# Objective
- Terminology used in field names and docs aren't accurate
- `window_origin` doesn't have any effect when `scaling_mode` is `ScalingMode::None`
- `left`, `right`, `bottom`, and `top` are set automatically unless `scaling_mode` is `None`. Fields that only sometimes give feedback are confusing.
- `ScalingMode::WindowSize` has no arguments, which is inconsistent with other `ScalingMode`s. 1 pixel = 1 world unit is also typically way too wide.
- `OrthographicProjection` feels generally less streamlined than its `PerspectiveProjection` counterpart
- Fixes#5818
- Fixes#6190
## Solution
- Improve consistency in `OrthographicProjection`'s public fields (they should either always give feedback or never give feedback).
- Improve consistency in `ScalingMode`'s arguments
- General usability improvements
- Improve accuracy of terminology:
- "Window" should refer to the physical window on the desktop
- "Viewport" should refer to the component in the window that images are drawn on (typically all of it)
- "View frustum" should refer to the volume captured by the projection
---
## Changelog
### Added
- Added argument to `ScalingMode::WindowSize` that specifies the number of pixels that equals one world unit.
- Added documentation for fields and enums
### Changed
- Renamed `window_origin` to `viewport_origin`, which now:
- Affects all `ScalingMode`s
- Takes a fraction of the viewport's width and height instead of an enum
- Removed `WindowOrigin` enum as it's obsolete
- Renamed `ScalingMode::None` to `ScalingMode::Fixed`, which now:
- Takes arguments to specify the projection size
- Replaced `left`, `right`, `bottom`, and `top` fields with a single `area: Rect`
- `scale` is now applied before updating `area`. Reading from it will take `scale` into account.
- Documentation changes to make terminology more accurate and consistent
## Migration Guide
- Change `window_origin` to `viewport_origin`; replace `WindowOrigin::Center` with `Vec2::new(0.5, 0.5)` and `WindowOrigin::BottomLeft` with `Vec2::new(0.0, 0.0)`
- For shadow projections and such, replace `left`, `right`, `bottom`, and `top` with `area: Rect::new(left, bottom, right, top)`
- For camera projections, remove l/r/b/t values from `OrthographicProjection` instantiations, as they no longer have any effect in any `ScalingMode`
- Change `ScalingMode::None` to `ScalingMode::Fixed`
- Replace manual changes of l/r/b/t with:
- Arguments in `ScalingMode::Fixed` to specify size
- `viewport_origin` to specify offset
- Change `ScalingMode::WindowSize` to `ScalingMode::WindowSize(1.0)`
# Objective
Fix#7377Fix#7513
## Solution
Record the changes made to the Bevy `Window` from `winit` as 'canon' to avoid Bevy sending those changes back to `winit` again, causing a feedback loop.
## Changelog
* Removed `ModifiesWindows` system label.
Neither `despawn_window` nor `changed_window` actually modify the `Window` component so all the `.after(ModifiesWindows)` shouldn't be necessary.
* Moved `changed_window` and `despawn_window` systems to `CoreStage::Last` to avoid systems making changes to the `Window` between `changed_window` and the end of the frame as they would be ignored.
## Migration Guide
The `ModifiesWindows` system label was removed.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Some render systems that have system set used as a label so that they can be referenced from somewhere else.
The 1:1 translation from `add_system_to_stage(Prepare, prepare_lights.label(PrepareLights))` is `add_system(prepare_lights.in_set(Prepare).in_set(PrepareLights)`, but configuring the `PrepareLights` set to be in `Prepare` would match the intention better (there are no systems in `PrepareLights` outside of `Prepare`) and it is easier for visualization tools to deal with.
# Solution
- replace
```rust
prepare_lights in PrepareLights
prepare_lights in Prepare
```
with
```rs
prepare_lights in PrepareLights
PrepareLights in Prepare
```
**Before**
![before](https://user-images.githubusercontent.com/22177966/216961792-a0f5eba7-f161-4994-b5a4-33e98763a3b0.svg)
**After**
![after](https://user-images.githubusercontent.com/22177966/216961790-857d0062-7943-49ef-8927-e602dfbab714.svg)
# Objective
Buffers in bevy do not allow for setting buffer usage flags which can be useful for setting COPY_SRC, MAP_READ, MAP_WRITE, which allows for buffers to be copied from gpu to cpu for inspection.
## Solution
Add buffer_usage field to buffers and a set_usage function to set them
# Objective
- Fixes#766
## Solution
- Add a new `Lcha` member to `bevy_render::color::Color` enum
---
## Changelog
- Add a new `Lcha` member to `bevy_render::color::Color` enum
- Add `bevy_render::color::LchRepresentation` struct
# Objective
[as noted](https://github.com/bevyengine/bevy/pull/5950#discussion_r1080762807) by james, transmuting arcs may be UB.
we now store a `*const ()` pointer internally, and only rely on `ptr.cast::<()>().cast::<T>() == ptr`.
as a happy side effect this removes the need for boxing the value, so todo: potentially use this for release mode as well
# Objective
NOTE: This depends on #7267 and should not be merged until #7267 is merged. If you are reviewing this before that is merged, I highly recommend viewing the Base Sets commit instead of trying to find my changes amongst those from #7267.
"Default sets" as described by the [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) have some [unfortunate consequences](https://github.com/bevyengine/bevy/discussions/7365).
## Solution
This adds "base sets" as a variant of `SystemSet`:
A set is a "base set" if `SystemSet::is_base` returns `true`. Typically this will be opted-in to using the `SystemSet` derive:
```rust
#[derive(SystemSet, Clone, Hash, Debug, PartialEq, Eq)]
#[system_set(base)]
enum MyBaseSet {
A,
B,
}
```
**Base sets are exclusive**: a system can belong to at most one "base set". Adding a system to more than one will result in an error. When possible we fail immediately during system-config-time with a nice file + line number. For the more nested graph-ey cases, this will fail at the final schedule build.
**Base sets cannot belong to other sets**: this is where the word "base" comes from
Systems and Sets can only be added to base sets using `in_base_set`. Calling `in_set` with a base set will fail. As will calling `in_base_set` with a normal set.
```rust
app.add_system(foo.in_base_set(MyBaseSet::A))
// X must be a normal set ... base sets cannot be added to base sets
.configure_set(X.in_base_set(MyBaseSet::A))
```
Base sets can still be configured like normal sets:
```rust
app.add_system(MyBaseSet::B.after(MyBaseSet::Ap))
```
The primary use case for base sets is enabling a "default base set":
```rust
schedule.set_default_base_set(CoreSet::Update)
// this will belong to CoreSet::Update by default
.add_system(foo)
// this will override the default base set with PostUpdate
.add_system(bar.in_base_set(CoreSet::PostUpdate))
```
This allows us to build apis that work by default in the standard Bevy style. This is a rough analog to the "default stage" model, but it use the new "stageless sets" model instead, with all of the ordering flexibility (including exclusive systems) that it provides.
---
## Changelog
- Added "base sets" and ported CoreSet to use them.
## Migration Guide
TODO
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
Avoid ‘Unable to find a GPU! Make sure you have installed required drivers!’ .
