1. It allows Required Components (and the Scene system more generally)
to operate according to simple rules
2. The "do arbitrary init value sharing in Bundle constructors" approach
_already_ causes data consistency problems, and those problems would be
exacerbated in the context of a Scene/UI system. For cases where shared
state is truly necessary, I think we are better served by observers /
hooks.
3. If a situation _truly_ needs shared state constructors (which should
be rare / generally discouraged), Bundles are still there if they are
needed.

## Next Steps

* **Require Construct-ed Components**: I have already implemented this
(as defined in the [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437). However
I've removed `Construct` support from this PR, as that has not landed
yet. Adding this back in requires relatively minimal changes to the
current impl, and can be done as part of a future Construct pr.
* **Port Built-in Bundles to Required Components**: This isn't something
we should do right away. It will require rethinking our public
interfaces, which IMO should be done holistically after the rest of Next
Generation Scene / UI lands. I think we should merge this PR first and
let people experiment _inside their own code with their own Components_
while we wait for the rest of the new scene system to land.
* **_Consider_ Automatic Required Component Removal**: We should
evaluate _if_ automatic Required Component removal should be done. Ex:
if all components that explicitly require a component are removed,
automatically remove that component. This issue has been explicitly
deferred in this PR, as I consider the insertion behavior to be
desirable on its own (and viable on its own). I am also doubtful that we
can find a design that has behavior we actually want. Aka: can we
_really_ distinguish between a component that is "only there because it
was automatically inserted" and "a component that was necessary / should
be kept". See my [discussion response
here](https://github.com/bevyengine/bevy/discussions/14437#discussioncomment-10268668)
for more details.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
2024-08-27 20:22:23 +00:00
Ben Frankel
6da2305e49
Add Command and co. to prelude (#14751)
# Objective

Make it easier to write and work with custom `Command`s and
`EntityCommand`s. See
https://discord.com/channels/691052431525675048/692572690833473578/1273030340235100214
for (brief) context.

## Solution

Re-export `Command`, `EntityCommand`, and `EntityCommands` in the
`bevy_ecs::prelude`, where `Commands` is already re-exported.
2024-08-15 13:33:32 +00:00
Tau Gärtli
aab1f8e435
Use #[doc(fake_variadic)] to improve docs readability (#14703)
# Objective

- Fixes #14697

## Solution

This PR modifies the existing `all_tuples!` macro to optionally accept a
`#[doc(fake_variadic)]` attribute in its input. If the attribute is
present, each invocation of the impl macro gets the correct attributes
(i.e. the first impl receives `#[doc(fake_variadic)]` while the other
impls are hidden using `#[doc(hidden)]`.
Impls for the empty tuple (unit type) are left untouched (that's what
the [standard
library](https://doc.rust-lang.org/std/cmp/trait.PartialEq.html#impl-PartialEq-for-())
and
[serde](https://docs.rs/serde/latest/serde/trait.Serialize.html#impl-Serialize-for-())
do).

To work around https://github.com/rust-lang/cargo/issues/8811 and to get
impls on re-exports to correctly show up as variadic, `--cfg docsrs_dep`
is passed when building the docs for the toplevel `bevy` crate.

`#[doc(fake_variadic)]` only works on tuples and fn pointers, so impls
for structs like `AnyOf<(T1, T2, ..., Tn)>` are unchanged.

## Testing

I built the docs locally using `RUSTDOCFLAGS='--cfg docsrs'
RUSTFLAGS='--cfg docsrs_dep' cargo +nightly doc --no-deps --workspace`
and checked the documentation page of a trait both in its original crate
and the re-exported version in `bevy`.
The description should correctly mention for how many tuple items the
trait is implemented.

I added `rustc-args` for docs.rs to the `bevy` crate, I hope there
aren't any other notable crates that re-export `#[doc(fake_variadic)]`
traits.

---

## Showcase

`bevy_ecs::query::QueryData`:
<img width="1015" alt="Screenshot 2024-08-12 at 16 41 28"
src="https://github.com/user-attachments/assets/d40136ed-6731-475f-91a0-9df255cd24e3">

`bevy::ecs::query::QueryData` (re-export):
<img width="1005" alt="Screenshot 2024-08-12 at 16 42 57"
src="https://github.com/user-attachments/assets/71d44cf0-0ab0-48b0-9a51-5ce332594e12">

## Original Description

<details>

Resolves #14697

Submitting as a draft for now, very WIP.

Unfortunately, the docs don't show the variadics nicely when looking at
reexported items.
For example:

`bevy_ecs::bundle::Bundle` correctly shows the variadic impl:

![image](https://github.com/user-attachments/assets/90bf8af1-1d1f-4714-9143-cdd3d0199998)

while `bevy::ecs::bundle::Bundle` (the reexport) shows all the impls
(not good):

![image](https://github.com/user-attachments/assets/439c428e-f712-465b-bec2-481f7bf5870b)

Built using `RUSTDOCFLAGS='--cfg docsrs' cargo +nightly doc --workspace
--no-deps` (`--no-deps` because of wgpu-core).

Maybe I missed something or this is a limitation in the *totally not
private* `#[doc(fake_variadic)]` thingy. In any case I desperately need
some sleep now :))

</details>
2024-08-12 18:54:33 +00:00
Chris Russell
d4ec80d5d2
Support more kinds of system params in buildable systems. (#14050)
# Objective

Support more kinds of system params in buildable systems, such as a
`ParamSet` or `Vec` containing buildable params or tuples of buildable
params.

## Solution

Replace the `BuildableSystemParam` trait with `SystemParamBuilder` to
make it easier to compose builders. Provide implementations for existing
buildable params, plus tuples, `ParamSet`, and `Vec`.

## Examples

```rust
// ParamSet of tuple: 
let system = (ParamSetBuilder((
    QueryParamBuilder::new(|builder| { builder.with::<B>(); }),
    QueryParamBuilder::new(|builder| { builder.with::<C>(); }),
)),)
    .build_state(&mut world)
    .build_system(|mut params: ParamSet<(Query<&mut A>, Query<&mut A>)>| {
        params.p0().iter().count() + params.p1().iter().count()
    });
	
// ParamSet of Vec:
let system = (ParamSetBuilder(vec![
    QueryParamBuilder::new_box(|builder| { builder.with::<B>(); }),
    QueryParamBuilder::new_box(|builder| { builder.with::<C>(); }),
]),)
    .build_state(&mut world)
    .build_system(|mut params: ParamSet<Vec<Query<&mut A>>>| {
        let mut count = 0;
        params.for_each(|mut query| count += query.iter_mut().count());
        count
    });
```

## Migration Guide

The API for `SystemBuilder` has changed. Instead of constructing a
builder with a world and then adding params, you first create a tuple of
param builders and then supply the world.

```rust
// Before
let system = SystemBuilder::<()>::new(&mut world)
    .local::<u64>()
    .builder::<Local<u64>>(|x| *x = 10)
    .builder::<Query<&A>>(|builder| { builder.with::<B>(); })
    .build(system);

// After
let system = (
    ParamBuilder,
    LocalBuilder(10),
    QueryParamBuilder::new(|builder| { builder.with::<B>(); }),
)
    .build_state(&mut world)
    .build_system(system);
```

## Possible Future Work

Here are a few possible follow-up changes. I coded them up to prove that
this API can support them, but they aren't necessary for this PR.

* chescock/bevy#1
* chescock/bevy#2
* chescock/bevy#3
2024-08-12 15:45:35 +00:00
Periwink
e85c072372
Fix soudness issue with Conflicts involving read_all and write_all (#14579)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/14575
- There is a soundness issue because we use `conflicts()` to check for
system ambiguities + soundness issues. However since the current
conflicts is a `Vec<T>`, we cannot express conflicts where there is no
specific `ComponentId` at fault. For example `q1: Query<EntityMut>, q2:
Query<EntityMut>`
There was a TODO to handle the `write_all` case but it was never
resolved


## Solution

- Introduce an `AccessConflict` enum that is either a list of specific
ids that are conflicting or `All` if all component ids are conflicting

## Testing

- Introduced a new unit test to check for the `EntityMut` case

## Migration guide

The `get_conflicts` method of `Access` now returns an `AccessConflict`
enum instead of simply a `Vec` of `ComponentId`s that are causing the
access conflict. This can be useful in cases where there are no
particular `ComponentId`s conflicting, but instead **all** of them are;
for example `fn system(q1: Query<EntityMut>, q2: Query<EntityRef>)`
2024-08-06 10:55:31 +00:00
Periwink
3a664b052d
Separate component and resource access (#14561)
# Objective

- Fixes https://github.com/bevyengine/bevy/issues/13139
- Fixes https://github.com/bevyengine/bevy/issues/7255
- Separates component from resource access so that we can correctly
handles edge cases like the issue above
- Inspired from https://github.com/bevyengine/bevy/pull/14472

## Solution

- Update access to have `component` fields and `resource` fields

## Testing

- Added some unit tests
2024-08-06 01:19:39 +00:00
Gino Valente
df61117850
bevy_reflect: Function registry (#14098)
# Objective

#13152 added support for reflecting functions. Now, we need a way to
register those functions such that they may be accessed anywhere within
the ECS.

