Commit graph

96 commits

Author SHA1 Message Date
devil ira
48ac955afd Fix loading non-TriangleList meshes without normals in gltf loader (#4376)
# Objective
Make it so that loading in a mesh without normals that is not a `TriangleList` succeeds.

## Solution
Flat normals can only be calculated on a mesh made of triangles.
Check whether the mesh is a `TriangleList` before trying to compute missing normals.

## Additional changes
The panic condition in `duplicate_vertices` did not make sense to me. I moved it to `compute_flat_normals` where the algorithm would produce incorrect results if the mesh is not a `TriangleList`.

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-03-31 20:43:01 +00:00
James Liu
31bd4ecbbc Mesh Skinning. Attempt #3 (#4238)
# Objective
Load skeletal weights and indices from GLTF files. Animate meshes.

## Solution
 - Load skeletal weights and indices from GLTF files.
 - Added `SkinnedMesh` component and ` SkinnedMeshInverseBindPose` asset
 - Added `extract_skinned_meshes` to extract joint matrices.
 - Added queue phase systems for enqueuing the buffer writes.

Some notes:

 -  This ports part of # #2359 to the current main.
 -  This generates new `BufferVec`s and bind groups every frame. The expectation here is that the number of `Query::get` calls during extract is probably going to be the stronger bottleneck, with up to 256 calls per skinned mesh. Until that is optimized, caching buffers and bind groups is probably a non-concern.
 - Unfortunately, due to the uniform size requirements, this means a 16KB buffer is allocated for every skinned mesh every frame. There's probably a few ways to get around this, but most of them require either compute shaders or storage buffers, which are both incompatible with WebGL2.

Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
2022-03-29 18:31:13 +00:00
François
fbe7a49d5b Gltf animations (#3751)
# Objective

- Load informations for animations from GLTF
- Make experimenting on animations easier

# Non Objective

- Implement a solutions for all animations in Bevy. This would need a discussion / RFC. The goal here is only to have the information available to try different APIs

## Solution

- Load animations with a representation close to the GLTF spec
- Add an example to display animations. There is an animation driver in the example, not in Bevy code, to show how it can be used. The example is cycling between examples from the official gltf sample ([AnimatedTriangle](https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/AnimatedTriangle), [BoxAnimated](https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BoxAnimated)), and one from me with some cases not present in the official examples.


https://user-images.githubusercontent.com/8672791/150696656-073403f0-d921-43b6-beaf-099c7aee16ed.mp4




Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-22 02:26:34 +00:00
Jakob Hellermann
3e631e6234 gltf-loader: disable backface culling if material is double-sided (#4270)
# Objective

The  [glTF spec](8e798b02d2/specification/2.0/Specification.adoc (395-double-sided)) the `doubleSided` has the following to say about the `doubleSided` boolean:

> When this value is false, back-face culling is enabled, i.e., only front-facing triangles are rendered.
> When this value is true, back-face culling is disabled and double sided lighting is enabled. The back-face MUST have its normals reversed before the lighting equation is evaluated.

## Solution
Disable backface culling when `doubleSided: true`.
2022-03-20 21:32:38 +00:00
Alice Cecile
7ce3ae43e3 Bump Bevy to 0.7.0-dev (#4230)
# Objective

- The [dev docs](https://dev-docs.bevyengine.org/bevy/index.html#) show version 0.6.0, which is actively misleading.

[Image of the problem](https://cdn.discordapp.com/attachments/695741366520512563/953513612943704114/Screenshot_20220316-154100_Firefox-01.jpeg)

Noticed by @ickk, fix proposed by @mockersf.

## Solution

- Bump the version across all Bevy crates to 0.7.0 dev.
- Set a reminder in the Release Checklist to remember to do this each release.
2022-03-19 03:54:15 +00:00
Robert Swain
0529f633f9 KTX2/DDS/.basis compressed texture support (#3884)
# Objective

- Support compressed textures including 'universal' formats (ETC1S, UASTC) and transcoding of them to 
- Support `.dds`, `.ktx2`, and `.basis` files

## Solution

- Fixes https://github.com/bevyengine/bevy/issues/3608 Look there for more details.
- Note that the functionality is all enabled through non-default features. If it is desirable to enable some by default, I can do that.
- The `basis-universal` crate, used for `.basis` file support and for transcoding, is built on bindings against a C++ library. It's not feasible to rewrite in Rust in a short amount of time. There are no Rust alternatives of which I am aware and it's specialised code. In its current state it doesn't support the wasm target, but I don't know for sure. However, it is possible to build the upstream C++ library with emscripten, so there is perhaps a way to add support for web too with some shenanigans.
- There's no support for transcoding from BasisLZ/ETC1S in KTX2 files as it was quite non-trivial to implement and didn't feel important given people could use `.basis` files for ETC1S.
2022-03-15 22:26:46 +00:00
Alice Cecile
a304fd9a99 Split bevy_hierarchy out from bevy_transform (#4168)
# Objective

- Hierarchy tools are not just used for `Transform`: they are also used for scenes.
- In the future there's interest in using them for other features, such as visiibility inheritance.
- The fact that these tools are found in `bevy_transform` causes a great deal of user and developer confusion
- Fixes #2758.

## Solution

- Split `bevy_transform` into two!
- Make everything work again.