Because many devices only support OpenGL without Vulkan.
Fixes#3191
## Solution
Use all backends supported by wgpu.
# Objective
Currently, shaders may only have syntax such as
```wgsl
#ifdef FOO
// foo code
#else
#ifdef BAR
// bar code
#else
#ifdef BAZ
// baz code
#else
// fallback code
#endif
#endif
#endif
```
This is hard to read and follow.
Add a way to allow writing `#else ifdef DEFINE` to reduce the number of scopes introduced and to increase readability.
## Solution
Refactor the current preprocessing a bit and add logic to allow `#else ifdef DEFINE`.
This includes per-scope tracking of whether a branch has been accepted.
Add a few tests for this feature.
With these changes we may now write:
```wgsl
#ifdef FOO
// foo code
#else ifdef BAR
// bar code
#else ifdef BAZ
// baz code
#else
// fallback code
#endif
```
instead.
---
## Changelog
- Add `#else ifdef` to shader preprocessing.
# Objective
- Trying to move some of the fixes from https://github.com/bevyengine/bevy/pull/7267 to make that one easier to review
- The MainThreadExecutor is how the render world runs nonsend systems on the main thread for pipelined rendering.
- The multithread executor for stageless wasn't using the MainThreadExecutor.
- MainThreadExecutor was declared in the old executor_parallel module that is getting deleted.
- The way the MainThreadExecutor was getting passed to the scope was actually unsound as the resource could be dropped from the World while the schedule was running
## Solution
- Move MainThreadExecutor to the new multithreaded_executor's file.
- Make the multithreaded executor use the MainThreadExecutor
- Clone the MainThreadExecutor onto the stack and pass that ref in
## Changelog
- Move MainThreadExecutor for stageless migration.
# Objective
In simple cases we might want to derive the `ExtractComponent` trait.
This adds symmetry to the existing `ExtractResource` derive.
## Solution
Add an implementation of `#[derive(ExtractComponent)]`.
The implementation is adapted from the existing `ExtractResource` derive macro.
Additionally, there is an attribute called `extract_component_filter`. This allows specifying a query filter type used when extracting.
If not specified, no filter (equal to `()`) is used.
So:
```rust
#[derive(Component, Clone, ExtractComponent)]
#[extract_component_filter(With<Fuel>)]
pub struct Car {
pub wheels: usize,
}
```
would expand to (a bit cleaned up here):
```rust
impl ExtractComponent for Car
{
type Query = &'static Self;
type Filter = With<Fuel>;
type Out = Self;
fn extract_component(item: QueryItem<'_, Self::Query>) -> Option<Self::Out> {
Some(item.clone())
}
}
```
---
## Changelog
- Added the ability to `#[derive(ExtractComponent)]` with an optional filter.
# Objective
- Fixes#4592
## Solution
- Implement `SrgbColorSpace` for `u8` via `f32`
- Convert KTX2 R8 and R8G8 non-linear sRGB to wgpu `R8Unorm` and `Rg8Unorm` as non-linear sRGB are not supported by wgpu for these formats
- Convert KTX2 R8G8B8 formats to `Rgba8Unorm` and `Rgba8UnormSrgb` by adding an alpha channel as the Rgb variants don't exist in wgpu
---
## Changelog
- Added: Support for KTX2 `R8_SRGB`, `R8_UNORM`, `R8G8_SRGB`, `R8G8_UNORM`, `R8G8B8_SRGB`, `R8G8B8_UNORM` formats by converting to supported wgpu formats as appropriate
# Objective
Add a `FromReflect` derive to the `Aabb` type, like all other math types, so we can reflect `Vec<Aabb>`.
## Solution
Just add it :)
---
## Changelog
### Added
- Implemented `FromReflect` for `Aabb`.
# Objective
Update Bevy to wgpu 0.15.
## Changelog
- Update to wgpu 0.15, wgpu-hal 0.15.1, and naga 0.11
- Users can now use the [DirectX Shader Compiler](https://github.com/microsoft/DirectXShaderCompiler) (DXC) on Windows with DX12 for faster shader compilation and ShaderModel 6.0+ support (requires `dxcompiler.dll` and `dxil.dll`, which are included in DXC downloads from [here](https://github.com/microsoft/DirectXShaderCompiler/releases/latest))
## Migration Guide
### WGSL Top-Level `let` is now `const`
All top level constants are now declared with `const`, catching up with the wgsl spec.
`let` is no longer allowed at the global scope, only within functions.
```diff
-let SOME_CONSTANT = 12.0;
+const SOME_CONSTANT = 12.0;
```
#### `TextureDescriptor` and `SurfaceConfiguration` now requires a `view_formats` field
The new `view_formats` field in the `TextureDescriptor` is used to specify a list of formats the texture can be re-interpreted to in a texture view. Currently only changing srgb-ness is allowed (ex. `Rgba8Unorm` <=> `Rgba8UnormSrgb`). You should set `view_formats` to `&[]` (empty) unless you have a specific reason not to.
#### The DirectX Shader Compiler (DXC) is now supported on DX12
DXC is now the default shader compiler when using the DX12 backend. DXC is Microsoft's replacement for their legacy FXC compiler, and is faster, less buggy, and allows for modern shader features to be used (ShaderModel 6.0+). DXC requires `dxcompiler.dll` and `dxil.dll` to be available, otherwise it will log a warning and fall back to FXC.
You can get `dxcompiler.dll` and `dxil.dll` by downloading the latest release from [Microsoft's DirectXShaderCompiler github repo](https://github.com/microsoft/DirectXShaderCompiler/releases/latest) and copying them into your project's root directory. These must be included when you distribute your Bevy game/app/etc if you plan on supporting the DX12 backend and are using DXC.
`WgpuSettings` now has a `dx12_shader_compiler` field which can be used to choose between either FXC or DXC (if you pass None for the paths for DXC, it will check for the .dlls in the working directory).
# Objective
## Use Case
A render node which calls `post_process_write()` on a `ViewTarget` multiple times during a single run of the node means both main textures of this view target is accessed.
If the source texture (which alternate between main textures **a** and **b**) is accessed in a shader during those iterations it means that those textures have to be bound using bind groups.
Preparing bind groups for both main textures ahead of time is desired, which means having access to the _other_ main texture is needed.
## Solution
Add a method on `ViewTarget` for accessing the other main texture.
---
## Changelog
### Added
- `main_texture_other` API on `ViewTarget`
# Objective
I found several words in code and docs are incorrect. This should be fixed.
## Solution
- Fix several minor typos
Co-authored-by: Chris Ohk <utilforever@gmail.com>
# Objective
Fixes#6952
## Solution
- Request WGPU capabilities `SAMPLED_TEXTURE_AND_STORAGE_BUFFER_ARRAY_NON_UNIFORM_INDEXING`, `SAMPLER_NON_UNIFORM_INDEXING` and `UNIFORM_BUFFER_AND_STORAGE_TEXTURE_ARRAY_NON_UNIFORM_INDEXING` when corresponding features are enabled.
