# Objective
- Provide a way to see the components of an entity.
- Fixes#1467
## Solution
- Add `World::inspect_entity`. It accepts an `Entity` and returns a vector of `&ComponentInfo` that the entity has.
- Add `EntityCommands::log_components`. It logs the component names of the entity. (info level)
---
## Changelog
### Added
- Ability to inspect components of an entity through `World::inspect_entity` or `EntityCommands::log_components`
(follow-up to #4423)
# Objective
Currently, it isn't possible to easily fire commands from within par_for_each blocks. This PR allows for issuing commands from within parallel scopes.
# Objective
This PR aims to improve the soundness of `CommandQueue`. In particular it aims to:
- make it sound to store commands that contain padding or uninitialized bytes;
- avoid uses of commands after moving them in the queue's buffer (`std::mem::forget` is technically a use of its argument);
- remove useless checks: `self.bytes.as_mut_ptr().is_null()` is always `false` because even `Vec`s that haven't allocated use a dangling pointer. Moreover the same pointer was used to write the command, so it ought to be valid for reads if it was for writes.
## Solution
- To soundly store padding or uninitialized bytes `CommandQueue` was changed to contain a `Vec<MaybeUninit<u8>>` instead of `Vec<u8>`;
- To avoid uses of the command through `std::mem::forget`, `ManuallyDrop` was used.
## Other observations
While writing this PR I noticed that `CommandQueue` doesn't seem to drop the commands that weren't applied. While this is a pretty niche case (you would have to be manually using `CommandQueue`/`std::mem::swap`ping one), I wonder if it should be documented anyway.
# Objective
- The current API docs of `Commands` is very short and is very opaque to newcomers.
## Solution
- Try to explain what it is without requiring knowledge of other parts of `bevy_ecs` like `World` or `SystemParam`.
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
Free at last!
# Objective
- Using `.system()` is no longer needed anywhere, and anyone using it will have already gotten a deprecation warning.
- https://github.com/bevyengine/bevy/pull/3302 was a super special case for `.system()`, since it was so prevelant. However, that's no reason.
- Despite it being deprecated, another couple of uses of it have already landed, including in the deprecating PR.
- These have all been because of doc examples having warnings not breaking CI - 🎟️?
## Solution
- Remove it.
- It's gone
---
## Changelog
- You can no longer use `.system()`
## Migration Guide
- You can no longer use `.system()`. It was deprecated in 0.7.0, and you should have followed the deprecation warning then. You can just remove the method call.
![image](https://user-images.githubusercontent.com/36049421/163688197-3e774a04-6f8f-40a6-b7a4-1330e0b7acf0.png)
- Thanks to the @TheRawMeatball for producing
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
# Objective
- Fixes#3078
- Fixes#1397
## Solution
- Implement Commands::init_resource.
- Also implement for World, for consistency and to simplify internal structure.
- While we're here, clean up some of the docs for Command and World resource modification.
This is my first contribution to this exciting project! Thanks so much for your wonderful work. If there is anything that I can improve about this PR, please let me know :)
# Objective
- Fixes#2899
- If a simple one-off command is needed to be added within a System, this simplifies that process so that we can simply do `commands.add(|world: &mut World| { /* code here */ })` instead of defining a custom type implementing `Command`.
## Solution
- This is achieved by `impl Command for F where F: FnOnce(&mut World) + Send + Sync + 'static` as just calling the function.
I am not sure if the bounds can be further relaxed but needed the whole `Send`, `Sync`, and `'static` to get it to compile.
# Objective
- Calling .id() has no purpose unless you use the Entity returned
- This is an easy source of confusion for beginners.
- This is easily missed during refactors.
## Solution
- Mark the appropriate methods as #[must_use]
# Objective
- Removes warning about accidently inserting bundles with `EntityCommands::insert`, but since a component now needs to implement `Component` it is unnecessary.
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_ecs` crate.
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
## Objective
The upcoming Bevy Book makes many references to the API documentation of bevy.
Most references belong to the first two chapters of the Bevy Book:
- bevyengine/bevy-website#176
- bevyengine/bevy-website#182
This PR attempts to improve the documentation of `bevy_ecs` and `bevy_app` in order to help readers of the Book who want to delve deeper into technical details.
## Solution
- Add crate and level module documentation
- Document the most important items (basically those included in the preludes), with the following style, where applicable:
- **Summary.** Short description of the item.
- **Second paragraph.** Detailed description of the item, without going too much in the implementation.
- **Code example(s).**
- **Safety or panic notes.**
## Collaboration
Any kind of collaboration is welcome, especially corrections, wording, new ideas and guidelines on where the focus should be put in.
---
### Related issues
- Fixes#2246
# Objective
Sometimes, the unwraps in `entity_mut` could fail here, if the entity was despawned *before* this command was applied.