Note that this is a very tightly scoped PR: I *know* there are code quality and docs issues that existed in bevy_transform that I've just moved around. We should fix those in a seperate PR and try to merge this ASAP to reduce the bitrot involved in splitting an entire crate.

## Frustrations

The API around `GlobalTransform` is a mess: we have massive code and docs duplication, no link between the two types and no clear way to extend this to other forms of inheritance.

In the medium-term, I feel pretty strongly that `GlobalTransform` should be replaced by something like `Inherited<Transform>`, which lives in `bevy_hierarchy`:

- avoids code duplication
- makes the inheritance pattern extensible
- links the types at the type-level
- allows us to remove all references to inheritance from `bevy_transform`, making it more useful as a standalone crate and cleaning up its docs

## Additional context

- double-blessed by @cart in https://github.com/bevyengine/bevy/issues/4141#issuecomment-1063592414 and https://github.com/bevyengine/bevy/issues/2758#issuecomment-913810963
- preparation for more advanced / cleaner hierarchy tools: go read https://github.com/bevyengine/rfcs/pull/53 !
- originally attempted by @finegeometer in #2789. It was a great idea, just needed more discussion!

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-15 01:54:05 +00:00
Jakob Hellermann
bf6de89622 use marker components for cameras instead of name strings (#3635)
**Problem**
- whenever you want more than one of the builtin cameras (for example multiple windows, split screen, portals), you need to add a render graph node that executes the correct sub graph, extract the camera into the render world and add the correct `RenderPhase<T>` components
- querying for the 3d camera is annoying because you need to compare the camera's name to e.g. `CameraPlugin::CAMERA_3d`

**Solution**
- Introduce the marker types `Camera3d`, `Camera2d` and `CameraUi`
-> `Query<&mut Transform, With<Camera3d>>` works
- `PerspectiveCameraBundle::new_3d()` and `PerspectiveCameraBundle::<Camera3d>::default()` contain the `Camera3d` marker
- `OrthographicCameraBundle::new_3d()` has `Camera3d`, `OrthographicCameraBundle::new_2d()` has `Camera2d`
- remove `ActiveCameras`, `ExtractedCameraNames`
- run 2d, 3d and ui passes for every camera of their respective marker
-> no custom setup for multiple windows example needed

**Open questions**
- do we need a replacement for `ActiveCameras`? What about a component `ActiveCamera { is_active: bool }` similar to `Visibility`?

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-03-12 00:41:06 +00:00
Carter Anderson
e369a8ad51 Mesh vertex buffer layouts (#3959)
This PR makes a number of changes to how meshes and vertex attributes are handled, which the goal of enabling easy and flexible custom vertex attributes:
* Reworks the `Mesh` type to use the newly added `VertexAttribute` internally
  * `VertexAttribute` defines the name, a unique `VertexAttributeId`, and a `VertexFormat`
  *  `VertexAttributeId` is used to produce consistent sort orders for vertex buffer generation, replacing the more expensive and often surprising "name based sorting"  
  * Meshes can be used to generate a `MeshVertexBufferLayout`, which defines the layout of the gpu buffer produced by the mesh. `MeshVertexBufferLayouts` can then be used to generate actual `VertexBufferLayouts` according to the requirements of a specific pipeline. This decoupling of "mesh layout" vs "pipeline vertex buffer layout" is what enables custom attributes. We don't need to standardize _mesh layouts_ or contort meshes to meet the needs of a specific pipeline. As long as the mesh has what the pipeline needs, it will work transparently. 
* Mesh-based pipelines now specialize on `&MeshVertexBufferLayout` via the new `SpecializedMeshPipeline` trait (which behaves like `SpecializedPipeline`, but adds `&MeshVertexBufferLayout`). The integrity of the pipeline cache is maintained because the `MeshVertexBufferLayout` is treated as part of the key (which is fully abstracted from implementers of the trait ... no need to add any additional info to the specialization key).    
* Hashing `MeshVertexBufferLayout` is too expensive to do for every entity, every frame. To make this scalable, I added a generalized "pre-hashing" solution to `bevy_utils`: `Hashed<T>` keys and `PreHashMap<K, V>` (which uses `Hashed<T>` internally) . Why didn't I just do the quick and dirty in-place "pre-compute hash and use that u64 as a key in a hashmap" that we've done in the past? Because its wrong! Hashes by themselves aren't enough because two different values can produce the same hash. Re-hashing a hash is even worse! I decided to build a generalized solution because this pattern has come up in the past and we've chosen to do the wrong thing. Now we can do the right thing! This did unfortunately require pulling in `hashbrown` and using that in `bevy_utils`, because avoiding re-hashes requires the `raw_entry_mut` api, which isn't stabilized yet (and may never be ... `entry_ref` has favor now, but also isn't available yet). If std's HashMap ever provides the tools we need, we can move back to that. Note that adding `hashbrown` doesn't increase our dependency count because it was already in our tree. I will probably break these changes out into their own PR.
* Specializing on `MeshVertexBufferLayout` has one non-obvious behavior: it can produce identical pipelines for two different MeshVertexBufferLayouts. To optimize the number of active pipelines / reduce re-binds while drawing, I de-duplicate pipelines post-specialization using the final `VertexBufferLayout` as the key.  For example, consider a pipeline that needs the layout `(position, normal)` and is specialized using two meshes: `(position, normal, uv)` and `(position, normal, other_vec2)`. If both of these meshes result in `(position, normal)` specializations, we can use the same pipeline! Now we do. Cool!