- Add an example (`shaders/texture_binding_array`) illustrating (and testing) the use of non-uniform indexed textures and samplers.
![image](https://user-images.githubusercontent.com/16053640/209448310-defa4eae-6bcb-460d-9b3d-a3d2fad4316c.png)
## Changelog
- Added new capabilities for shader validation.
- Added example `shaders/texture_binding_array`.
Co-authored-by: Robert Swain <robert.swain@gmail.com>
# Objective
Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps.
Fixes#3629
Before
![image](https://user-images.githubusercontent.com/1222141/210061203-bbd965a4-8d11-4cec-9a88-67fc59d0819f.png)
After
![image](https://user-images.githubusercontent.com/1222141/210061334-2ff15334-e6d7-4a31-9314-f34a7805cac6.png)
## Solution
Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination.
---
## Changelog
Directional lights now use cascaded shadow maps for improved shadow quality.
## Migration Guide
You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead.
# Objective
Fixes#7286. Both `App::add_sub_app` and `App::insert_sub_app` are rather redundant. Before 0.10 is shipped, one of them should be removed.
## Solution
Remove `App::add_sub_app` to prefer `App::insert_sub_app`.
Also hid away `SubApp::extract` since that can be a footgun if someone mutates it for whatever reason. Willing to revert this change if there are objections.
Perhaps we should make `SubApp: Deref<Target=App>`? Might change if we decide to move `!Send` resources into it.
---
## Changelog
Added: `SubApp::new`
Removed: `App::add_sub_app`
## Migration Guide
`App::add_sub_app` has been removed in favor of `App::insert_sub_app`. Use `SubApp::new` and insert it via `App::add_sub_app`
Old:
```rust
let mut sub_app = App::new()
// Build subapp here
app.add_sub_app(MySubAppLabel, sub_app);
```
New:
```rust
let mut sub_app = App::new()
// Build subapp here
app.insert_sub_app(MySubAppLabel, SubApp::new(sub_app, extract_fn));
```
# Objective
`RenderContext`, the core abstraction for running the render graph, currently only supports recording one `CommandBuffer` across the entire render graph. This means the entire buffer must be recorded sequentially, usually via the render graph itself. This prevents parallelization and forces users to only encode their commands in the render graph.
## Solution
Allow `RenderContext` to store a `Vec<CommandBuffer>` that it progressively appends to. By default, the context will not have a command encoder, but will create one as soon as either `begin_tracked_render_pass` or the `command_encoder` accesor is first called. `RenderContext::add_command_buffer` allows users to interrupt the current command encoder, flush it to the vec, append a user-provided `CommandBuffer` and reset the command encoder to start a new buffer. Users or the render graph will call `RenderContext::finish` to retrieve the series of buffers for submitting to the queue.
This allows users to encode their own `CommandBuffer`s outside of the render graph, potentially in different threads, and store them in components or resources.
Ideally, in the future, the core pipeline passes can run in `RenderStage::Render` systems and end up saving the completed command buffers to either `Commands` or a field in `RenderPhase`.
## Alternatives
The alternative is to use to use wgpu's `RenderBundle`s, which can achieve similar results; however it's not universally available (no OpenGL, WebGL, and DX11).
---
## Changelog
Added: `RenderContext::new`
Added: `RenderContext::add_command_buffer`
Added: `RenderContext::finish`
Changed: `RenderContext::render_device` is now private. Use the accessor `RenderContext::render_device()` instead.
Changed: `RenderContext::command_encoder` is now private. Use the accessor `RenderContext::command_encoder()` instead.
Changed: `RenderContext` now supports adding external `CommandBuffer`s for inclusion into the render graphs. These buffers can be encoded outside of the render graph (i.e. in a system).
## Migration Guide
`RenderContext`'s fields are now private. Use the accessors on `RenderContext` instead, and construct it with `RenderContext::new`.
# Objective
Fixes#6931
Continues #6954 by squashing `Msaa` to a flat enum
Helps out #7215
# Solution
```
pub enum Msaa {
Off = 1,
#[default]
Sample4 = 4,
}
```
# Changelog
- Modified
- `Msaa` is now enum
- Defaults to 4 samples
- Uses `.samples()` method to get the sample number as `u32`
# Migration Guide
```
let multi = Msaa { samples: 4 }
// is now
let multi = Msaa::Sample4
multi.samples
// is now
multi.samples()
```
Co-authored-by: Sjael <jakeobrien44@gmail.com>
After #6503, bevy_render uses the `send_blocking` method introduced in async-channel 1.7, but depended only on ^1.4.
I saw this after pulling main without running cargo update.
# Objective
- Fix minimum dependency version of async-channel
## Solution
- Bump async-channel version constraint to ^1.8, which is currently the latest version.
NOTE: Both bevy_ecs and bevy_tasks also depend on async-channel but they didn't use any newer features.
# Objective
Fixes#3184. Fixes#6640. Fixes#4798. Using `Query::par_for_each(_mut)` currently requires a `batch_size` parameter, which affects how it chunks up large archetypes and tables into smaller chunks to run in parallel. Tuning this value is difficult, as the performance characteristics entirely depends on the state of the `World` it's being run on. Typically, users will just use a flat constant and just tune it by hand until it performs well in some benchmarks. However, this is both error prone and risks overfitting the tuning on that benchmark.
This PR proposes a naive automatic batch-size computation based on the current state of the `World`.
## Background
`Query::par_for_each(_mut)` schedules a new Task for every archetype or table that it matches. Archetypes/tables larger than the batch size are chunked into smaller tasks. Assuming every entity matched by the query has an identical workload, this makes the worst case scenario involve using a batch size equal to the size of the largest matched archetype or table. Conversely, a batch size of `max {archetype, table} size / thread count * COUNT_PER_THREAD` is likely the sweetspot where the overhead of scheduling tasks is minimized, at least not without grouping small archetypes/tables together.
There is also likely a strict minimum batch size below which the overhead of scheduling these tasks is heavier than running the entire thing single-threaded.
## Solution
- [x] Remove the `batch_size` from `Query(State)::par_for_each` and friends.
- [x] Add a check to compute `batch_size = max {archeytpe/table} size / thread count * COUNT_PER_THREAD`
- [x] ~~Panic if thread count is 0.~~ Defer to `for_each` if the thread count is 1 or less.
- [x] Early return if there is no matched table/archetype.
- [x] Add override option for users have queries that strongly violate the initial assumption that all iterated entities have an equal workload.
---
## Changelog
Changed: `Query::par_for_each(_mut)` has been changed to `Query::par_iter(_mut)` and will now automatically try to produce a batch size for callers based on the current `World` state.
## Migration Guide
The `batch_size` parameter for `Query(State)::par_for_each(_mut)` has been removed. These calls will automatically compute a batch size for you. Remove these parameters from all calls to these functions.
Before:
```rust
fn parallel_system(query: Query<&MyComponent>) {
query.par_for_each(32, |comp| {
...
});
}
```
After:
```rust
fn parallel_system(query: Query<&MyComponent>) {
query.par_iter().for_each(|comp| {
...