## Solution

Added a `FunctionRegistry` type similar to `TypeRegistry`.

This allows a function to be registered and retrieved by name.

```rust
fn foo() -> i32 {
    123
}

let mut registry = FunctionRegistry::default();
registry.register("my_function", foo);

let function = registry.get_mut("my_function").unwrap();
let value = function.call(ArgList::new()).unwrap().unwrap_owned();
assert_eq!(value.downcast_ref::<i32>(), Some(&123));
```

Additionally, I added an `AppFunctionRegistry` resource which wraps a
`FunctionRegistryArc`. Functions can be registered into this resource
using `App::register_function` or by getting a mutable reference to the
resource itself.

### Limitations

#### `Send + Sync`

In order to get this registry to work across threads, it needs to be
`Send + Sync`. This means that `DynamicFunction` needs to be `Send +
Sync`, which means that its internal function also needs to be `Send +
Sync`.

In most cases, this won't be an issue because standard Rust functions
(the type most likely to be registered) are always `Send + Sync`.
Additionally, closures tend to be `Send + Sync` as well, granted they
don't capture any `!Send` or `!Sync` variables.

This PR adds this `Send + Sync` requirement, but as mentioned above, it
hopefully shouldn't be too big of an issue.

#### Closures

Unfortunately, closures can't be registered yet. This will likely be
explored and added in a followup PR.

### Future Work

Besides addressing the limitations listed above, another thing we could
look into is improving the lookup of registered functions. One aspect is
in the performance of hashing strings. The other is in the developer
experience of having to call `std::any::type_name_of_val` to get the
name of their function (assuming they didn't give it a custom name).

## Testing

You can run the tests locally with:

```
cargo test --package bevy_reflect
```

---

## Changelog

- Added `FunctionRegistry`
- Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`)
- Added `FunctionRegistryArc`
- Added `FunctionRegistrationError`
- Added `reflect_functions` feature to `bevy_ecs` and `bevy_app`
- `FunctionInfo` is no longer `Default`
- `DynamicFunction` now requires its wrapped function be `Send + Sync`

## Internal Migration Guide

> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.

`DynamicFunction` (both those created manually and those created with
`IntoFunction`), now require `Send + Sync`. All standard Rust functions
should meet that requirement. Closures, on the other hand, may not if
they capture any `!Send` or `!Sync` variables from its environment.
2024-08-06 01:09:48 +00:00
Periwink
ec4cf024f8
Add a ComponentIndex and update QueryState creation/update to use it (#13460)
# Objective

To implement relations we will need to add a `ComponentIndex`, which is
a map from a Component to the list of archetypes that contain this
component.
One of the reasons is that with fragmenting relations the number of
archetypes will explode, so it will become inefficient to create and
update the query caches by iterating through the list of all archetypes.

In this PR, we introduce the `ComponentIndex`, and we update the
`QueryState` to make use of it:
- if a query has at least 1 required component (i.e. something other
than `()`, `Entity` or `Option<>`, etc.): for each of the required
components we find the list of archetypes that contain it (using the
ComponentIndex). Then, we select the smallest list among these. This
gives a small subset of archetypes to iterate through compared with
iterating through all new archetypes
- if it doesn't, then we keep using the current approach of iterating
through all new archetypes


# Implementation
- This breaks query iteration order, in the sense that we are not
guaranteed anymore to return results in the order in which the
archetypes were created. I think this should be fine because this wasn't
an explicit bevy guarantee so users should not be relying on this. I
updated a bunch of unit tests that were failing because of this.

- I had an issue with the borrow checker because iterating the list of
potential archetypes requires access to `&state.component_access`, which
was conflicting with the calls to
```
  if state.new_archetype_internal(archetype) {
      state.update_archetype_component_access(archetype, access);
  }
```
which need a mutable access to the state.

The solution I chose was to introduce a `QueryStateView` which is a
temporary view into the `QueryState` which enables a "split-borrows"
kind of approach. It is described in detail in this blog post:
https://smallcultfollowing.com/babysteps/blog/2018/11/01/after-nll-interprocedural-conflicts/

# Test

The unit tests pass.

Benchmark results:
```
❯ critcmp main pr
group                                  main                                   pr
-----                                  ----                                   --
iter_fragmented/base                   1.00   342.2±25.45ns        ? ?/sec    1.02   347.5±16.24ns        ? ?/sec
iter_fragmented/foreach                1.04   165.4±11.29ns        ? ?/sec    1.00    159.5±4.27ns        ? ?/sec
iter_fragmented/foreach_wide           1.03      3.3±0.04µs        ? ?/sec    1.00      3.2±0.06µs        ? ?/sec
iter_fragmented/wide                   1.03      3.1±0.06µs        ? ?/sec    1.00      3.0±0.08µs        ? ?/sec
iter_fragmented_sparse/base            1.00      6.5±0.14ns        ? ?/sec    1.02      6.6±0.08ns        ? ?/sec
iter_fragmented_sparse/foreach         1.00      6.3±0.08ns        ? ?/sec    1.04      6.6±0.08ns        ? ?/sec
iter_fragmented_sparse/foreach_wide    1.00     43.8±0.15ns        ? ?/sec    1.02     44.6±0.53ns        ? ?/sec
iter_fragmented_sparse/wide            1.00     29.8±0.44ns        ? ?/sec    1.00     29.8±0.26ns        ? ?/sec
iter_simple/base                       1.00      8.2±0.10µs        ? ?/sec    1.00      8.2±0.09µs        ? ?/sec
iter_simple/foreach                    1.00      3.8±0.02µs        ? ?/sec    1.02      3.9±0.03µs        ? ?/sec
iter_simple/foreach_sparse_set         1.00     19.0±0.26µs        ? ?/sec    1.01     19.3±0.16µs        ? ?/sec
iter_simple/foreach_wide               1.00     17.8±0.24µs        ? ?/sec    1.00     17.9±0.31µs        ? ?/sec
iter_simple/foreach_wide_sparse_set    1.06     95.6±6.23µs        ? ?/sec    1.00     90.6±0.59µs        ? ?/sec
iter_simple/sparse_set                 1.00     19.3±1.63µs        ? ?/sec    1.01     19.5±0.29µs        ? ?/sec
iter_simple/system                     1.00      8.1±0.10µs        ? ?/sec    1.00      8.1±0.09µs        ? ?/sec
iter_simple/wide                       1.05     37.7±2.53µs        ? ?/sec    1.00     35.8±0.57µs        ? ?/sec
iter_simple/wide_sparse_set            1.00     95.7±1.62µs        ? ?/sec    1.00     95.9±0.76µs        ? ?/sec
par_iter_simple/with_0_fragment        1.04     35.0±2.51µs        ? ?/sec    1.00     33.7±0.49µs        ? ?/sec
par_iter_simple/with_1000_fragment     1.00     50.4±2.52µs        ? ?/sec    1.01     51.0±3.84µs        ? ?/sec
par_iter_simple/with_100_fragment      1.02     40.3±2.23µs        ? ?/sec    1.00     39.5±1.32µs        ? ?/sec
par_iter_simple/with_10_fragment       1.14     38.8±7.79µs        ? ?/sec    1.00     34.0±0.78µs        ? ?/sec
```
2024-08-06 00:57:15 +00:00
BD103
399219a2c7
Fix rust beta lints (#14537)
# Objective

- Fixes #14517.

## Solution

- Replace two instances of `map()` with `inspect()`.
- `#[allow(dead_code)]` on `Bundle` derive macro tests.