To briefly illustrate, this is what the relevant section of `MeshPipeline`'s specialization code looks like now:

```rust
impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> RenderPipelineDescriptor {
        let mut vertex_attributes = vec![
            Mesh::ATTRIBUTE_POSITION.at_shader_location(0),
            Mesh::ATTRIBUTE_NORMAL.at_shader_location(1),
            Mesh::ATTRIBUTE_UV_0.at_shader_location(2),
        ];

        let mut shader_defs = Vec::new();
        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push(String::from("VERTEX_TANGENTS"));
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(3));
        }

        let vertex_buffer_layout = layout
            .get_layout(&vertex_attributes)
            .expect("Mesh is missing a vertex attribute");
```

Notice that this is _much_ simpler than it was before. And now any mesh with any layout can be used with this pipeline, provided it has vertex postions, normals, and uvs. We even got to remove `HAS_TANGENTS` from MeshPipelineKey and `has_tangents` from `GpuMesh`, because that information is redundant with `MeshVertexBufferLayout`.

This is still a draft because I still need to:

* Add more docs
* Experiment with adding error handling to mesh pipeline specialization (which would print errors at runtime when a mesh is missing a vertex attribute required by a pipeline). If it doesn't tank perf, we'll keep it.
* Consider breaking out the PreHash / hashbrown changes into a separate PR.
* Add an example illustrating this change
* Verify that the "mesh-specialized pipeline de-duplication code" works properly

Please dont yell at me for not doing these things yet :) Just trying to get this in peoples' hands asap.

Alternative to #3120
Fixes #3030


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-23 23:21:13 +00:00
Kirillov Kirill
b4bf5b5d87 Fix glTF perspective camera projection (#4006)
# Objective

- Fixes #4005 

## Solution

- Include the `near` and `far` clipping values from the perspective projection in the `Camera` struct; before that, they were both being defaulted to 0.
2022-02-21 23:29:32 +00:00
danieleades
d8974e7c3d small and mostly pointless refactoring (#2934)
What is says on the tin.

This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.

that said, deriving `Default` for a couple of structs is a nice easy win
2022-02-13 22:33:55 +00:00
MinerSebas
59ee512292 Add TransformBundle (#3054)
# Objective

- Bevy currently has no simple way to make an "empty" Entity work correctly in a Hierachy.
  - The current Solution is to insert a Tuple instead: 

```rs
.insert_bundle((Transform::default(), GlobalTransform::default()))
```

## Solution

* Add a `TransformBundle` that combines the Components:

```rs
.insert_bundle(TransformBundle::default())
```

* The code is based on #2331, except for missing the more controversial usage of `TransformBundle` as a Sub-bundle in preexisting Bundles.

Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-02-06 01:07:55 +00:00
dependabot[bot]
6a499b125b Update gltf requirement from 0.16.0 to 1.0.0 (#3826)
Updates the requirements on [gltf](https://github.com/gltf-rs/gltf) to permit the latest version.
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a href="https://github.com/gltf-rs/gltf/blob/master/CHANGELOG.md">gltf's changelog</a>.</em></p>
<blockquote>
<h2>[1.0.0] - 2022-01-29</h2>
<h3>Added</h3>
<ul>
<li>Support for the <code>KHR_materials_specular</code> extension.</li>
<li>Support for the <code>KHR_materials_variants</code> extension.</li>
<li>Support for the <code>KHR_materials_volume</code> extension.</li>
<li><code>ExactSizeIterator</code> implementation for <code>Joints</code> iterator.</li>
</ul>
<h3>Changed</h3>
<ul>
<li>The <code>mesh.primitives</code> property is now always serialized.</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>Incorrect implementation of <code>Normalize&lt;u16&gt;</code> and <code>Normalize&lt;f32&gt;</code> for <code>u16</code>.</li>
</ul>
<h2>[0.16.0] - 2021-05-13</h2>
<h3>Added</h3>
<ul>
<li>Support for the <code>KHR_texture_transform</code> extension.</li>
<li>Support for the <code>KHR_materials_transmission_ior</code> extension.</li>
</ul>
<h3>Changed</h3>
<ul>
<li><code>Material::alpha_cutoff</code> is now optional.</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>URIs with embedded data failing to import when using <code>import_slice</code>.</li>
<li>Serialization of empty primitives object being skipped.</li>
</ul>
<h2>[0.15.2] - 2020-03-29</h2>
<h3>Changed</h3>
<ul>
<li>All features are now exposed in the <a href="http://docs.rs/gltf">online documentation</a>.</li>
<li>Primary iterators now implement <code>Iterator::nth</code> explicitly for improved performance.</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>Compiler warnings regarding deprecation of <code>std::error::Error::description</code>.</li>
</ul>
<h2>[0.15.1] - 2020-03-15</h2>
<h3>Added</h3>
<ul>
<li>New feature <code>guess_mime_type</code> which, as the name suggests, attempts to guess
the MIME type of an image if it doesn't exactly match the standard.</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a href="https://github.com/gltf-rs/gltf/commits">compare view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)