});
}
```
Co-authored-by: Arnav Choubey <56453634+x-52@users.noreply.github.com>
Co-authored-by: Robert Swain <robert.swain@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Corey Farwell <coreyf@rwell.org>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
- Implement pipelined rendering
- Fixes#5082
- Fixes#4718
## User Facing Description
Bevy now implements piplelined rendering! Pipelined rendering allows the app logic and rendering logic to run on different threads leading to large gains in performance.
![image](https://user-images.githubusercontent.com/2180432/202049871-3c00b801-58ab-448f-93fd-471e30aba55f.png)
*tracy capture of many_foxes example*
To use pipelined rendering, you just need to add the `PipelinedRenderingPlugin`. If you're using `DefaultPlugins` then it will automatically be added for you on all platforms except wasm. Bevy does not currently support multithreading on wasm which is needed for this feature to work. If you aren't using `DefaultPlugins` you can add the plugin manually.
```rust
use bevy::prelude::*;
use bevy::render::pipelined_rendering::PipelinedRenderingPlugin;
fn main() {
App::new()
// whatever other plugins you need
.add_plugin(RenderPlugin)
// needs to be added after RenderPlugin
.add_plugin(PipelinedRenderingPlugin)
.run();
}
```
If for some reason pipelined rendering needs to be removed. You can also disable the plugin the normal way.
```rust
use bevy::prelude::*;
use bevy::render::pipelined_rendering::PipelinedRenderingPlugin;
fn main() {
App::new.add_plugins(DefaultPlugins.build().disable::<PipelinedRenderingPlugin>());
}
```
### A setup function was added to plugins
A optional plugin lifecycle function was added to the `Plugin trait`. This function is called after all plugins have been built, but before the app runner is called. This allows for some final setup to be done. In the case of pipelined rendering, the function removes the sub app from the main app and sends it to the render thread.
```rust
struct MyPlugin;
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
}
// optional function
fn setup(&self, app: &mut App) {
// do some final setup before runner is called
}
}
```
### A Stage for Frame Pacing
In the `RenderExtractApp` there is a stage labelled `BeforeIoAfterRenderStart` that systems can be added to. The specific use case for this stage is for a frame pacing system that can delay the start of main app processing in render bound apps to reduce input latency i.e. "frame pacing". This is not currently built into bevy, but exists as `bevy`
```text
|-------------------------------------------------------------------|
| | BeforeIoAfterRenderStart | winit events | main schedule |
| extract |---------------------------------------------------------|
| | extract commands | rendering schedule |
|-------------------------------------------------------------------|
```
### Small API additions
* `Schedule::remove_stage`
* `App::insert_sub_app`
* `App::remove_sub_app`
* `TaskPool::scope_with_executor`
## Problems and Solutions
### Moving render app to another thread
Most of the hard bits for this were done with the render redo. This PR just sends the render app back and forth through channels which seems to work ok. I originally experimented with using a scope to run the render task. It was cuter, but that approach didn't allow render to start before i/o processing. So I switched to using channels. There is much complexity in the coordination that needs to be done, but it's worth it. By moving rendering during i/o processing the frame times should be much more consistent in render bound apps. See https://github.com/bevyengine/bevy/issues/4691.
### Unsoundness with Sending World with NonSend resources
Dropping !Send things on threads other than the thread they were spawned on is considered unsound. The render world doesn't have any nonsend resources. So if we tell the users to "pretty please don't spawn nonsend resource on the render world", we can avoid this problem.
More seriously there is this https://github.com/bevyengine/bevy/pull/6534 pr, which patches the unsoundness by aborting the app if a nonsend resource is dropped on the wrong thread. ~~That PR should probably be merged before this one.~~ For a longer term solution we have this discussion going https://github.com/bevyengine/bevy/discussions/6552.
### NonSend Systems in render world
The render world doesn't have any !Send resources, but it does have a non send system. While Window is Send, winit does have some API's that can only be accessed on the main thread. `prepare_windows` in the render schedule thus needs to be scheduled on the main thread. Currently we run nonsend systems by running them on the thread the TaskPool::scope runs on. When we move render to another thread this no longer works.
To fix this, a new `scope_with_executor` method was added that takes a optional `TheadExecutor` that can only be ticked on the thread it was initialized on. The render world then holds a `MainThreadExecutor` resource which can be passed to the scope in the parallel executor that it uses to spawn it's non send systems on.
### Scopes executors between render and main should not share tasks
Since the render world and the app world share the `ComputeTaskPool`. Because `scope` has executors for the ComputeTaskPool a system from the main world could run on the render thread or a render system could run on the main thread. This can cause performance problems because it can delay a stage from finishing. See https://github.com/bevyengine/bevy/pull/6503#issuecomment-1309791442 for more details.
To avoid this problem, `TaskPool::scope` has been changed to not tick the ComputeTaskPool when it's used by the parallel executor. In the future when we move closer to the 1 thread to 1 logical core model we may want to overprovide threads, because the render and main app threads don't do much when executing the schedule.
## Performance
My machine is Windows 11, AMD Ryzen 5600x, RX 6600
### Examples
#### This PR with pipelining vs Main
> Note that these were run on an older version of main and the performance profile has probably changed due to optimizations
Seeing a perf gain from 29% on many lights to 7% on many sprites.
<html>
<body>
<!--StartFragment--><google-sheets-html-origin>
| percent | | | Diff | | | Main | | | PR | |
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
tracy frame time | mean | median | sigma | mean | median | sigma | mean | median | sigma | mean | median | sigma
many foxes | 27.01% | 27.34% | -47.09% | 1.58 | 1.55 | -1.78 | 5.85 | 5.67 | 3.78 | 4.27 | 4.12 | 5.56
many lights | 29.35% | 29.94% | -10.84% | 3.02 | 3.03 | -0.57 | 10.29 | 10.12 | 5.26 | 7.27 | 7.09 | 5.83
many animated sprites | 13.97% | 15.69% | 14.20% | 3.79 | 4.17 | 1.41 | 27.12 | 26.57 | 9.93 | 23.33 | 22.4 | 8.52
3d scene | 25.79% | 26.78% | 7.46% | 0.49 | 0.49 | 0.15 | 1.9 | 1.83 | 2.01 | 1.41 | 1.34 | 1.86
many cubes | 11.97% | 11.28% | 14.51% | 1.93 | 1.78 | 1.31 | 16.13 | 15.78 | 9.03 | 14.2 | 14 | 7.72
many sprites | 7.14% | 9.42% | -85.42% | 1.72 | 2.23 | -6.15 | 24.09 | 23.68 | 7.2 | 22.37 | 21.45 | 13.35
<!--EndFragment-->
</body>
</html>
#### This PR with pipelining disabled vs Main
Mostly regressions here. I don't think this should be a problem as users that are disabling pipelined rendering are probably running single threaded and not using the parallel executor. The regression is probably mostly due to the switch to use `async_executor::run` instead of `try_tick` and also having one less thread to run systems on. I'll do a writeup on why switching to `run` causes regressions, so we can try to eventually fix it. Using try_tick causes issues when pipeline rendering is enable as seen [here](https://github.com/bevyengine/bevy/pull/6503#issuecomment-1380803518)
<html>
<body>
<!--StartFragment--><google-sheets-html-origin>
| percent | | | Diff | | | Main | | | PR no pipelining | |
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
tracy frame time | mean | median | sigma | mean | median | sigma | mean | median | sigma | mean | median | sigma
many foxes | -3.72% | -4.42% | -1.07% | -0.21 | -0.24 | -0.04 | 5.64 | 5.43 | 3.74 | 5.85 | 5.67 | 3.78
many lights | 0.29% | -0.30% | 4.75% | 0.03 | -0.03 | 0.25 | 10.29 | 10.12 | 5.26 | 10.26 | 10.15 | 5.01
many animated sprites | 0.22% | 1.81% | -2.72% | 0.06 | 0.48 | -0.27 | 27.12 | 26.57 | 9.93 | 27.06 | 26.09 | 10.2
3d scene | -15.79% | -14.75% | -31.34% | -0.3 | -0.27 | -0.63 | 1.9 | 1.83 | 2.01 | 2.2 | 2.1 | 2.64
many cubes | -2.85% | -3.30% | 0.00% | -0.46 | -0.52 | 0 | 16.13 | 15.78 | 9.03 | 16.59 | 16.3 | 9.03
many sprites | 2.49% | 2.41% | 0.69% | 0.6 | 0.57 | 0.05 | 24.09 | 23.68 | 7.2 | 23.49 | 23.11 | 7.15
<!--EndFragment-->
</body>
</html>
### Benchmarks
Mostly the same except empty_systems has got a touch slower. The maybe_pipelining+1 column has the compute task pool with an extra thread over default added. This is because pipelining loses one thread over main to execute systems on, since the main thread no longer runs normal systems.