## Testing

You need to install the beta toolchain, since these lints are not stable
yet.

```bash
cargo +beta clippy --workspace
cargo +beta test --workspace
```
2024-07-31 01:27:26 +00:00
Pixelstorm
0f7c548a4a
Component Lifecycle Hook & Observer Trigger for replaced values (#14212)
# Objective

Fixes #14202

## Solution

Add `on_replaced` component hook and `OnReplaced` observer trigger

## Testing

- Did you test these changes? If so, how?
  - Updated & added unit tests

---

## Changelog

- Added new `on_replaced` component hook and `OnReplaced` observer
trigger for performing cleanup on component values when they are
overwritten with `.insert()`
2024-07-15 15:24:15 +00:00
Miles Silberling-Cook
ed2b8e0f35
Minimal Bubbling Observers (#13991)
# Objective

Add basic bubbling to observers, modeled off `bevy_eventlistener`.

## Solution

- Introduce a new `Traversal` trait for components which point to other
entities.
- Provide a default `TraverseNone: Traversal` component which cannot be
constructed.
- Implement `Traversal` for `Parent`.
- The `Event` trait now has an associated `Traversal` which defaults to
`TraverseNone`.
- Added a field `bubbling: &mut bool` to `Trigger` which can be used to
instruct the runner to bubble the event to the entity specified by the
event's traversal type.
- Added an associated constant `SHOULD_BUBBLE` to `Event` which
configures the default bubbling state.
- Added logic to wire this all up correctly.

Introducing the new associated information directly on `Event` (instead
of a new `BubblingEvent` trait) lets us dispatch both bubbling and
non-bubbling events through the same api.

## Testing

I have added several unit tests to cover the common bugs I identified
during development. Running the unit tests should be enough to validate
correctness. The changes effect unsafe portions of the code, but should
not change any of the safety assertions.

## Changelog

Observers can now bubble up the entity hierarchy! To create a bubbling
event, change your `Derive(Event)` to something like the following:

```rust
#[derive(Component)]
struct MyEvent;

impl Event for MyEvent {
    type Traverse = Parent; // This event will propagate up from child to parent.
    const AUTO_PROPAGATE: bool = true; // This event will propagate by default.
}
```

You can dispatch a bubbling event using the normal
`world.trigger_targets(MyEvent, entity)`.

Halting an event mid-bubble can be done using
`trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will
not propagate by default, but you can enable it using
`trigger.propagate(true)`.

If there are multiple observers attached to a target, they will all be
triggered by bubbling. They all share a bubbling state, which can be
accessed mutably using `trigger.propagation_mut()` (`trigger.propagate`
is just sugar for this).

You can choose to implement `Traversal` for your own types, if you want
to bubble along a different structure than provided by `bevy_hierarchy`.
Implementers must be careful never to produce loops, because this will
cause bevy to hang.

## Migration Guide
+ Manual implementations of `Event` should add associated type `Traverse
= TraverseNone` and associated constant `AUTO_PROPAGATE = false`;
+ `Trigger::new` has new field `propagation: &mut Propagation` which
provides the bubbling state.
+ `ObserverRunner` now takes the same `&mut Propagation` as a final
parameter.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-07-15 13:39:41 +00:00
Bob Gardner
ec1aa48fc6
Created an EventMutator for when you want to mutate an event before reading (#13818)
# Objective

- Often in games you will want to create chains of systems that modify
some event. For example, a chain of damage systems that handle a
DamageEvent and modify the underlying value before the health system
finally consumes the event. Right now this requires either:

* Using a component added to the entity
* Consuming and refiring events

Neither is ideal when really all we want to do is read the events value,
modify it, and write it back.

## Solution

- Create an EventMutator class similar to EventReader but with ResMut<T>
and iterators that return &mut so that events can be mutated.

## Testing

- I replicated all the existing tests for EventReader to make sure
behavior was the same (I believe) and added a number of tests specific
to testing that 1) events can actually be mutated, and that 2)
EventReader sees changes from EventMutator for events it hasn't already
seen.

## Migration Guide

Users currently using `ManualEventReader` should use `EventCursor`
instead. `ManualEventReader` will be removed in Bevy 0.16. Additionally,
`Events::get_reader` has been replaced by `Events::get_cursor`.

Users currently directly accessing the `Events` resource for mutation
should move to `EventMutator` if possible.

---------

Co-authored-by: poopy <gonesbird@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-07-08 14:53:06 +00:00
James O'Brien
eb3c81374a
Generalised ECS reactivity with Observers (#10839)
# Objective

- Provide an expressive way to register dynamic behavior in response to
ECS changes that is consistent with existing bevy types and traits as to
provide a smooth user experience.
- Provide a mechanism for immediate changes in response to events during
command application in order to facilitate improved query caching on the
path to relations.

## Solution

- A new fundamental ECS construct, the `Observer`; inspired by flec's
observers but adapted to better fit bevy's access patterns and rust's
type system.

---

## Examples
There are 3 main ways to register observers. The first is a "component
observer" that looks like this:
```rust
world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| {
    let transform = query.get(trigger.entity()).unwrap();
});
```
The above code will spawn a new entity representing the observer that
will run it's callback whenever the `Transform` component is added to an
entity. This is a system-like function that supports dependency
injection for all the standard bevy types: `Query`, `Res`, `Commands`
etc. It also has a `Trigger` parameter that provides information about
the trigger such as the target entity, and the event being triggered.
Importantly these systems run during command application which is key
for their future use to keep ECS internals up to date. There are similar
events for `OnInsert` and `OnRemove`, and this will be expanded with
things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs.

Another way to register an observer is an "entity observer" that looks
like this:
```rust
world.entity_mut(entity).observe(|trigger: Trigger<Resize>| {
    // ...
});
```
Entity observers run whenever an event of their type is triggered
targeting that specific entity. This type of observer will de-spawn
itself if the entity (or entities) it is observing is ever de-spawned so
as to not leave dangling observers.

Entity observers can also be spawned from deferred contexts such as
other observers, systems, or hooks using commands:
```rust
commands.entity(entity).observe(|trigger: Trigger<Resize>| {
    // ...
});
```

Observers are not limited to in built event types, they can be used with
any type that implements `Event` (which has been extended to implement
Component). This means events can also carry data:

```rust
#[derive(Event)]
struct Resize { x: u32, y: u32 }

commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| {
    let event = trigger.event();
    // ...
});

// Will trigger the observer when commands are applied.
commands.trigger_targets(Resize { x: 10, y: 10 }, entity);
```

You can also trigger events that target more than one entity at a time:

```rust
commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]);
```

Additionally, Observers don't _need_ entity targets:

```rust
app.observe(|trigger: Trigger<Quit>| {
})

commands.trigger(Quit);
```

In these cases, `trigger.entity()` will be a placeholder.

Observers are actually just normal entities with an `ObserverState` and
`Observer` component! The `observe()` functions above are just shorthand
for:

```rust
world.spawn(Observer::new(|trigger: Trigger<Resize>| {});
```

This will spawn the `Observer` system and use an `on_add` hook to add
the `ObserverState` component.

Dynamic components and trigger types are also fully supported allowing
for runtime defined trigger types.

## Possible Follow-ups
1. Deprecate `RemovedComponents`, observers should fulfill all use cases
while being more flexible and performant.
2. Queries as entities: Swap queries to entities and begin using
observers listening to archetype creation triggers to keep their caches
in sync, this allows unification of `ObserverState` and `QueryState` as
well as unlocking several API improvements for `Query` and the
management of `QueryState`.
3. Trigger bubbling: For some UI use cases in particular users are
likely to want some form of bubbling for entity observers, this is
trivial to implement naively but ideally this includes an acceleration
structure to cache hierarchy traversals.
4. All kinds of other in-built trigger types.
5. Optimization; in order to not bloat the complexity of the PR I have
kept the implementation straightforward, there are several areas where
performance can be improved. The focus for this PR is to get the
behavior implemented and not incur a performance cost for users who
don't use observers.

I am leaving each of these to follow up PR's in order to keep each of
them reviewable as this already includes significant changes.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
James O'Brien
182fe3292e
Implement a SystemBuilder for building SystemParams (#13123)
# Objective

- Implement a general purpose mechanism for building `SystemParam`.
- Unblock the usage of dynamic queries in regular systems.

## Solution

- Implement a `SystemBuilder` type.