</details>
2022-02-02 00:25:39 +00:00
Carter Anderson
2ee38cb9e0 Release 0.6.0 (#3587) 2022-01-08 10:18:22 +00:00
François
015da72250 gltf loader: do not use the taskpool for only one task (#3577)
# Objective

- Fix the case mentioned in https://github.com/bevyengine/bevy/pull/2725#issuecomment-1007014024.
- On a machine with 4 cores, so 1 thread for assets, loading a gltf with only one textures hangs all asset loading

## Solution

- Do not use the task pool when there is only one texture to load


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2022-01-07 07:19:22 +00:00
François
a1e3c5c100 load names of lights from gltf (#3553)
# Objective

- Load names of lights from gltf

## Solution

- Load names of lights from gltf


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2022-01-05 03:27:17 +00:00
Robert Swain
85b7589388 bevy_gltf: Add support for loading lights (#3506)
# Objective

- Add support for loading lights from glTF 2.0 files

## Solution

- This adds support for the KHR_punctual_lights extension which supports point, directional, and spot lights, though we don't yet support spot lights.
- Inserting light bundles when creating scenes required registering some more light bundle component types.
2022-01-03 07:59:25 +00:00
Michael Dorst
2790b9d240 Fix doc_markdown lints in bevy_gltf (#3474)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.

This PR fixes lints in the `bevy_gltf` crate.
2021-12-29 17:38:09 +00:00
François
c61fbcb7db Only bevy_render should depend directly on wgpu (#3393)
# Objective

- Only bevy_render should depend directly on wgpu
- This helps to make sure bevy_render re-exports everything needed from wgpu

## Solution

- Remove bevy_pbr, bevy_sprite and bevy_ui dependency on wgpu


Co-authored-by: François <8672791+mockersf@users.noreply.github.com>
2021-12-20 20:50:52 +00:00
Vabka
9a89295a17 Update wgpu to 0.12 and naga to 0.8 (#3375)
# Objective

Fixes #3352
Fixes #3208

## Solution

- Update wgpu to 0.12
- Update naga to 0.8
- Resolve compilation errors
- Remove [[block]] from WGSL shaders (because it is depracated and now wgpu cant parse it)
- Replace `elseif` with `else if` in pbr.wgsl
2021-12-19 03:03:06 +00:00
Carter Anderson
ffecb05a0a Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release.

The examples are all ported over and operational with a few exceptions:

* I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure.
* Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example.
* Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority.
2021-12-14 03:58:23 +00:00
François
c6fec1f0c2 Fix clippy lints for 1.57 (#3238)
# Objective

- New clippy lints with rust 1.57 are failing

## Solution

- Fixed clippy lints following suggestions
- I ignored clippy in old renderer because there was many and it will be removed soon
2021-12-02 23:40:37 +00:00
Jay Oster
76cb662be1 Fix MIME type support for glTF buffer Data URIs (#3101)
# Objective

- The glTF 2.0 spec requires that Data URIs use one of two valid MIME types. `bevy_gltf` only supports one of these.
- See:
  - https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#_media_type_registrations
  - https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#file-extensions-and-media-types
  - https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#binary-data-storage

> Buffer data **MAY** alternatively be embedded in the glTF file via `data:` URI with base64 encoding. When `data:` URI is used for buffer storage, its mediatype field **MUST** be set to `application/octet-stream` or `application/gltf-buffer`.

(Emphasis in original.)

## Solution

- Check for both MIME types.
2021-11-11 01:58:57 +00:00
Yoh Deadfall
ffde86efa0 Update to edition 2021 on master (#3028)
Objective
During work on #3009 I've found that not all jobs use actions-rs, and therefore, an previous version of Rust is used for them. So while compilation and other stuff can pass, checking markup and Android build may fail with compilation errors.

Solution
This PR adds `action-rs` for any job running cargo, and updates the edition to 2021.
2021-10-27 00:12:14 +00:00
Carter Anderson
a89a954a17 Not me ... us (#2654)
I don't see much of a reason at this point to boost my name over anyone elses. We are all Bevy Contributors.
2021-08-15 20:08:52 +00:00
Boxy
5ffff03b33 Fix some nightly clippy lints (#2522)
on nightly these two clippy lints fail:
- [needless_borrow](https://rust-lang.github.io/rust-clippy/master/#needless_borrow)
- [unused_unit](https://rust-lang.github.io/rust-clippy/master/#unused_unit)
2021-07-29 20:52:15 +00:00
bjorn3
6d6bc2a8b4 Merge AppBuilder into App (#2531)
This is extracted out of eb8f973646476b4a4926ba644a77e2b3a5772159 and includes some additional changes to remove all references to AppBuilder and fix examples that still used App::build() instead of App::new(). In addition I didn't extract the sub app feature as it isn't ready yet.

You can use `git diff --diff-filter=M eb8f973646476b4a4926ba644a77e2b3a5772159` to find all differences in this PR. The `--diff-filtered=M` filters all files added in the original commit but not in this commit away.

Co-Authored-By: Carter Anderson <mcanders1@gmail.com>
2021-07-27 20:21:06 +00:00
Carter Anderson
e167a1d9cf Relicense Bevy under the dual MIT or Apache-2.0 license (#2509)
This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373.

* Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons:
  * Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive. 
  * People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach. 
  * I like keeping the root clean and noise free
  * There is precedent for putting the apache and mit license text in sub folders (amethyst) 
* Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach).
* Updates crates to use the new "MIT OR Apache-2.0" license value
* Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies.
* Added a License section to the main readme
* Updated our Bevy Plugin licensing guidelines.

As a follow-up we should update the website to properly describe the new license.

Closes #2373
2021-07-23 21:11:51 +00:00
bjorn3
fbf561c2bb Update minimal version requirements for dependencies (#2460)
This was tested using cargo generate-lockfile -Zminimal-versions.
The following indirect dependencies also have minimal version
dependencies. For at least num, rustc-serialize and rand this is
necessary to compile on rustc versions that are not older than 1.0.

* num = "0.1.27"
* rustc-serialize = "0.3.20"
* termcolor = "1.0.4"
* libudev-sys = "0.1.1"
* rand = "0.3.14"
* ab_glyph = "0.2.7

Based on https://github.com/bevyengine/bevy/pull/2455
2021-07-15 21:25:49 +00:00
François
7835c92647 Log errors when loading textures from a gltf file (#2260)
When loading a gltf, if there is an error loading textures, it is completely ignored.

This can happen for example when loading a file with `jpg` textures without the `jpeg` Bevy feature enabled.
This PR adds `warn` logs for the few cases that can happen when loading a texture.

Other possible fix would be to break on first error and returning, making the asset loading failed
2021-06-08 02:46:44 +00:00
Nathan Ward
4563e69e06 Update glam (0.15.1) and hexasphere (3.4) (#2199)
This is a version of #2195 which addresses the `glam` breaking changes.
Also update hexasphere to ensure versions of `glam` are matching
2021-05-18 18:56:15 +00:00
dependabot[bot]
b8c98a9065 Update gltf requirement from 0.15.2 to 0.16.0 (#2196)
Updates the requirements on [gltf](https://github.com/gltf-rs/gltf) to permit the latest version.
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a href="https://github.com/gltf-rs/gltf/blob/master/CHANGELOG.md">gltf's changelog</a>.</em></p>
<blockquote>
<h2>[0.16.0] - 2021-05-13</h2>
<h3>Added</h3>
<ul>
<li>Support for the <code>KHR_texture_transform</code> extension.</li>
<li>Support for the <code>KHR_materials_transmission_ior extension</code>.</li>
</ul>
<h3>Changed</h3>
<ul>
<li><code>Material::alpha_cutoff</code> is now optional.</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>URIs with embedded data failing to import when using <code>import_slice</code>.</li>
<li>Serialization of empty primitives object being skipped.</li>
</ul>
<h2>[0.15.2] - 2020-03-29</h2>
<h3>Changed</h3>
<ul>
<li>All features are now exposed in the <a href="http://docs.rs/gltf">online documentation</a>.</li>
<li>Primary iterators now implement <code>Iterator::nth</code> explicitly for improved performance.</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>Compiler warnings regarding deprecation of <code>std::error::Error::description</code>.</li>
</ul>
<h2>[0.15.1] - 2020-03-15</h2>
<h3>Added</h3>
<ul>
<li>New feature <code>guess_mime_type</code> which, as the name suggests, attempts to guess
the MIME type of an image if it doesn't exactly match the standard.</li>
</ul>
<h3>Changed</h3>
<ul>
<li><code>base64</code> updated to <code>0.11</code>.</li>
<li><code>byteorder</code> updated to <code>1.3</code>.</li>
<li><code>image</code> updated to <code>0.23.0</code>.</li>
<li><code>Format</code> has additional variants for 16-bit pixel formats.</li>
</ul>
<h3>Fixed</h3>
<ul>
<li>Off-by-one error when reading whole files incurring a gratuitous reallocation.</li>
</ul>
<h2>[0.15.0] - 2020-01-18</h2>
<h3>Added</h3>
<ul>
<li>Support for the <code>KHR_materials_unlit</code> extension, which adds an <code>unlit</code> field</li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a href="https://github.com/gltf-rs/gltf/commits">compare view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
- `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)


</details>
2021-05-17 18:44:04 +00:00
Jakob Hellermann
cf8ef7660c load zeroed UVs as fallback in gltf loader (#1803)
fixes a lot of gltf loading failures (see https://github.com/bevyengine/bevy/issues/1802)
2021-05-06 03:08:53 +00:00
François
afaf4ad3da update for wgpu 0.8 (#1959)
Changes to get Bevy to compile with wgpu master.

With this, on a Mac:
* 2d examples look fine
* ~~3d examples crash with an error specific to metal about a compilation error~~
* 3d examples work fine after enabling feature `wgpu/cross`


Feature `wgpu/cross` seems to be needed only on some platforms, not sure how to know which. It was introduced in https://github.com/gfx-rs/wgpu-rs/pull/826
2021-05-02 20:45:25 +00:00
François
c9b33e15f8 gltf: load textures asynchronously using io task pool (#1767)
While trying to reduce load time of gltf files, I noticed most of the loading time is spent transforming bytes into an actual texture.