<details>
<summary>Click Me</summary>
```text
group main maybe-pipelining+1
----- ------------------------- ------------------
busy_systems/01x_entities_03_systems 1.07 30.7±1.32µs ? ?/sec 1.00 28.6±1.35µs ? ?/sec
busy_systems/01x_entities_06_systems 1.10 52.1±1.10µs ? ?/sec 1.00 47.2±1.08µs ? ?/sec
busy_systems/01x_entities_09_systems 1.00 74.6±1.36µs ? ?/sec 1.00 75.0±1.93µs ? ?/sec
busy_systems/01x_entities_12_systems 1.03 100.6±6.68µs ? ?/sec 1.00 98.0±1.46µs ? ?/sec
busy_systems/01x_entities_15_systems 1.11 128.5±3.53µs ? ?/sec 1.00 115.5±1.02µs ? ?/sec
busy_systems/02x_entities_03_systems 1.16 50.4±2.56µs ? ?/sec 1.00 43.5±3.00µs ? ?/sec
busy_systems/02x_entities_06_systems 1.00 87.1±1.27µs ? ?/sec 1.05 91.5±7.15µs ? ?/sec
busy_systems/02x_entities_09_systems 1.04 139.9±6.37µs ? ?/sec 1.00 134.0±1.06µs ? ?/sec
busy_systems/02x_entities_12_systems 1.05 179.2±3.47µs ? ?/sec 1.00 170.1±3.17µs ? ?/sec
busy_systems/02x_entities_15_systems 1.01 219.6±3.75µs ? ?/sec 1.00 218.1±2.55µs ? ?/sec
busy_systems/03x_entities_03_systems 1.10 70.6±2.33µs ? ?/sec 1.00 64.3±0.69µs ? ?/sec
busy_systems/03x_entities_06_systems 1.02 130.2±3.11µs ? ?/sec 1.00 128.0±1.34µs ? ?/sec
busy_systems/03x_entities_09_systems 1.00 195.0±10.11µs ? ?/sec 1.00 194.8±1.41µs ? ?/sec
busy_systems/03x_entities_12_systems 1.01 261.7±4.05µs ? ?/sec 1.00 259.8±4.11µs ? ?/sec
busy_systems/03x_entities_15_systems 1.00 318.0±3.04µs ? ?/sec 1.06 338.3±20.25µs ? ?/sec
busy_systems/04x_entities_03_systems 1.00 82.9±0.63µs ? ?/sec 1.02 84.3±0.63µs ? ?/sec
busy_systems/04x_entities_06_systems 1.01 181.7±3.65µs ? ?/sec 1.00 179.8±1.76µs ? ?/sec
busy_systems/04x_entities_09_systems 1.04 265.0±4.68µs ? ?/sec 1.00 255.3±1.98µs ? ?/sec
busy_systems/04x_entities_12_systems 1.00 335.9±3.00µs ? ?/sec 1.05 352.6±15.84µs ? ?/sec
busy_systems/04x_entities_15_systems 1.00 418.6±10.26µs ? ?/sec 1.08 450.2±39.58µs ? ?/sec
busy_systems/05x_entities_03_systems 1.07 114.3±0.95µs ? ?/sec 1.00 106.9±1.52µs ? ?/sec
busy_systems/05x_entities_06_systems 1.08 229.8±2.90µs ? ?/sec 1.00 212.3±4.18µs ? ?/sec
busy_systems/05x_entities_09_systems 1.03 329.3±1.99µs ? ?/sec 1.00 319.2±2.43µs ? ?/sec
busy_systems/05x_entities_12_systems 1.06 454.7±6.77µs ? ?/sec 1.00 430.1±3.58µs ? ?/sec
busy_systems/05x_entities_15_systems 1.03 554.6±6.15µs ? ?/sec 1.00 538.4±23.87µs ? ?/sec
contrived/01x_entities_03_systems 1.00 14.0±0.15µs ? ?/sec 1.08 15.1±0.21µs ? ?/sec
contrived/01x_entities_06_systems 1.04 28.5±0.37µs ? ?/sec 1.00 27.4±0.44µs ? ?/sec
contrived/01x_entities_09_systems 1.00 41.5±4.38µs ? ?/sec 1.02 42.2±2.24µs ? ?/sec
contrived/01x_entities_12_systems 1.06 55.9±1.49µs ? ?/sec 1.00 52.6±1.36µs ? ?/sec
contrived/01x_entities_15_systems 1.02 68.0±2.00µs ? ?/sec 1.00 66.5±0.78µs ? ?/sec
contrived/02x_entities_03_systems 1.03 25.2±0.38µs ? ?/sec 1.00 24.6±0.52µs ? ?/sec
contrived/02x_entities_06_systems 1.00 46.3±0.49µs ? ?/sec 1.04 48.1±4.13µs ? ?/sec
contrived/02x_entities_09_systems 1.02 70.4±0.99µs ? ?/sec 1.00 68.8±1.04µs ? ?/sec
contrived/02x_entities_12_systems 1.06 96.8±1.49µs ? ?/sec 1.00 91.5±0.93µs ? ?/sec
contrived/02x_entities_15_systems 1.02 116.2±0.95µs ? ?/sec 1.00 114.2±1.42µs ? ?/sec
contrived/03x_entities_03_systems 1.00 33.2±0.38µs ? ?/sec 1.01 33.6±0.45µs ? ?/sec
contrived/03x_entities_06_systems 1.00 62.4±0.73µs ? ?/sec 1.01 63.3±1.05µs ? ?/sec
contrived/03x_entities_09_systems 1.02 96.4±0.85µs ? ?/sec 1.00 94.8±3.02µs ? ?/sec
contrived/03x_entities_12_systems 1.01 126.3±4.67µs ? ?/sec 1.00 125.6±2.27µs ? ?/sec
contrived/03x_entities_15_systems 1.03 160.2±9.37µs ? ?/sec 1.00 156.0±1.53µs ? ?/sec
contrived/04x_entities_03_systems 1.02 41.4±3.39µs ? ?/sec 1.00 40.5±0.52µs ? ?/sec
contrived/04x_entities_06_systems 1.00 78.9±1.61µs ? ?/sec 1.02 80.3±1.06µs ? ?/sec
contrived/04x_entities_09_systems 1.02 121.8±3.97µs ? ?/sec 1.00 119.2±1.46µs ? ?/sec
contrived/04x_entities_12_systems 1.00 157.8±1.48µs ? ?/sec 1.01 160.1±1.72µs ? ?/sec
contrived/04x_entities_15_systems 1.00 197.9±1.47µs ? ?/sec 1.08 214.2±34.61µs ? ?/sec
contrived/05x_entities_03_systems 1.00 49.1±0.33µs ? ?/sec 1.01 49.7±0.75µs ? ?/sec
contrived/05x_entities_06_systems 1.00 95.0±0.93µs ? ?/sec 1.00 94.6±0.94µs ? ?/sec