## Examples
Here are some simple test cases for the builder:
```rust
fn local_system(local: Local<u64>) -> u64 {
    *local
}

fn query_system(query: Query<()>) -> usize {
    query.iter().count()
}

fn multi_param_system(a: Local<u64>, b: Local<u64>) -> u64 {
    *a + *b + 1
}

#[test]
fn local_builder() {
    let mut world = World::new();

    let system = SystemBuilder::<()>::new(&mut world)
        .builder::<Local<u64>>(|x| *x = 10)
        .build(local_system);

    let result = world.run_system_once(system);
    assert_eq!(result, 10);
}

#[test]
fn query_builder() {
    let mut world = World::new();

    world.spawn(A);
    world.spawn_empty();

    let system = SystemBuilder::<()>::new(&mut world)
        .builder::<Query<()>>(|query| {
            query.with::<A>();
        })
        .build(query_system);

    let result = world.run_system_once(system);
    assert_eq!(result, 1);
}

#[test]
fn multi_param_builder() {
    let mut world = World::new();

    world.spawn(A);
    world.spawn_empty();

    let system = SystemBuilder::<()>::new(&mut world)
        .param::<Local<u64>>()
        .param::<Local<u64>>()
        .build(multi_param_system);

    let result = world.run_system_once(system);
    assert_eq!(result, 1);
}
```
This will be expanded as this PR is iterated.
2024-05-22 00:58:37 +00:00
Lee-Orr
42ba9dfaea
Separate state crate (#13216)
# Objective

Extracts the state mechanisms into a new crate called "bevy_state".

This comes with a few goals:

- state wasn't really an inherent machinery of the ecs system, and so
keeping it within bevy_ecs felt forced
- by mixing it in with bevy_ecs, the maintainability of our more robust
state system was significantly compromised

moving state into a new crate makes it easier to encapsulate as it's own
feature, and easier to read and understand since it's no longer a
single, massive file.

## Solution

move the state-related elements from bevy_ecs to a new crate

## Testing

- Did you test these changes? If so, how? all the automated tests
migrated and passed, ran the pre-existing examples without changes to
validate.

---

## Migration Guide

Since bevy_state is now gated behind the `bevy_state` feature, projects
that use state but don't use the `default-features` will need to add
that feature flag.

Since it is no longer part of bevy_ecs, projects that use bevy_ecs
directly will need to manually pull in `bevy_state`, trigger the
StateTransition schedule, and handle any of the elements that bevy_app
currently sets up.

---------

Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
2024-05-09 18:06:05 +00:00
Lee-Orr
b8832dc862
Computed State & Sub States (#11426)
## Summary/Description
This PR extends states to allow support for a wider variety of state
types and patterns, by providing 3 distinct types of state:
- Standard [`States`] can only be changed by manually setting the
[`NextState<S>`] resource. These states are the baseline on which the
other state types are built, and can be used on their own for many
simple patterns. See the [state
example](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/state.rs)
for a simple use case - these are the states that existed so far in
Bevy.
- [`SubStates`] are children of other states - they can be changed
manually using [`NextState<S>`], but are removed from the [`World`] if
the source states aren't in the right state. See the [sub_states
example](https://github.com/lee-orr/bevy/blob/derived_state/examples/ecs/sub_states.rs)
for a simple use case based on the derive macro, or read the trait docs
for more complex scenarios.
- [`ComputedStates`] are fully derived from other states - they provide
a [`compute`](ComputedStates::compute) method that takes in the source
states and returns their derived value. They are particularly useful for
situations where a simplified view of the source states is necessary -
such as having an `InAMenu` computed state derived from a source state
that defines multiple distinct menus. See the [computed state
example](https://github.com/lee-orr/bevy/blob/derived_state/examples/ecs/computed_states.rscomputed_states.rs)
to see a sampling of uses for these states.

# Objective

This PR is another attempt at allowing Bevy to better handle complex
state objects in a manner that doesn't rely on strict equality. While my
previous attempts (https://github.com/bevyengine/bevy/pull/10088 and
https://github.com/bevyengine/bevy/pull/9957) relied on complex matching
capacities at the point of adding a system to application, this one
instead relies on deterministically deriving simple states from more
complex ones.

As a result, it does not require any special macros, nor does it change
any other interactions with the state system once you define and add
your derived state. It also maintains a degree of distinction between
`State` and just normal application state - your derivations have to end
up being discreet pre-determined values, meaning there is less of a
risk/temptation to place a significant amount of logic and data within a
given state.

### Addition - Sub States
closes #9942 
After some conversation with Maintainers & SMEs, a significant concern
was that people might attempt to use this feature as if it were
sub-states, and find themselves unable to use it appropriately. Since
`ComputedState` is mainly a state matching feature, while `SubStates`
are more of a state mutation related feature - but one that is easy to
add with the help of the machinery introduced by `ComputedState`, it was
added here as well. The relevant discussion is here:
https://discord.com/channels/691052431525675048/1200556329803186316

## Solution
closes #11358 

The solution is to create a new type of state - one implementing
`ComputedStates` - which is deterministically tied to one or more other
states. Implementors write a function to transform the source states
into the computed state, and it gets triggered whenever one of the
source states changes.

In addition, we added the `FreelyMutableState` trait , which is
implemented as part of the derive macro for `States`. This allows us to
limit use of `NextState<S>` to states that are actually mutable,
preventing mis-use of `ComputedStates`.

---

## Changelog

- Added `ComputedStates` trait
- Added `FreelyMutableState` trait
- Converted `NextState` resource to an Enum, with `Unchanged` and
`Pending`
- Added `App::add_computed_state::<S: ComputedStates>()`, to allow for
easily adding derived states to an App.
- Moved the `StateTransition` schedule label from `bevy_app` to
`bevy_ecs` - but maintained the export in `bevy_app` for continuity.
- Modified the process for updating states. Instead of just having an
`apply_state_transition` system that can be added anywhere, we now have
a multi-stage process that has to run within the `StateTransition`
label. First, all the state changes are calculated - manual transitions
rely on `apply_state_transition`, while computed transitions run their
computation process before both call `internal_apply_state_transition`
to apply the transition, send out the transition event, trigger
dependent states, and record which exit/transition/enter schedules need
to occur. Once all the states have been updated, the transition
schedules are called - first the exit schedules, then transition
schedules and finally enter schedules.
- Added `SubStates` trait
- Adjusted `apply_state_transition` to be a no-op if the `State<S>`
resource doesn't exist

## Migration Guide

If the user accessed the NextState resource's value directly or created
them from scratch they will need to adjust to use the new enum variants:
- if they created a `NextState(Some(S))` - they should now use
`NextState::Pending(S)`
- if they created a `NextState(None)` -they should now use
`NextState::Unchanged`
- if they matched on the `NextState` value, they would need to make the
adjustments above

If the user manually utilized `apply_state_transition`, they should
instead use systems that trigger the `StateTransition` schedule.

---
## Future Work
There is still some future potential work in the area, but I wanted to
keep these potential features and changes separate to keep the scope
here contained, and keep the core of it easy to understand and use.
However, I do want to note some of these things, both as inspiration to
others and an illustration of what this PR could unlock.

- `NextState::Remove` - Now that the `State` related mechanisms all
utilize options (#11417), it's fairly easy to add support for explicit
state removal. And while `ComputedStates` can add and remove themselves,
right now `FreelyMutableState`s can't be removed from within the state
system. While it existed originally in this PR, it is a different
question with a separate scope and usability concerns - so having it as
it's own future PR seems like the best approach. This feature currently
lives in a separate branch in my fork, and the differences between it
and this PR can be seen here: https://github.com/lee-orr/bevy/pull/5

- `NextState::ReEnter` - this would allow you to trigger exit & entry
systems for the current state type. We can potentially also add a
`NextState::ReEnterRecirsive` to also re-trigger any states that depend
on the current one.

- More mechanisms for `State` updates - This PR would finally make
states that aren't a set of exclusive Enums useful, and with that comes
the question of setting state more effectively. Right now, to update a
state you either need to fully create the new state, or include the
`Res<Option<State<S>>>` resource in your system, clone the state, mutate
it, and then use `NextState.set(my_mutated_state)` to make it the
pending next state. There are a few other potential methods that could
be implemented in future PRs:
- Inverse Compute States - these would essentially be compute states
that have an additional (manually defined) function that can be used to
nudge the source states so that they result in the computed states
having a given value. For example, you could use set the `IsPaused`
state, and it would attempt to pause or unpause the game by modifying
the `AppState` as needed.
- Closure-based state modification - this would involve adding a
`NextState.modify(f: impl Fn(Option<S> -> Option<S>)` method, and then
you can pass in closures or function pointers to adjust the state as
needed.
- Message-based state modification - this would involve either creating
states that can respond to specific messages, similar to Elm or Redux.
These could either use the `NextState` mechanism or the Event mechanism.