This PR add asynchronously loading for them using io task pool in gltf loader. It reduces loading of a large glb file from 15 seconds to 6~8 on my laptop

To allow asynchronous tasks in an asset loader, I added a reference to the task pool from the asset server in the load context, which I can use later in the loader.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-04-30 20:12:50 +00:00
Jakob Hellermann
cf221f9659 calculate flat normals for mesh if missing (#1808)
If the gltf loader encounters a mesh without normal attributes, it will duplicate the vertex attributes and compute flat normals, as defined by https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes:

> **Implementation Note**: When normals are not specified, client implementations should calculate flat normals.

![image](https://user-images.githubusercontent.com/22177966/113483243-bb204880-94a2-11eb-8fa1-c4828a4882c5.png)

Helps with #1802 

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-04-15 21:06:49 +00:00
Jakob Hellermann
d119c1ce14 gltf-loader: support data url for images (#1828)
This allows the `glTF-Embedded` variants in the [sample models](https://github.com/KhronosGroup/glTF-Sample-Models/) to be used.
The data url format is relatively small, so I didn't include a crate like [docs.rs/data-url](https://docs.rs/data-url/0.1.0/data_url/).

Also fixes the 'Box With Spaces' model as URIs are now percent-decoded.

cc #1802
2021-04-13 21:30:32 +00:00
Jakob Hellermann
9e55d8dbb4 Error message improvements for shader compilation/gltf loading (#1786)
- prints glsl compile error message in multiple lines instead of `thread 'main' panicked at 'called Result::unwrap() on an Err value: Compilation("glslang_shader_parse:\nInfo log:\nERROR: 0:335: \'assign\' :  l-value required \"anon@7\" (can\'t modify a uniform)\nERROR: 0:335: \'\' : compilation terminated \nERROR: 2 compilation errors.  No code generated.\n\n\nDebug log:\n\n")', crates/bevy_render/src/pipeline/pipeline_compiler.rs:161:22`
- makes gltf error messages have more context

New error:
```rust
thread 'Compute Task Pool (5)' panicked at 'Shader compilation error:
glslang_shader_parse:
Info log:
ERROR: 0:12: 'assign' :  l-value required "anon@1" (can't modify a uniform)
ERROR: 0:12: '' : compilation terminated 
ERROR: 2 compilation errors.  No code generated.
', crates/bevy_render/src/pipeline/pipeline_compiler.rs:364:5
```


These changes are a bit unrelated. I can open separate PRs if someone wants that.
2021-04-13 02:56:30 +00:00
Julian Heinken
8f1eaa6db5 glTF: added color attribute support (#1775) 2021-04-13 01:47:25 +00:00
Carter Anderson
97d8e4e179 Release 0.5.0 (#1835) 2021-04-06 18:48:48 +00:00
Jonas Matser
9a78addff0 Add PBR textures (#1632)
This PR adds normal maps on top of PBR #1554. Once that PR lands, the changes should look simpler.

Edit: Turned out to be so little extra work, I added metallic/roughness texture too. And occlusion and emissive.

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-03-26 21:00:34 +00:00
François
d90d19f1c7 gltf: load normal and occlusion as linear textures (#1762)
Load textures from gltf as linear when needed.

This is for #1632, but can be done independently and won't have any visible impact before.

* during iteration over materials, register textures that need to be loaded as linear
* during iteration over textures
  * directly load bytes from external files instead of adding them as dependencies in the load context
  * configure the texture the same way for buffered and external textures
  * if the texture is linear rgb, set as linear rgb
2021-03-26 18:47:47 +00:00
Carter Anderson
81b53d15d4 Make Commands and World apis consistent (#1703)
Resolves #1253 #1562

This makes the Commands apis consistent with World apis. This moves to a "type state" pattern (like World) where the "current entity" is stored in an `EntityCommands` builder.

In general this tends to cuts down on indentation and line count. It comes at the cost of needing to type `commands` more and adding more semicolons to terminate expressions.

I also added `spawn_bundle` to Commands because this is a common enough operation that I think its worth providing a shorthand.
2021-03-23 00:23:40 +00:00
Jonas Matser
45b2db7070 Rebase of existing PBR work (#1554)
This is a rebase of StarArawns PBR work from #261 with IngmarBitters work from #1160 cherry-picked on top.

I had to make a few minor changes to make some intermediate commits compile and the end result is not yet 100% what I expected, so there's a bit more work to do.

Co-authored-by: John Mitchell <toasterthegamer@gmail.com>
Co-authored-by: Ingmar Bitter <ingmar.bitter@gmail.com>
2021-03-20 03:22:33 +00:00
Jasen Borisov
2e72755b8a GLTF loader: support mipmap filters (#1639)
This removes the `GltfError::UnsupportedMinFilter` error.

I don't think this error should have existed in the first place, because it prevents users from using assets that bevy could totally render (without mipmap support as of yet).