contrived/05x_entities_09_systems 1.01 143.2±1.68µs ? ?/sec 1.00 142.2±2.00µs ? ?/sec
contrived/05x_entities_12_systems 1.00 191.8±2.03µs ? ?/sec 1.01 192.7±7.88µs ? ?/sec
contrived/05x_entities_15_systems 1.02 239.7±3.71µs ? ?/sec 1.00 235.8±4.11µs ? ?/sec
empty_systems/000_systems 1.01 47.8±0.67ns ? ?/sec 1.00 47.5±2.02ns ? ?/sec
empty_systems/001_systems 1.00 1743.2±126.14ns ? ?/sec 1.01 1761.1±70.10ns ? ?/sec
empty_systems/002_systems 1.01 2.2±0.04µs ? ?/sec 1.00 2.2±0.02µs ? ?/sec
empty_systems/003_systems 1.02 2.7±0.09µs ? ?/sec 1.00 2.7±0.16µs ? ?/sec
empty_systems/004_systems 1.00 3.1±0.11µs ? ?/sec 1.00 3.1±0.24µs ? ?/sec
empty_systems/005_systems 1.00 3.5±0.05µs ? ?/sec 1.11 3.9±0.70µs ? ?/sec
empty_systems/010_systems 1.00 5.5±0.12µs ? ?/sec 1.03 5.7±0.17µs ? ?/sec
empty_systems/015_systems 1.00 7.9±0.19µs ? ?/sec 1.06 8.4±0.16µs ? ?/sec
empty_systems/020_systems 1.00 10.4±1.25µs ? ?/sec 1.02 10.6±0.18µs ? ?/sec
empty_systems/025_systems 1.00 12.4±0.39µs ? ?/sec 1.14 14.1±1.07µs ? ?/sec
empty_systems/030_systems 1.00 15.1±0.39µs ? ?/sec 1.05 15.8±0.62µs ? ?/sec
empty_systems/035_systems 1.00 16.9±0.47µs ? ?/sec 1.07 18.0±0.37µs ? ?/sec
empty_systems/040_systems 1.00 19.3±0.41µs ? ?/sec 1.05 20.3±0.39µs ? ?/sec
empty_systems/045_systems 1.00 22.4±1.67µs ? ?/sec 1.02 22.9±0.51µs ? ?/sec
empty_systems/050_systems 1.00 24.4±1.67µs ? ?/sec 1.01 24.7±0.40µs ? ?/sec
empty_systems/055_systems 1.05 28.6±5.27µs ? ?/sec 1.00 27.2±0.70µs ? ?/sec
empty_systems/060_systems 1.02 29.9±1.64µs ? ?/sec 1.00 29.3±0.66µs ? ?/sec
empty_systems/065_systems 1.02 32.7±3.15µs ? ?/sec 1.00 32.1±0.98µs ? ?/sec
empty_systems/070_systems 1.00 33.0±1.42µs ? ?/sec 1.03 34.1±1.44µs ? ?/sec
empty_systems/075_systems 1.00 34.8±0.89µs ? ?/sec 1.04 36.2±0.70µs ? ?/sec
empty_systems/080_systems 1.00 37.0±1.82µs ? ?/sec 1.05 38.7±1.37µs ? ?/sec
empty_systems/085_systems 1.00 38.7±0.76µs ? ?/sec 1.05 40.8±0.83µs ? ?/sec
empty_systems/090_systems 1.00 41.5±1.09µs ? ?/sec 1.04 43.2±0.82µs ? ?/sec
empty_systems/095_systems 1.00 43.6±1.10µs ? ?/sec 1.04 45.2±0.99µs ? ?/sec
empty_systems/100_systems 1.00 46.7±2.27µs ? ?/sec 1.03 48.1±1.25µs ? ?/sec
```
</details>
## Migration Guide
### App `runner` and SubApp `extract` functions are now required to be Send
This was changed to enable pipelined rendering. If this breaks your use case please report it as these new bounds might be able to be relaxed.
## ToDo
* [x] redo benchmarking
* [x] reinvestigate the perf of the try_tick -> run change for task pool scope
# Objective
- Add a configurable prepass
- A depth prepass is useful for various shader effects and to reduce overdraw. It can be expansive depending on the scene so it's important to be able to disable it if you don't need any effects that uses it or don't suffer from excessive overdraw.
- The goal is to eventually use it for things like TAA, Ambient Occlusion, SSR and various other techniques that can benefit from having a prepass.
## Solution
The prepass node is inserted before the main pass. It runs for each `Camera3d` with a prepass component (`DepthPrepass`, `NormalPrepass`). The presence of one of those components is used to determine which textures are generated in the prepass. When any prepass is enabled, the depth buffer generated will be used by the main pass to reduce overdraw.
The prepass runs for each `Material` created with the `MaterialPlugin::prepass_enabled` option set to `true`. You can overload the shader used by the prepass by using `Material::prepass_vertex_shader()` and/or `Material::prepass_fragment_shader()`. It will also use the `Material::specialize()` for more advanced use cases. It is enabled by default on all materials.
The prepass works on opaque materials and materials using an alpha mask. Transparent materials are ignored.
The `StandardMaterial` overloads the prepass fragment shader to support alpha mask and normal maps.
---
## Changelog
- Add a new `PrepassNode` that runs before the main pass
- Add a `PrepassPlugin` to extract/prepare/queue the necessary data
- Add a `DepthPrepass` and `NormalPrepass` component to control which textures will be created by the prepass and available in later passes.