- ~`SubStates` - which are essentially a hybrid of computed and manual
states. In the simplest (and most likely) version, they would work by
having a computed element that determines whether the state should
exist, and if it should has the capacity to add a new version in, but
then any changes to it's content would be freely mutated.~ this feature
is now part of this PR. See above.

- Lastly, since states are getting more complex there might be value in
moving them out of `bevy_ecs` and into their own crate, or at least out
of the `schedule` module into a `states` module. #11087

As mentioned, all these future work elements are TBD and are explicitly
not part of this PR - I just wanted to provide them as potential
explorations for the future.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Marcel Champagne <voiceofmarcel@gmail.com>
Co-authored-by: MiniaczQ <xnetroidpl@gmail.com>
2024-05-02 19:36:23 +00:00
Jonathan
e9be54b0ea
Parallel event reader (#12554)
# Objective

Allow parallel iteration over events, resolve #10766

## Solution

- Add `EventParIter` which works similarly to `QueryParIter`,
implementing a `for_each{_with_id}` operator.
I chose to not mirror `EventIteratorWithId` and instead implement both
operations on a single struct.
- Reuse `BatchingStrategy` from `QueryParIter`

## Changelog

- `EventReader` now supports parallel event iteration using
`par_read().for_each(|event| ...)`.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
2024-04-22 16:37:42 +00:00
Martín Maita
0c78bf3bb0
Moves intern and label modules into bevy_ecs (#12772)
# Objective

- Attempts to solve two items from
https://github.com/bevyengine/bevy/issues/11478.

## Solution

- Moved `intern` module from `bevy_utils` into `bevy_ecs` crate and
updated all relevant imports.
- Moved `label` module from `bevy_utils` into `bevy_ecs` crate and
updated all relevant imports.

---

## Migration Guide

- Replace `bevy_utils::define_label` imports with
`bevy_ecs::define_label` imports.
- Replace `bevy_utils:🏷️:DynEq` imports with
`bevy_ecs:🏷️:DynEq` imports.
- Replace `bevy_utils:🏷️:DynHash` imports with
`bevy_ecs:🏷️:DynHash` imports.
- Replace `bevy_utils::intern::Interned` imports with
`bevy_ecs::intern::Interned` imports.
- Replace `bevy_utils::intern::Internable` imports with
`bevy_ecs::intern::Internable` imports.
- Replace `bevy_utils::intern::Interner` imports with
`bevy_ecs::intern::Interner` imports.

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-04-08 15:34:11 +00:00
James Liu
56bcbb0975
Forbid unsafe in most crates in the engine (#12684)
# Objective
Resolves #3824. `unsafe` code should be the exception, not the norm in
Rust. It's obviously needed for various use cases as it's interfacing
with platforms and essentially running the borrow checker at runtime in
the ECS, but the touted benefits of Bevy is that we are able to heavily
leverage Rust's safety, and we should be holding ourselves accountable
to that by minimizing our unsafe footprint.

## Solution
Deny `unsafe_code` workspace wide. Add explicit exceptions for the
following crates, and forbid it in almost all of the others.

* bevy_ecs - Obvious given how much unsafe is needed to achieve
performant results
* bevy_ptr - Works with raw pointers, even more low level than bevy_ecs.
 * bevy_render - due to needing to integrate with wgpu
 * bevy_window - due to needing to integrate with raw_window_handle
* bevy_utils - Several unsafe utilities used by bevy_ecs. Ideally moved
into bevy_ecs instead of made publicly usable.
 * bevy_reflect - Required for the unsafe type casting it's doing.
 * bevy_transform - for the parallel transform propagation
 * bevy_gizmos  - For the SystemParam impls it has.
* bevy_assets - To support reflection. Might not be required, not 100%
sure yet.
* bevy_mikktspace - due to being a conversion from a C library. Pending
safe rewrite.
* bevy_dynamic_plugin - Inherently unsafe due to the dynamic loading
nature.

Several uses of unsafe were rewritten, as they did not need to be using
them:

* bevy_text - a case of `Option::unchecked` could be rewritten as a
normal for loop and match instead of an iterator.
* bevy_color - the Pod/Zeroable implementations were replaceable with
bytemuck's derive macros.
2024-03-27 03:30:08 +00:00
James Liu
f096ad4155
Set the logo and favicon for all of Bevy's published crates (#12696)
# Objective
Currently the built docs only shows the logo and favicon for the top
level `bevy` crate. This makes views like
https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to
the project at first glance.

## Solution
Reproduce the docs attributes for every crate that Bevy publishes.

Ideally this would be done with some workspace level Cargo.toml control,
but AFAICT, such support does not exist.
2024-03-25 18:52:50 +00:00
Brezak
69e78bd03e
Fix Ci failing over dead code in tests (#12623)
# Objective

Fix Pr CI failing over dead code in tests and main branch CI failing
over a missing semicolon. Fixes #12620.

## Solution

Add dead_code annotations and a semicolon.
2024-03-21 18:08:47 +00:00
Al M
52e3f2007b
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective

Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:

- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html

~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.

## Solution

Add "all-features = true" to docs.rs metadata for crates that use
features.

## Changelog

### Changed

- Unified features documented on docs.rs between main crate and
sub-crates
2024-03-08 20:03:09 +00:00
James Liu
512b7463a3
Disentangle bevy_utils/bevy_core's reexported dependencies (#12313)
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.

## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.

---

## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.

## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.

bevy_core' reexports of bytemuck's types has been removed. 

Add them as dependencies in your own crate instead.
2024-03-07 02:30:15 +00:00
James O'Brien
94ff123d7f
Component Lifecycle Hooks and a Deferred World (#10756)
# Objective

- Provide a reliable and performant mechanism to allows users to keep
components synchronized with external sources: closing/opening sockets,
updating indexes, debugging etc.
- Implement a generic mechanism to provide mutable access to the world
without allowing structural changes; this will not only be used here but
is a foundational piece for observers, which are key for a performant
implementation of relations.

## Solution

- Implement a new type `DeferredWorld` (naming is not important,
`StaticWorld` is also suitable) that wraps a world pointer and prevents
user code from making any structural changes to the ECS; spawning
entities, creating components, initializing resources etc.
- Add component lifecycle hooks `on_add`, `on_insert` and `on_remove`
that can be assigned callbacks in user code.

---

## Changelog
- Add new `DeferredWorld` type.
- Add new world methods: `register_component::<T>` and
`register_component_with_descriptor`. These differ from `init_component`
in that they provide mutable access to the created `ComponentInfo` but
will panic if the component is already in any archetypes. These
restrictions serve two purposes:
1. Prevent users from defining hooks for components that may already
have associated hooks provided in another plugin. (a use case better
served by observers)
2. Ensure that when an `Archetype` is created it gets the appropriate
flags to early-out when triggering hooks.
- Add methods to `ComponentInfo`: `on_add`, `on_insert` and `on_remove`
to be used to register hooks of the form `fn(DeferredWorld, Entity,
ComponentId)`
- Modify `BundleInserter`, `BundleSpawner` and `EntityWorldMut` to
trigger component hooks when appropriate.
- Add bit flags to `Archetype` indicating whether or not any contained
components have each type of hook, this can be expanded for other flags
as needed.
- Add `component_hooks` example to illustrate usage. Try it out! It's
fun to mash keys.

## Safety
The changes to component insertion, removal and deletion involve a large
amount of unsafe code and it's fair for that to raise some concern. I
have attempted to document it as clearly as possible and have confirmed
that all the hooks examples are accepted by `cargo miri` as not causing
any undefined behavior. The largest issue is in ensuring there are no
outstanding references when passing a `DeferredWorld` to the hooks which
requires some use of raw pointers (as was already happening to some
degree in those places) and I have taken some time to ensure that is the
case but feel free to let me know if I've missed anything.