It's much better to load the asset properly and then render it (even if it looks a little ugly), than to refuse to load the asset at all, giving users a confusing error.
2021-03-13 18:44:26 +00:00
François
bbb9849506 Replace default method calls from Glam types with explicit const (#1645)
it's a followup of #1550 

I think calling explicit methods/values instead of default makes the code easier to read: "what is `Quat::default()`" vs "Oh, it's `Quat::IDENTITY`"

`Transform::identity()` and `GlobalTransform::identity()` can also be consts and I replaced the calls to their `default()` impl with `identity()`
2021-03-13 18:23:39 +00:00
MinerSebas
8a9f475edb Remove the Clippy "-A clippy::manual-strip" override (#1619)
That override was added to support pre 1.45 Versions of Rust, but Bevy requires currently the latest stable rust release.
This means that the reason for the override doesn't apply anymore.
2021-03-12 03:05:14 +00:00
Carter Anderson
3a2a68852c Bevy ECS V2 (#1525)
# Bevy ECS V2

This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details:

* Complete World rewrite
* Multiple component storage types:
    * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes)
    * Sparse Sets: fast add/remove, slower iteration
* Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now)
* Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364)
* Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work)
* Archetypes are now "just metadata", component storage is separate
* Archetype Graph (for faster archetype changes)
* Component Metadata
    * Configure component storage type
    * Retrieve information about component size/type/name/layout/send-ness/etc
    * Components are uniquely identified by a densely packed ComponentId
    * TypeIds are now totally optional (which should make implementing scripting easier)
* Super fast "for_each" query iterators
* Merged Resources into World. Resources are now just a special type of component
* EntityRef/EntityMut builder apis (more efficient and more ergonomic)
* Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere
* Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime)
    * With/Without are still taken into account for conflicts, so this should still be comfy to use
* Much simpler `IntoSystem` impl
* Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId)
* Safety Improvements
    * Entity reservation uses a normal world reference instead of unsafe transmute
    * QuerySets no longer transmute lifetimes
    * Made traits "unsafe" where relevant
    * More thorough safety docs
* WorldCell
    * Exposes safe mutable access to multiple resources at a time in a World 
* Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)`
* Simpler Bundle implementation
* Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection"
* Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` 
* Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default 
* Components now have is_send property (currently only resources support non-send)
* More granular module organization
* New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()`
* `world.resource_scope()` for mutable access to resources and world at the same time
* WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it
* Significantly slimmed down SystemState in favor of individual SystemParam state
* System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference)

Fixes #1320

## `World` Rewrite

This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own!

(the only shared code between the projects is the entity id allocator, which is already basically ideal)

A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details.

## Component Storage (The Problem)

Two ECS storage paradigms have gained a lot of traction over the years:

* **Archetypal ECS**: 
    * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity.
    * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype.
    * Enables super-fast Query iteration due to its cache-friendly data layout
    * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table"
* **Sparse Set ECS**:
    * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids)
    * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array.
    * Adding/removing components is a cheap, constant time operation 

Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate.

Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because:

1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform.
2. users need to take manual action to optimize

Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance.

## Hybrid Component Storage (The Solution)

In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed):

* **Tables** (aka "archetypal" storage)
    * The default storage. If you don't configure anything, this is what you get
    * Fast iteration by default
    * Slower add/remove operations
* **Sparse Sets**
    * Opt-in
    * Slower iteration
    * Faster add/remove operations

These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set":

```rust
world.register_component(
    ComponentDescriptor:🆕:<MyComponent>(StorageType::SparseSet)
).unwrap();
```

## Archetypes

Archetypes are now "just metadata" ... they no longer store components directly. They do store:

* The `ComponentId`s of each of the Archetype's components (and that component's storage type)
    * Archetypes are uniquely defined by their component layouts
    * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype.
* The `TableId` associated with the archetype
    * For now each archetype has exactly one table (which can have no components),
    * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it:
        * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components.
        * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later)
* A list of entities that are in the archetype and the row id of the table they are in
* ArchetypeComponentIds
    * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs
    * used by the schedule executor for cheap system access control
* "Archetype Graph Edges" (see the next section)  

## The "Archetype Graph"

Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage.

The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes.

Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph.

As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations.

## Stateful Queries

World queries are now stateful. This allows us to:

1. Cache archetype (and table) matches
    * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs).
2. Cache Fetch and Filter state
    * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed
3. Incrementally build up state
    * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes)

As a result, the direct `World` query api now looks like this:

```rust
let mut query = world.query::<(&A, &mut B)>();
for (a, mut b) in query.iter_mut(&mut world) {
}
```

Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world).

However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam.

## Stateful SystemParams

Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). 

SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now.

Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params).

(credit goes to @DJMcNab for the initial idea and draft pr here #1364)

## Configurable SystemParams

@DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters:

```rust

fn foo(value: Local<usize>) {    
}

app.add_system(foo.system().config(|c| c.0 = Some(10)));
```

## Uber Fast "for_each" Query Iterators

Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. 

```rust
fn system(query: Query<(&A, &mut B)>) {
    // you now have the option to do this for a speed boost
    query.for_each_mut(|(a, mut b)| {
    });

    // however normal iterators are still available
    for (a, mut b) in query.iter_mut() {
    }
}
```

I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`.

We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr).

## Component Metadata

`World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type.

## Significantly Cheaper `Access<T>`

We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed.

This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s.

## Merged Resources into World

Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity).

Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state.

I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally).

This pr merges Resources into World:

```rust
world.insert_resource(1);
world.insert_resource(2.0);
let a = world.get_resource::<i32>().unwrap();
let mut b = world.get_resource_mut::<f64>().unwrap();
*b = 3.0;
```

Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier.

_But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably!

## WorldCell

WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access:

```rust
let world_cell = world.cell();
let a = world_cell.get_resource_mut::<i32>().unwrap();
let b = world_cell.get_resource_mut::<f64>().unwrap();
```

This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped.