- Add a new `prepass_enabled` flag to the `MaterialPlugin` that will control if a material uses the prepass or not.
- Add a new `prepass_enabled` flag to the `PbrPlugin` to control if the StandardMaterial uses the prepass. Currently defaults to false.
- Add `Material::prepass_vertex_shader()` and `Material::prepass_fragment_shader()` to control the prepass from the `Material`
## Notes
In bevy's sample 3d scene, the performance is actually worse when enabling the prepass, but on more complex scenes the performance is generally better. I would like more testing on this, but @DGriffin91 has reported a very noticeable improvements in some scenes.
The prepass is also used by @JMS55 for TAA and GTAO
discord thread: <https://discord.com/channels/691052431525675048/1011624228627419187>
This PR was built on top of the work of multiple people
Co-Authored-By: @superdump
Co-Authored-By: @robtfm
Co-Authored-By: @JMS55
Co-authored-by: Charles <IceSentry@users.noreply.github.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
# Objective
Fix https://github.com/bevyengine/bevy/issues/4530
- Make it easier to open/close/modify windows by setting them up as `Entity`s with a `Window` component.
- Make multiple windows very simple to set up. (just add a `Window` component to an entity and it should open)
## Solution
- Move all properties of window descriptor to ~components~ a component.
- Replace `WindowId` with `Entity`.
- ~Use change detection for components to update backend rather than events/commands. (The `CursorMoved`/`WindowResized`/... events are kept for user convenience.~
Check each field individually to see what we need to update, events are still kept for user convenience.
---
## Changelog
- `WindowDescriptor` renamed to `Window`.
- Width/height consolidated into a `WindowResolution` component.
- Requesting maximization/minimization is done on the [`Window::state`] field.
- `WindowId` is now `Entity`.
## Migration Guide
- Replace `WindowDescriptor` with `Window`.
- Change `width` and `height` fields in a `WindowResolution`, either by doing
```rust
WindowResolution::new(width, height) // Explicitly
// or using From<_> for tuples for convenience
(1920., 1080.).into()
```
- Replace any `WindowCommand` code to just modify the `Window`'s fields directly and creating/closing windows is now by spawning/despawning an entity with a `Window` component like so:
```rust
let window = commands.spawn(Window { ... }).id(); // open window
commands.entity(window).despawn(); // close window
```
## Unresolved
- ~How do we tell when a window is minimized by a user?~
~Currently using the `Resize(0, 0)` as an indicator of minimization.~
No longer attempting to tell given how finnicky this was across platforms, now the user can only request that a window be maximized/minimized.
## Future work
- Move `exit_on_close` functionality out from windowing and into app(?)
- https://github.com/bevyengine/bevy/issues/5621
- https://github.com/bevyengine/bevy/issues/7099
- https://github.com/bevyengine/bevy/issues/7098
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Speed up the render phase of rendering. An extension of #6885.
`SystemState::get` increments the `World`'s change tick atomically every time it's called. This is notably more expensive than a unsynchronized increment, even without contention. It also updates the archetypes, even when there has been nothing to update when it's called repeatedly.
## Solution
Piggyback off of #6885. Split `SystemState::validate_world_and_update_archetypes` into `SystemState::validate_world` and `SystemState::update_archetypes`, and make the later `pub`. Then create safe variants of `SystemState::get_unchecked_manual` that still validate the `World` but do not update archetypes and do not increment the change tick using `World::read_change_tick` and `World::change_tick`. Update `RenderCommandState` to call `SystemState::update_archetypes` in `Draw::prepare` and `SystemState::get_manual` in `Draw::draw`.
## Performance
There's a slight perf benefit (~2%) for `main_opaque_pass_3d` on `many_foxes` (340.39 us -> 333.32 us)
![image](https://user-images.githubusercontent.com/3137680/210643746-25320b98-3e2b-4a95-8084-892c23bb8b4e.png)
## Alternatives
We can change `SystemState::get` to not increment the `World`'s change tick. Though this would still put updating the archetypes and an atomic read on the hot-path.
---
## Changelog
Added: `SystemState::get_manual`
Added: `SystemState::get_manual_mut`
Added: `SystemState::update_archetypes`
# Objective
- Allow rendering queue systems to use a `Res<PipelineCache>` even for queueing up new rendering pipelines. This is part of unblocking parallel execution queue systems.
## Solution
- Make `PipelineCache` internally mutable w.r.t to queueing new pipelines. Pipelines are no longer immediately updated into the cache state, but rather queued into a Vec. The Vec of pending new pipelines is then later processed at the same time we actually create the queued pipelines on the GPU device.
---
## Changelog
`PipelineCache` no longer requires mutable access in order to queue render / compute pipelines.
## Migration Guide
* Most usages of `resource_mut::<PipelineCache>` and `ResMut<PipelineCache>` can be changed to `resource::<PipelineCache>` and `Res<PipelineCache>` as long as they don't use any methods requiring mutability - the only public method requiring it is `process_queue`.
# Objective
The documentation of the bevy_render crate is still pretty incomplete.
This PR follows up on #6885 and improves the documentation of the `render_phase` module.
This module contains one of our most important rendering abstractions and the current documentation is pretty confusing. This PR tries to clarify what all of these pieces are for and how they work together to form bevy`s modular rendering logic.
## Solution
### Code Reformating
- I have moved the `rangefinder` into the `render_phase` module since it is only used there.
- I have moved the `PhaseItem` (and the `BatchedPhaseItem`) from `render_phase::draw` over to `render_phase::mod`. This does not change the public-facing API since they are reexported anyway, but this change makes the relation between `RenderPhase` and `PhaseItem` clear and easier to discover.
### Documentation
- revised all documentation in the `render_phase` module
- added a module-level explanation of how `RenderPhase`s, `RenderPass`es, `PhaseItem`s, `Draw` functions, and `RenderCommands` relate to each other and how they are used
---
## Changelog
- The `rangefinder` module has been moved into the `render_phase` module.
## Migration Guide
- The `rangefinder` module has been moved into the `render_phase` module.
```rust
//old
use bevy::render::rangefinder::*;
// new
use bevy::render::render_phase::rangefinder::*;
```
# Objective
- There is a warning when building in release:
```
warning: unused import: `bevy_ecs::system::Local`
--> crates/bevy_render/src/extract_resource.rs:5:5
|
5 | use bevy_ecs::system::Local;
| ^^^^^^^^^^^^^^^^^^^^^^^
|
= note: `#[warn(unused_imports)]` on by default
```
- It's used 59751d6e33/crates/bevy_render/src/extract_resource.rs (L47)
- Fix it
## Solution
- Gate the import
- repeat of #5320
As mentioned in https://github.com/bevyengine/bevy/pull/6530. It allows to not create a new constant and simply having it to show up in the documentation when someone is looking for "transparent" (case insensitive) in rustdoc search.
cc @alice-i-cecile
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
# Objective
Fixes#3310. Fixes#6282. Fixes#6278. Fixes#3666.
## Solution
Split out `!Send` resources into `NonSendResources`. Add a `origin_thread_id` to all `!Send` Resources, check it on dropping `NonSendResourceData`, if there's a mismatch, panic. Moved all of the checks that `MainThreadValidator` would do into `NonSendResources` instead.