## Performance
These changes come with a small but measurable performance cost of
between 1-5% on `add_remove` benchmarks and between 1-3% on `insert`
benchmarks. One consideration to be made is the existence of the current
`RemovedComponents` which is on average more costly than the addition of
`on_remove` hooks due to the early-out, however hooks doesn't completely
remove the need for `RemovedComponents` as there is a chance you want to
respond to the removal of a component that already has an `on_remove`
hook defined in another plugin, so I have not removed it here. I do
intend to deprecate it with the introduction of observers in a follow up
PR.

## Discussion Questions
- Currently `DeferredWorld` implements `Deref` to `&World` which makes
sense conceptually, however it does cause some issues with rust-analyzer
providing autocomplete for `&mut World` references which is annoying.
There are alternative implementations that may address this but involve
more code churn so I have attempted them here. The other alternative is
to not implement `Deref` at all but that leads to a large amount of API
duplication.
- `DeferredWorld`, `StaticWorld`, something else?
- In adding support for hooks to `EntityWorldMut` I encountered some
unfortunate difficulties with my desired API. If commands are flushed
after each call i.e. `world.spawn() // flush commands .insert(A) //
flush commands` the entity may be despawned while `EntityWorldMut` still
exists which is invalid. An alternative was then to add
`self.world.flush_commands()` to the drop implementation for
`EntityWorldMut` but that runs into other problems for implementing
functions like `into_unsafe_entity_cell`. For now I have implemented a
`.flush()` which will flush the commands and consume `EntityWorldMut` or
users can manually run `world.flush_commands()` after using
`EntityWorldMut`.
- In order to allowing querying on a deferred world we need
implementations of `WorldQuery` to not break our guarantees of no
structural changes through their `UnsafeWorldCell`. All our
implementations do this, but there isn't currently any safety
documentation specifying what is or isn't allowed for an implementation,
just for the caller, (they also shouldn't be aliasing components they
didn't specify access for etc.) is that something we should start doing?
(see 10752)

Please check out the example `component_hooks` or the tests in
`bundle.rs` for usage examples. I will continue to expand this
description as I go.

See #10839 for a more ergonomic API built on top of this one that isn't
subject to the same restrictions and supports `SystemParam` dependency
injection.
2024-03-01 14:59:22 +00:00
SpecificProtagonist
21aa5fe2b6
Use TypeIdMap whenever possible (#11684)
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`

- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~

## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`

## Migration Guide

- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-02-03 23:47:04 +00:00
Tristan Guichaoua
694c06f3d0
Inverse missing_docs logic (#11676)
# Objective

Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.

## Solution

Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
2024-02-03 21:40:55 +00:00
Tristan Guichaoua
b0f5d4df58
Enable the unsafe_op_in_unsafe_fn lint (#11591)
# Objective

- Partial fix of #11590

## Solution

- Enable `unsafe_op_in_unsafe_fn` at workspace level
- Fix the lint for most of the crates
2024-01-28 23:18:11 +00:00
Charles Bournhonesque
9223201d54
Make the MapEntities trait generic over Mappers, and add a simpler EntityMapper (#11428)
# Objective

My motivation are to resolve some of the issues I describe in this
[PR](https://github.com/bevyengine/bevy/issues/11415):
- not being able to easily mapping entities because the current
EntityMapper requires `&mut World` access
- not being able to create my own `EntityMapper` because some components
(`Parent` or `Children`) do not provide any public way of modifying the
inner entities

This PR makes the `MapEntities` trait accept a generic type that
implements `Mapper` to perform the mapping.
This means we don't need to use `EntityMapper` to perform our mapping,
we can use any type that implements `Mapper`. Basically this change is
very similar to what `serde` does. Instead of specifying directly how to
map entities for a given type, we have 2 distinct steps:
- the user implements `MapEntities` to define how the type will be
traversed and which `Entity`s will be mapped
  - the `Mapper` defines how the mapping is actually done
This is similar to the distinction between `Serialize` (`MapEntities`)
and `Serializer` (`Mapper`).

This allows networking library to map entities without having to use the
existing `EntityMapper` (which requires `&mut World` access and the use
of `world_scope()`)


## Migration Guide
- The existing `EntityMapper` (notably used to replicate `Scenes` across
different `World`s) has been renamed to `SceneEntityMapper`

- The `MapEntities` trait now works with a generic `EntityMapper`
instead of the specific struct `EntityMapper`.
Calls to `fn map_entities(&mut self, entity_mapper: &mut EntityMapper)`
need to be updated to
`fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M)`

- The new trait `EntityMapper` has been added to the prelude

---------

Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com>
2024-01-28 19:51:46 +00:00
Giacomo Stevanato
eff96e20a0
Add ReflectFromWorld and replace the FromWorld requirement on ReflectComponent and ReflectBundle with FromReflect (#9623)
# Objective

- `FromType<T>` for `ReflectComponent` and `ReflectBundle` currently
require `T: FromWorld` for two reasons:
    - they include a `from_world` method;
- they create dummy `T`s using `FromWorld` and then `apply` a `&dyn
Reflect` to it to simulate `FromReflect`.
- However `FromWorld`/`Default` may be difficult/weird/impractical to
implement, while `FromReflect` is easier and also more natural for the
job.
- See also
https://discord.com/channels/691052431525675048/1146022009554337792

## Solution

- Split `from_world` from `ReflectComponent` and `ReflectBundle` into
its own `ReflectFromWorld` struct.
- Replace the requirement on `FromWorld` in `ReflectComponent` and
`ReflectBundle` with `FromReflect`

---

## Changelog

- `ReflectComponent` and `ReflectBundle` no longer offer a `from_world`
method.
- `ReflectComponent` and `ReflectBundle`'s `FromType<T>` implementation
no longer requires `T: FromWorld`, but now requires `FromReflect`.
- `ReflectComponent::insert`, `ReflectComponent::apply_or_insert` and
`ReflectComponent::copy` now take an extra `&TypeRegistry` parameter.
- There is now a new `ReflectFromWorld` struct.

## Migration Guide

- Existing uses of `ReflectComponent::from_world` and
`ReflectBundle::from_world` will have to be changed to
`ReflectFromWorld::from_world`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` will need to
also implement/derive `FromReflect`.
- Users of `#[reflect(Component)]` and `#[reflect(Bundle)]` may now want
to also add `FromWorld` to the list of reflected traits in case their
`FromReflect` implementation may fail.
- Users of `ReflectComponent` will now need to pass a `&TypeRegistry` to
its `insert`, `apply_or_insert` and `copy` methods.
2024-01-19 16:08:57 +00:00
James O'Brien
ea42d14344
Dynamic queries and builder API (#9774)
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.

## Prior Art
 - #6390 
 - #8308 
- #10037

## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.

### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();

let mut query_a = QueryBuilder::<Entity>::new(&mut world)
    .with::<A>()
    .without::<C>()
    .build();
            
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
    .data::<&B>()
    .build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
    .with_id(component_id_a)
// How do I access the data of this component?
    .ref_id(component_id_b)
    .build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
    .with::<B>()
    .transmute::<&A>()
    .build();

query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
    // ...
}

fn system(query: Query<(&A, &B)>) {
    let lens = query.transmute_lens::<&A>();
    let q = lens.query();
    function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
    .ref_id(component_id_a)
    .with(component_id_b)
    .build();

let entity_ref = query.single(&world);

// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.

Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
    comp, c   Create new components
    spawn, s  Spawn entities
    query, q  Query for entities
Enter a command with no parameters for usage.

> c A, B, C, Data 4  
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3

> s A, B, Data 1
Entity spawned with id: 0v0

> s A, C, Data 0
Entity spawned with id: 1v0

> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]

> q B, &mut Data                                                                                     
0v0: Data: [2, 1, 1, 1]

> q B || C, &Data 
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
 - Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.

## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.

---------

Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
2024-01-16 19:16:49 +00:00
SpecificProtagonist
cd12e7c836
Make TypeId::hash more robust in case of upstream rustc changes (#11334)
Based on discussion after #11268 was merged:
Instead of panicking should the impl of `TypeId::hash` change
significantly, have a fallback and detect this in a test.
2024-01-14 04:07:14 +00:00
SpecificProtagonist
69760c78cf
Skip rehashing TypeIds (#11268)
# Objective

`TypeId` contains a high-quality hash. Whenever a lookup based on a
`TypeId` is performed (e.g. to insert/remove components), the hash is
run through a second hash function. This is unnecessary.

## Solution

Skip re-hashing `TypeId`s.