World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. 

WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. 

The api is currently limited to resource access, but it can and should be extended to queries / entity component access.

## Resource Scopes

WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal!

Instead developers can use a "resource scope"

```rust
world.resource_scope(|world: &mut World, a: &mut A| {
})
```

This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation.

If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty.

## Query Conflicts Use ComponentId Instead of ArchetypeComponentId

For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters:

```rust
// these queries will never conflict due to their filters
fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) {
}
```

But it also has a significant downside:
```rust
// these queries will not conflict _until_ an entity with A, B, and C is spawned
fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) {
}
```

The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing.

In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace.

To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict.

## EntityRef / EntityMut

World entity operations on `main` require that the user passes in an `entity` id to each operation:

```rust
let entity = world.spawn((A, )); // create a new entity with A
world.get::<A>(entity);
world.insert(entity, (B, C));
world.insert_one(entity, D);
```

This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required).

These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity:

```rust
// spawn now takes no inputs and returns an EntityMut
let entity = world.spawn()
    .insert(A) // insert a single component into the entity
    .insert_bundle((B, C)) // insert a bundle of components into the entity
    .id() // id returns the Entity id

// Returns EntityMut (or panics if the entity does not exist)
world.entity_mut(entity)
    .insert(D)
    .insert_bundle(SomeBundle::default());
{
    // returns EntityRef (or panics if the entity does not exist)
    let d = world.entity(entity)
        .get::<D>() // gets the D component
        .unwrap();
    // world.get still exists for ergonomics
    let d = world.get::<D>(entity).unwrap();
}

// These variants return Options if you want to check existence instead of panicing 
world.get_entity_mut(entity)
    .unwrap()
    .insert(E);

if let Some(entity_ref) = world.get_entity(entity) {
    let d = entity_ref.get::<D>().unwrap();
}
```

This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change.

## Safety Improvements

* Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute
* QuerySets no longer transmutes lifetimes
* Made traits "unsafe" when implementing a trait incorrectly could cause unsafety
* More thorough safety docs

## RemovedComponents SystemParam

The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState:

```rust
fn system(removed: RemovedComponents<T>) {
    for entity in removed.iter() {
    }
} 
```

## Simpler Bundle implementation

Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used.

## Unified WorldQuery and QueryFilter types

(don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change)

WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful).

QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool.

This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit.

## More Granular Modules

World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here).

## Remaining Draft Work (to be done in this pr)

* ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~
    * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~
* ~~batch_iter / par_iter (currently stubbed out)~~
* ~~ChangedRes~~
    * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~.
* ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~
* ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~
* ~~Nested Bundles (if i find time)~~

## Potential Future Work

* Expand WorldCell to support queries.
* Consider not allocating in the empty archetype on `world.spawn()`
    * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op
    * this actually regressed performance last time i tried it, but in theory it should be faster
* Optimize SparseSet::insert (see `PERF` comment on insert)
* Replace SparseArray `Option<T>` with T::MAX to cut down on branching
    * would enable cheaper get_unchecked() operations
* upstream fixedbitset optimizations
    * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec)
    * fixedbitset could have a const constructor 
* Consider implementing Tags (archetype-specific by-value data that affects archetype identity) 
    * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different.
    * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage.
* Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation
    * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints)
    * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code)
* Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell
    * this is basically just "systems" so maybe it's not worth it
* Add more world ops
    * `world.clear()`
    * `world.reserve<T: Bundle>(count: usize)`
 * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :)
 * Adapt Commands apis for consistency with new World apis 

## Benchmarks

key:

* `bevy_old`: bevy `main` branch
* `bevy`: this branch
* `_foreach`: uses an optimized for_each iterator
* ` _sparse`: uses sparse set storage (if unspecified assume table storage)
* `_system`: runs inside a system (if unspecified assume test happens via direct world ops)

### Simple Insert (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png)

### Simpler Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png)

### Fragment Iter (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png)

### Sparse Fragmented Iter

Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes

![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png)
 
### Schedule (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png)

### Add Remove Component (from ecs_bench_suite)

![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png)


### Add Remove Component Big

Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed

![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png)


### Get Component

Looks up a single component value a large number of times

![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
François
1fcafc4210 Glb textures should use bevy_render to load images (#1454)
Fixes #1396 

<img width="1392" alt="Screenshot 2021-02-16 at 02 24 01" src="https://user-images.githubusercontent.com/8672791/108011774-1b991a80-7008-11eb-979e-6ebfc51fba3c.png">

Issue was that, when loading an image directly from its bytes in the binary glb file, it didn't follow the same flow as when loaded as a texture file. This PR removes the dependency to `image` from `bevy_gltf`, and load the image using `bevy_render` in all cases. I also added support for more mime types while there.

<img width="1392" alt="Screenshot 2021-02-16 at 02 44 56" src="https://user-images.githubusercontent.com/8672791/108011915-674bc400-7008-11eb-83d4-ded96a38919b.png">
2021-03-03 21:36:16 +00:00
Will Crichton
e6e23fdfa9
Add support for gltf::Material::unlit (#1341)
* Add support for gltf::Material::unlit
2021-01-31 17:13:16 -08:00