All `!Send` resources now individually track which thread they were inserted from. This is validated against for every access, mutation, and drop that could be done against the value.
A regression test using an altered version of the example from #3310 has been added.
This is a stopgap solution for the current status quo. A full solution may involve fully removing `!Send` resources/components from `World`, which will likely require a much more thorough design on how to handle the existing in-engine and ecosystem use cases.
This PR also introduces another breaking change:
```rust
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct Resource(u32);
fn main() {
let mut world = World::new();
world.insert_resource(Resource(1));
world.insert_non_send_resource(Resource(2));
let res = world.get_resource_mut::<Resource>().unwrap();
assert_eq!(res.0, 2);
}
```
This code will run correctly on 0.9.1 but not with this PR, since NonSend resources and normal resources have become actual distinct concepts storage wise.
## Changelog
Changed: Fix soundness bug with `World: Send`. Dropping a `World` that contains a `!Send` resource on the wrong thread will now panic.
## Migration Guide
Normal resources and `NonSend` resources no longer share the same backing storage. If `R: Resource`, then `NonSend<R>` and `Res<R>` will return different instances from each other. If you are using both `Res<T>` and `NonSend<T>` (or their mutable variants), to fetch the same resources, it's strongly advised to use `Res<T>`.
# Objective
Speed up the render phase for rendering.
## Solution
- Follow up #6988 and make the internals of atomic IDs `NonZeroU32`. This niches the `Option`s of the IDs in draw state, which reduces the size and branching behavior when evaluating for equality.
- Require `&RenderDevice` to get the device's `Limits` when initializing a `TrackedRenderPass` to preallocate the bind groups and vertex buffer state in `DrawState`, this removes the branch on needing to resize those `Vec`s.
## Performance
This produces a similar speed up akin to that of #6885. This shows an approximate 6% speed up in `main_opaque_pass_3d` on `many_foxes` (408.79 us -> 388us). This should be orthogonal to the gains seen there.
![image](https://user-images.githubusercontent.com/3137680/209906239-e430f026-63c2-4b95-957e-a2045b810d79.png)
---
## Changelog
Added: `RenderContext::begin_tracked_render_pass`.
Changed: `TrackedRenderPass` now requires a `&RenderDevice` on construction.
Removed: `bevy_render::render_phase::DrawState`. It was not usable in any form outside of `bevy_render`.
## Migration Guide
TODO
# Objective
- This pulls out some of the changes to Plugin setup and sub apps from #6503 to make that PR easier to review.
- Separate the extract stage from running the sub app's schedule to allow for them to be run on separate threads in the future
- Fixes#6990
## Solution
- add a run method to `SubApp` that runs the schedule
- change the name of `sub_app_runner` to extract to make it clear that this function is only for extracting data between the main app and the sub app
- remove the extract stage from the sub app schedule so it can be run separately. This is done by adding a `setup` method to the `Plugin` trait that runs after all plugin build methods run. This is required to allow the extract stage to be removed from the schedule after all the plugins have added their systems to the stage. We will also need the setup method for pipelined rendering to setup the render thread. See e3267965e1/crates/bevy_render/src/pipelined_rendering.rs (L57-L98)
## Changelog
- Separate SubApp Extract stage from running the sub app schedule.
## Migration Guide
### SubApp `runner` has conceptually been changed to an `extract` function.
The `runner` no longer is in charge of running the sub app schedule. It's only concern is now moving data between the main world and the sub app. The `sub_app.app.schedule` is now run for you after the provided function is called.
```rust
// before
fn main() {
let sub_app = App::empty();
sub_app.add_stage(MyStage, SystemStage::parallel());
App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
extract(app_world, render_app);
render_app.app.schedule.run();
});
}
// after
fn main() {
let sub_app = App::empty();
sub_app.add_stage(MyStage, SystemStage::parallel());
App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
extract(app_world, render_app);
// schedule is automatically called for you after extract is run
});
}
```
# Objective
- Storage buffers are useful and not currently supported by the `AsBindGroup` derive which means you need to expand the macro if you need a storage buffer
## Solution
- Add a new `#[storage]` attribute to the derive `AsBindGroup` macro.
- Support and optional `read_only` parameter that defaults to false when not present.
- Support visibility parameters like the texture and sampler attributes.
---
## Changelog
- Add a new `#[storage(index)]` attribute to the derive `AsBindGroup` macro.
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
# Objective
- Avoid slower than necessary first frame after spawning many entities due to them not having `Aabb`s and so being marked visible
- Avoids unnecessarily large system and VRAM allocations as a consequence
## Solution
- I noticed when debugging the `many_cubes` stress test in Xcode that the `MeshUniform` binding was much larger than it needed to be. I realised that this was because initially, all mesh entities are marked as being visible because they don't have `Aabb`s because `calculate_bounds` is being run in `PostUpdate` and there are no system commands applications before executing the visibility check systems that need the `Aabb`s. The solution then is to run the `calculate_bounds` system just before the previous system commands are applied which is at the end of the `Update` stage.
Spiritual successor to #5205.
Actual successor to #6865.
# Objective
Currently, system params are defined using three traits: `SystemParam`, `ReadOnlySystemParam`, `SystemParamState`. The behavior for each param is specified by the `SystemParamState` trait, while `SystemParam` simply defers to the state.
Splitting the traits in this way makes it easier to implement within macros, but it increases the cognitive load. Worst of all, this approach requires each `MySystemParam` to have a public `MySystemParamState` type associated with it.
## Solution
* Merge the trait `SystemParamState` into `SystemParam`.
* Remove all trivial `SystemParam` state types.
* `OptionNonSendMutState<T>`: you will not be missed.
---
- [x] Fix/resolve the remaining test failure.
## Changelog
* Removed the trait `SystemParamState`, merging its functionality into `SystemParam`.
## Migration Guide
**Note**: this should replace the migration guide for #6865.
This is relative to Bevy 0.9, not main.
The traits `SystemParamState` and `SystemParamFetch` have been removed, and their functionality has been transferred to `SystemParam`.
```rust
// Before (0.9)
impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
}
unsafe impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
unsafe impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(&mut self, ...) -> Self::Item;
}
unsafe impl ReadOnlySystemParamFetch for MyParamState { }
// After (0.10)
unsafe impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
type Item<'w, 's> = MyParam<'w, 's>;
fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State { ... }
fn get_param<'w, 's>(state: &mut Self::State, ...) -> Self::Item<'w, 's>;
}
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> { }
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> {}
```
# Objective
- When using `Color::hex` for the first time, I was confused by the fact that I can't specify colors using #, which is much more familiar.
- In the code editor (if there is support) there is a preview of the color, which is very convenient.
![Снимок экрана от 2022-12-30 02-54-00](https://user-images.githubusercontent.com/69102503/209990973-f6fc3bc6-08f6-4e51-a9a9-1de8a675c82d.png)
## Solution
- Allow you to enter colors like `#ff33f2` and use the `.strip_prefix` method to delete the `#` character.