In my
[testing](https://gist.github.com/SpecificProtagonist/4b49ad74c6b82b0aedd3b4ea35121be8),
this improves lookup performance consistently by 10%-15% (of course, the
lookup is only a small part of e.g. a bundle insertion).
2024-01-13 13:26:43 +00:00
Gonçalo Rica Pais da Silva
e6a324a11a
Unified identifer for entities & relations (#9797)
# Objective

The purpose of this PR is to begin putting together a unified identifier
structure that can be used by entities and later components (as
entities) as well as relationship pairs for relations, to enable all of
these to be able to use the same storages. For the moment, to keep
things small and focused, only `Entity` is being changed to make use of
the new `Identifier` type, keeping `Entity`'s API and
serialization/deserialization the same. Further changes are for
follow-up PRs.

## Solution

`Identifier` is a wrapper around `u64` split into two `u32` segments
with the idea of being generalised to not impose restrictions on
variants. That is for `Entity` to do. Instead, it is a general API for
taking bits to then merge and map into a `u64` integer. It exposes
low/high methods to return the two value portions as `u32` integers,
with then the MSB masked for usage as a type flag, enabling entity kind
discrimination and future activation/deactivation semantics.

The layout in this PR for `Identifier` is described as below, going from
MSB -> LSB.

```
|F| High value                    | Low value                      |
|_|_______________________________|________________________________|
|1| 31                            | 32                             |

F = Bit Flags
```

The high component in this implementation has only 31 bits, but that
still leaves 2^31 or 2,147,483,648 values that can be stored still, more
than enough for any generation/relation kinds/etc usage. The low part is
a full 32-bit index. The flags allow for 1 bit to be used for
entity/pair discrimination, as these have different usages for the
low/high portions of the `Identifier`. More bits can be reserved for
more variants or activation/deactivation purposes, but this currently
has no use in bevy.

More bits could be reserved for future features at the cost of bits for
the high component, so how much to reserve is up for discussion. Also,
naming of the struct and methods are also subject to further
bikeshedding and feedback.

Also, because IDs can have different variants, I wonder if
`Entity::from_bits` needs to return a `Result` instead of potentially
panicking on receiving an invalid ID.

PR is provided as an early WIP to obtain feedback and notes on whether
this approach is viable.

---

## Changelog

### Added

New `Identifier` struct for unifying IDs.

### Changed

`Entity` changed to use new `Identifier`/`IdentifierMask` as the
underlying ID logic.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: vero <email@atlasdostal.com>
2024-01-13 01:09:32 +00:00
Natalie Bonnibel Baker
b257fffef8
Change Entity::generation from u32 to NonZeroU32 for niche optimization (#9907)
# Objective

- Implements change described in
https://github.com/bevyengine/bevy/issues/3022
- Goal is to allow Entity to benefit from niche optimization, especially
in the case of Option<Entity> to reduce memory overhead with structures
with empty slots

## Discussion
- First PR attempt: https://github.com/bevyengine/bevy/pull/3029
- Discord:
https://discord.com/channels/691052431525675048/1154573759752183808/1154573764240093224

## Solution

- Change `Entity::generation` from u32 to NonZeroU32 to allow for niche
optimization.
- The reason for changing generation rather than index is so that the
costs are only encountered on Entity free, instead of on Entity alloc
- There was some concern with generations being used, due to there being
some desire to introduce flags. This was more to do with the original
retirement approach, however, in reality even if generations were
reduced to 24-bits, we would still have 16 million generations available
before wrapping and current ideas indicate that we would be using closer
to 4-bits for flags.
- Additionally, another concern was the representation of relationships
where NonZeroU32 prevents us using the full address space, talking with
Joy it seems unlikely to be an issue. The majority of the time these
entity references will be low-index entries (ie. `ChildOf`, `Owes`),
these will be able to be fast lookups, and the remainder of the range
can use slower lookups to map to the address space.
- It has the additional benefit of being less visible to most users,
since generation is only ever really set through `from_bits` type
methods.
- `EntityMeta` was changed to match
- On free, generation now explicitly wraps:
- Originally, generation would panic in debug mode and wrap in release
mode due to using regular ops.
- The first attempt at this PR changed the behavior to "retire" slots
and remove them from use when generations overflowed. This change was
controversial, and likely needs a proper RFC/discussion.
- Wrapping matches current release behaviour, and should therefore be
less controversial.
- Wrapping also more easily migrates to the retirement approach, as
users likely to exhaust the exorbitant supply of generations will code
defensively against aliasing and that defensive code is less likely to
break than code assuming that generations don't wrap.
- We use some unsafe code here when wrapping generations, to avoid
branch on NonZeroU32 construction. It's guaranteed safe due to how we
perform wrapping and it results in significantly smaller ASM code.
    - https://godbolt.org/z/6b6hj8PrM 

## Migration

- Previous `bevy_scene` serializations have a high likelihood of being
broken, as they contain 0th generation entities.

## Current Issues
 
- `Entities::reserve_generations` and `EntityMapper` wrap now, even in
debug - although they technically did in release mode already so this
probably isn't a huge issue. It just depends if we need to change
anything here?

---------

Co-authored-by: Natalie Baker <natalie.baker@advancednavigation.com>
2024-01-08 23:03:00 +00:00
Connor King
1260b7bcf1
StateTransitionEvent (#11089)
# Objective

- Make it possible to react to arbitrary state changes
- this will be useful regardless of the other changes to states
currently being discussed

## Solution

- added `StateTransitionEvent<S>` struct
- previously, this would have been impossible:

```rs
#[derive(States, Eq, PartialEq, Hash, Copy, Clone, Default)]
enum MyState {
  #[default]
  Foo,
  Bar(MySubState),
}

enum MySubState {
  Spam,
  Eggs,
}

app.add_system(Update, on_enter_bar);

fn on_enter_bar(trans: EventReader<StateTransition<MyState>>){
  for (befoare, after) in trans.read() {
    match before, after {
      MyState::Foo, MyState::Bar(_) => info!("detected transition foo => bar");
      _, _ => ();
    }
  }
}
```

---

## Changelog

- Added
  - `StateTransitionEvent<S>` - Fired on state changes of `S`

## Migration Guide

N/A no breaking changes

---------

Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
2024-01-08 22:27:00 +00:00
Mantas
5af2f022d8
Rename WorldQueryData & WorldQueryFilter to QueryData & QueryFilter (#10779)
# Rename `WorldQueryData` & `WorldQueryFilter` to `QueryData` &
`QueryFilter`

Fixes #10776 

## Solution

Traits `WorldQueryData` & `WorldQueryFilter` were renamed to `QueryData`
and `QueryFilter`, respectively. Related Trait types were also renamed.

---

## Changelog

- Trait `WorldQueryData` has been renamed to `QueryData`. Derive macro's
`QueryData` attribute `world_query_data` has been renamed to
`query_data`.
- Trait `WorldQueryFilter` has been renamed to `QueryFilter`. Derive
macro's `QueryFilter` attribute `world_query_filter` has been renamed to
`query_filter`.
- Trait's `ExtractComponent` type `Query` has been renamed to `Data`.
- Trait's `GetBatchData` types `Query` & `QueryFilter` has been renamed
to `Data` & `Filter`, respectively.
- Trait's `ExtractInstance` type `Query` has been renamed to `Data`.
- Trait's `ViewNode` type `ViewQuery` has been renamed to `ViewData`.
- Trait's `RenderCommand` types `ViewWorldQuery` & `ItemWorldQuery` has
been renamed to `ViewData` & `ItemData`, respectively.

## Migration Guide

Note: if merged before 0.13 is released, this should instead modify the
migration guide of #10776 with the updated names.