The simplest case involves two command buffers:
```rust
use bevy::prelude::*;
fn b(mut commands1: Commands, mut commands2: Commands) {
let id = commands2.spawn().insert_bundle(()).id();
commands1.entity(id).despawn();
}
fn main() {
App::build().add_system(b.system()).run();
}
```
However, a more complicated version arises in the case of ambiguity:
```rust
use std::time::Duration;
use bevy::{app::ScheduleRunnerPlugin, prelude::*};
use rand::Rng;
fn cleanup(mut e: ResMut<Option<Entity>>) {
*e = None;
}
fn sleep_randomly() {
let mut rng = rand::thread_rng();
std:🧵:sleep(Duration::from_millis(rng.gen_range(0..50)));
}
fn spawn(mut commands: Commands, mut e: ResMut<Option<Entity>>) {
*e = Some(commands.spawn().insert_bundle(()).id());
}
fn despawn(mut commands: Commands, e: Res<Option<Entity>>) {
let mut rng = rand::thread_rng();
std:🧵:sleep(Duration::from_millis(rng.gen_range(0..50)));
if let Some(e) = *e {
commands.entity(e).despawn();
}
}
fn main() {
App::build()
.add_system(cleanup.system().label("cleanup"))
.add_system(sleep_randomly.system().label("before_despawn"))
.add_system(despawn.system().after("cleanup").after("before_despawn"))
.add_system(sleep_randomly.system().label("before_spawn"))
.add_system(spawn.system().after("cleanup").after("before_spawn"))
.insert_resource(None::<Entity>)
.add_plugin(ScheduleRunnerPlugin::default())
.run();
}
```
In the cases where this example crashes, it's because `despawn` was ordered before `spawn` in the topological ordering of systems (which determines when buffers are applied). However, `despawn` actually ran *after* `spawn`, because these systems are ambiguous, so the jiggles in the sleeping time triggered a case where this works.
## Solution
- Give a better error message
This upstreams the code changes used by the new renderer to enable cross-app Entity reuse:
* Spawning at specific entities
* get_or_spawn: spawns an entity if it doesn't already exist and returns an EntityMut
* insert_or_spawn_batch: the batched equivalent to `world.get_or_spawn(entity).insert_bundle(bundle)`
* Clearing entities and storages
* Allocating Entities with "invalid" archetypes. These entities cannot be queried / are treated as "non existent". They serve as "reserved" entities that won't show up when calling `spawn()`. They must be "specifically spawned at" using apis like `get_or_spawn(entity)`.
In combination, these changes enable the "render world" to clear entities / storages each frame and reserve all "app world entities". These can then be spawned during the "render extract step".
This refactors "spawn" and "insert" code in a way that I think is a massive improvement to legibility and re-usability. It also yields marginal performance wins by reducing some duplicate lookups (less than a percentage point improvement on insertion benchmarks). There is also some potential for future unsafe reduction (by making BatchSpawner and BatchInserter generic). But for now I want to cut down generic usage to a minimum to encourage smaller binaries and faster compiles.
This is currently a draft because it needs more tests (although this code has already had some real-world testing on my custom-shaders branch).
I also fixed the benchmarks (which currently don't compile!) / added new ones to illustrate batching wins.
After these changes, Bevy ECS is basically ready to accommodate the new renderer. I think the biggest missing piece at this point is "sub apps".
# Objective
Enable using exact World lifetimes during read-only access . This is motivated by the new renderer's need to allow read-only world-only queries to outlive the query itself (but still be constrained by the world lifetime).
For example:
115b170d1f/pipelined/bevy_pbr2/src/render/mod.rs (L774)
## Solution
Split out SystemParam state and world lifetimes and pipe those lifetimes up to read-only Query ops (and add into_inner for Res). According to every safety test I've run so far (except one), this is safe (see the temporary safety test commit). Note that changing the mutable variants to the new lifetimes would allow aliased mutable pointers (try doing that to see how it affects the temporary safety tests).
The new state lifetime on SystemParam does make `#[derive(SystemParam)]` more cumbersome (the current impl requires PhantomData if you don't use both lifetimes). We can make this better by detecting whether or not a lifetime is used in the derive and adjusting accordingly, but that should probably be done in its own pr.
## Why is this a draft?
The new lifetimes break QuerySet safety in one very specific case (see the query_set system in system_safety_test). We need to solve this before we can use the lifetimes given.
This is due to the fact that QuerySet is just a wrapper over Query, which now relies on world lifetimes instead of `&self` lifetimes to prevent aliasing (but in systems, each Query has its own implied lifetime, not a centralized world lifetime). I believe the fix is to rewrite QuerySet to have its own World lifetime (and own the internal reference). This will complicate the impl a bit, but I think it is doable. I'm curious if anyone else has better ideas.
Personally, I think these new lifetimes need to happen. We've gotta have a way to directly tie read-only World queries to the World lifetime. The new renderer is the first place this has come up, but I doubt it will be the last. Worst case scenario we can come up with a second `WorldLifetimeQuery<Q, F = ()>` parameter to enable these read-only scenarios, but I'd rather not add another type to the type zoo.
# Objective
- Currently `Commands` are quite slow due to the need to allocate for each command and wrap it in a `Box<dyn Command>`.
- For example:
```rust
fn my_system(mut cmds: Commands) {
cmds.spawn().insert(42).insert(3.14);
}
```
will have 3 separate `Box<dyn Command>` that need to be allocated and ran.
## Solution
- Utilize a specialized data structure keyed `CommandQueueInner`.
- The purpose of `CommandQueueInner` is to hold a collection of commands in contiguous memory.
- This allows us to store each `Command` type contiguously in memory and quickly iterate through them and apply the `Command::write` trait function to each element.