- Rename `WorldQueryData` & `WorldQueryFilter` trait usages to
`QueryData` & `QueryFilter` and their respective derive macro attributes
`world_query_data` & `world_query_filter` to `query_data` &
`query_filter`.
- Rename the following trait type usages:
  - Trait's `ExtractComponent` type `Query` to `Data`.
  - Trait's `GetBatchData` type `Query` to `Data`.
  - Trait's `ExtractInstance` type `Query` to `Data`.
  - Trait's `ViewNode` type `ViewQuery` to `ViewData`'
- Trait's `RenderCommand` types `ViewWolrdQuery` & `ItemWorldQuery` to
`ViewData` & `ItemData`, respectively.

```rust
// Before
#[derive(WorldQueryData)]
#[world_query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// After
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// Before
#[derive(WorldQueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// After
#[derive(QueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// Before
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Query = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Query>) -> Option<Self::Out> {
        //...
    }
}

// After
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Data = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Data>) -> Option<Self::Out> {
        //...
    }
}

// Before
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Query = Entity;
    type QueryFilter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Query>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// After
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Data = Entity;
    type Filter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Data>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// Before
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Query = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Query>) -> Option<Self> {
        Some(item.id())
    }
}

// After
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Data = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Data>) -> Option<Self> {
        Some(item.id())
    }
}

// Before
impl ViewNode for PostProcessNode {
    type ViewQuery = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// After
impl ViewNode for PostProcessNode {
    type ViewData = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewData>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// Before
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewWorldQuery = ();
    type ItemWorldQuery = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}

// After
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewData = ();
    type ItemData = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}
```
2023-12-12 19:45:50 +00:00
James Liu
2148518758
Override QueryIter::fold to port Query::for_each perf gains to select Iterator combinators (#6773)
# Objective
After #6547, `Query::for_each` has been capable of automatic
vectorization on certain queries, which is seeing a notable (>50% CPU
time improvements) for iteration. However, `Query::for_each` isn't
idiomatic Rust, and lacks the flexibility of iterator combinators.

Ideally, `Query::iter` and friends should be able to achieve the same
results. However, this does seem to blocked upstream
(rust-lang/rust#104914) by Rust's loop optimizations.

## Solution
This is an intermediate solution and refactor. This moves the
`Query::for_each` implementation onto the `Iterator::fold`
implementation for `QueryIter` instead. This should result in the same
automatic vectorization optimization on all `Iterator` functions that
internally use fold, including `Iterator::for_each`, `Iterator::count`,
etc.

With this, it should close the gap between the two completely.
Internally, this PR changes `Query::for_each` to use
`query.iter().for_each(..)` instead of the duplicated implementation.

Separately, the duplicate implementations of internal iteration (i.e.
`Query::par_for_each`) now use portions of the current `Query::for_each`
implementation factored out into their own functions.

This also massively cleans up our internal fragmentation of internal
iteration options, deduplicating the iteration code used in `for_each`
and `par_iter().for_each()`.

---

## Changelog
Changed: `Query::for_each`, `Query::for_each_mut`, `Query::for_each`,
and `Query::for_each_mut` have been moved to `QueryIter`'s
`Iterator::for_each` implementation, and still retains their performance
improvements over normal iteration. These APIs are deprecated in 0.13
and will be removed in 0.14.

---------

Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-12-01 09:09:55 +00:00
Mark Wainwright
f0a8994f55
Split WorldQuery into WorldQueryData and WorldQueryFilter (#9918)
# Objective

- Fixes #7680
- This is an updated for https://github.com/bevyengine/bevy/pull/8899
which had the same objective but fell a long way behind the latest
changes


## Solution

The traits `WorldQueryData : WorldQuery` and `WorldQueryFilter :
WorldQuery` have been added and some of the types and functions from
`WorldQuery` has been moved into them.

`ReadOnlyWorldQuery` has been replaced with `ReadOnlyWorldQueryData`. 

`WorldQueryFilter` is safe (as long as `WorldQuery` is implemented
safely).

`WorldQueryData` is unsafe - safely implementing it requires that
`Self::ReadOnly` is a readonly version of `Self` (this used to be a
safety requirement of `WorldQuery`)

The type parameters `Q` and `F` of `Query` must now implement
`WorldQueryData` and `WorldQueryFilter` respectively.

This makes it impossible to accidentally use a filter in the data
position or vice versa which was something that could lead to bugs.
~~Compile failure tests have been added to check this.~~

It was previously sometimes useful to use `Option<With<T>>` in the data
position. Use `Has<T>` instead in these cases.

The `WorldQuery` derive macro has been split into separate derive macros
for `WorldQueryData` and `WorldQueryFilter`.

Previously it was possible to derive both `WorldQuery` for a struct that
had a mixture of data and filter items. This would not work correctly in
some cases but could be a useful pattern in others. *This is no longer
possible.*

---

## Notes

- The changes outside of `bevy_ecs` are all changing type parameters to
the new types, updating the macro use, or replacing `Option<With<T>>`
with `Has<T>`.

- All `WorldQueryData` types always returned `true` for `IS_ARCHETYPAL`
so I moved it to `WorldQueryFilter` and
replaced all calls to it with `true`. That should be the only logic
change outside of the macro generation code.

- `Changed<T>` and `Added<T>` were being generated by a macro that I
have expanded. Happy to revert that if desired.

- The two derive macros share some functions for implementing
`WorldQuery` but the tidiest way I could find to implement them was to
give them a ton of arguments and ask clippy to ignore that.

## Changelog

### Changed
- Split `WorldQuery` into `WorldQueryData` and `WorldQueryFilter` which
now have separate derive macros. It is not possible to derive both for
the same type.
- `Query` now requires that the first type argument implements
`WorldQueryData` and the second implements `WorldQueryFilter`

## Migration Guide

- Update derives

```rust
// old
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct CustomQuery {
    entity: Entity,
    a: &'static mut ComponentA
}

#[derive(WorldQuery)]
struct QueryFilter {
    _c: With<ComponentC>
}

// new 
#[derive(WorldQueryData)]
#[world_query_data(mutable, derive(Debug))]
struct CustomQuery {
    entity: Entity,
    a: &'static mut ComponentA,
}

#[derive(WorldQueryFilter)]
struct QueryFilter {
    _c: With<ComponentC>
}
```
- Replace `Option<With<T>>` with `Has<T>`

```rust
/// old
fn my_system(query: Query<(Entity, Option<With<ComponentA>>)>)
{
  for (entity, has_a_option) in query.iter(){
    let has_a:bool = has_a_option.is_some();
    //todo!()
  }
}

/// new
fn my_system(query: Query<(Entity, Has<ComponentA>)>)
{
  for (entity, has_a) in query.iter(){
    //todo!()
  }
}
```

- Fix queries which had filters in the data position or vice versa.

```rust
// old
fn my_system(query: Query<(Entity, With<ComponentA>)>)
{
  for (entity, _) in query.iter(){
  //todo!()
  }
}

// new
fn my_system(query: Query<Entity, With<ComponentA>>)
{
  for entity in query.iter(){
  //todo!()
  }
}

// old
fn my_system(query: Query<AnyOf<(&ComponentA, With<ComponentB>)>>)
{
  for (entity, _) in query.iter(){
  //todo!()
  }
}

// new
fn my_system(query: Query<Option<&ComponentA>, Or<(With<ComponentA>, With<ComponentB>)>>)
{
  for entity in query.iter(){
  //todo!()
  }
}

```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-11-28 03:56:07 +00:00
Mike
11b1b3a24f
delete methods deprecated in 0.12 (#10693)
## Changelog

- delete methods deprecated in 0.12
2023-11-24 16:15:47 +00:00
TheBigCheese
e67cfdf82b
Enable clippy::undocumented_unsafe_blocks warning across the workspace (#10646)
# Objective

Enables warning on `clippy::undocumented_unsafe_blocks` across the
workspace rather than only in `bevy_ecs`, `bevy_transform` and
`bevy_utils`. This adds a little awkwardness in a few areas of code that
have trivial safety or explain safety for multiple unsafe blocks with
one comment however automatically prevents these comments from being
missed.

## Solution

This adds `undocumented_unsafe_blocks = "warn"` to the workspace
`Cargo.toml` and fixes / adds a few missed safety comments. I also added
`#[allow(clippy::undocumented_unsafe_blocks)]` where the safety is
explained somewhere above.

There are a couple of safety comments I added I'm not 100% sure about in
`bevy_animation` and `bevy_render/src/view` and I'm not sure about the
use of `#[allow(clippy::undocumented_unsafe_blocks)]` compared to adding
comments like `// SAFETY: See above`.
2023-11-21 02:06:24 +00:00
Konstantin Kostiuk
eeb0c2f2e4
Allow #[derive(Bundle)] on tuple structs (take 3) (#10561)
- rework of old @Veykril's work in
[2499](https://github.com/bevyengine/bevy/pull/2499)
- Fixes [3537](https://github.com/bevyengine/bevy/issues/3537)
2023-11-21 01:09:16 +00:00