2022-09-24 13:21:01 +00:00
|
|
|
//! Shows a visualization of gamepad buttons, sticks, and triggers
|
|
|
|
|
|
|
|
use std::f32::consts::PI;
|
|
|
|
|
|
|
|
use bevy::{
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
input::gamepad::{GamepadAxisChangedEvent, GamepadButtonChangedEvent, GamepadConnectionEvent},
|
2022-09-24 13:21:01 +00:00
|
|
|
prelude::*,
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
sprite::Anchor,
|
2022-09-24 13:21:01 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
const BUTTON_RADIUS: f32 = 25.;
|
|
|
|
const BUTTON_CLUSTER_RADIUS: f32 = 50.;
|
|
|
|
const START_SIZE: Vec2 = Vec2::new(30., 15.);
|
|
|
|
const TRIGGER_SIZE: Vec2 = Vec2::new(70., 20.);
|
|
|
|
const STICK_BOUNDS_SIZE: f32 = 100.;
|
|
|
|
|
|
|
|
const BUTTONS_X: f32 = 150.;
|
|
|
|
const BUTTONS_Y: f32 = 80.;
|
|
|
|
const STICKS_X: f32 = 150.;
|
|
|
|
const STICKS_Y: f32 = -135.;
|
|
|
|
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
const NORMAL_BUTTON_COLOR: Color = Color::srgb(0.3, 0.3, 0.3);
|
|
|
|
const ACTIVE_BUTTON_COLOR: Color = Color::srgb(0.5, 0., 0.5);
|
|
|
|
const LIVE_COLOR: Color = Color::srgb(0.4, 0.4, 0.4);
|
|
|
|
const DEAD_COLOR: Color = Color::srgb(0.13, 0.13, 0.13);
|
2022-09-24 13:21:01 +00:00
|
|
|
|
|
|
|
#[derive(Component, Deref)]
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
struct ReactTo(GamepadButton);
|
2022-09-24 13:21:01 +00:00
|
|
|
#[derive(Component)]
|
|
|
|
struct MoveWithAxes {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
x_axis: GamepadAxis,
|
|
|
|
y_axis: GamepadAxis,
|
2022-09-24 13:21:01 +00:00
|
|
|
scale: f32,
|
|
|
|
}
|
|
|
|
#[derive(Component)]
|
|
|
|
struct TextWithAxes {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
x_axis: GamepadAxis,
|
|
|
|
y_axis: GamepadAxis,
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
#[derive(Component, Deref)]
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
struct TextWithButtonValue(GamepadButton);
|
2022-09-24 13:21:01 +00:00
|
|
|
|
|
|
|
#[derive(Component)]
|
|
|
|
struct ConnectedGamepadsText;
|
|
|
|
|
|
|
|
#[derive(Resource)]
|
|
|
|
struct ButtonMaterials {
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
normal: MeshMaterial2d<ColorMaterial>,
|
|
|
|
active: MeshMaterial2d<ColorMaterial>,
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
impl FromWorld for ButtonMaterials {
|
|
|
|
fn from_world(world: &mut World) -> Self {
|
|
|
|
Self {
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
normal: world.add_asset(NORMAL_BUTTON_COLOR).into(),
|
|
|
|
active: world.add_asset(ACTIVE_BUTTON_COLOR).into(),
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#[derive(Resource)]
|
|
|
|
struct ButtonMeshes {
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
circle: Mesh2d,
|
|
|
|
triangle: Mesh2d,
|
|
|
|
start_pause: Mesh2d,
|
|
|
|
trigger: Mesh2d,
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
impl FromWorld for ButtonMeshes {
|
|
|
|
fn from_world(world: &mut World) -> Self {
|
|
|
|
Self {
|
2024-02-27 00:28:26 +00:00
|
|
|
circle: world.add_asset(Circle::new(BUTTON_RADIUS)).into(),
|
|
|
|
triangle: world
|
|
|
|
.add_asset(RegularPolygon::new(BUTTON_RADIUS, 3))
|
|
|
|
.into(),
|
|
|
|
start_pause: world.add_asset(Rectangle::from_size(START_SIZE)).into(),
|
|
|
|
trigger: world.add_asset(Rectangle::from_size(TRIGGER_SIZE)).into(),
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-10-06 13:33:29 +00:00
|
|
|
#[derive(Bundle)]
|
|
|
|
struct GamepadButtonBundle {
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
mesh: Mesh2d,
|
|
|
|
material: MeshMaterial2d<ColorMaterial>,
|
|
|
|
transform: Transform,
|
2022-10-06 13:33:29 +00:00
|
|
|
react_to: ReactTo,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl GamepadButtonBundle {
|
|
|
|
pub fn new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
button_type: GamepadButton,
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
mesh: Mesh2d,
|
|
|
|
material: MeshMaterial2d<ColorMaterial>,
|
2022-10-06 13:33:29 +00:00
|
|
|
x: f32,
|
|
|
|
y: f32,
|
|
|
|
) -> Self {
|
|
|
|
Self {
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
mesh,
|
|
|
|
material,
|
|
|
|
transform: Transform::from_xyz(x, y, 0.),
|
2022-10-06 13:33:29 +00:00
|
|
|
react_to: ReactTo(button_type),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn with_rotation(mut self, angle: f32) -> Self {
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
self.transform.rotation = Quat::from_rotation_z(angle);
|
2022-10-06 13:33:29 +00:00
|
|
|
self
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-09-24 13:21:01 +00:00
|
|
|
fn main() {
|
|
|
|
App::new()
|
|
|
|
.add_plugins(DefaultPlugins)
|
|
|
|
.init_resource::<ButtonMaterials>()
|
|
|
|
.init_resource::<ButtonMeshes>()
|
2023-03-18 01:45:34 +00:00
|
|
|
.add_systems(
|
|
|
|
Startup,
|
|
|
|
(setup, setup_sticks, setup_triggers, setup_connected),
|
|
|
|
)
|
|
|
|
.add_systems(
|
|
|
|
Update,
|
|
|
|
(
|
|
|
|
update_buttons,
|
|
|
|
update_button_values,
|
|
|
|
update_axes,
|
|
|
|
update_connected,
|
|
|
|
),
|
|
|
|
)
|
2022-09-24 13:21:01 +00:00
|
|
|
.run();
|
|
|
|
}
|
|
|
|
|
|
|
|
fn setup(mut commands: Commands, meshes: Res<ButtonMeshes>, materials: Res<ButtonMaterials>) {
|
2024-10-05 01:59:52 +00:00
|
|
|
commands.spawn(Camera2d);
|
2022-09-24 13:21:01 +00:00
|
|
|
|
|
|
|
// Buttons
|
|
|
|
|
|
|
|
commands
|
|
|
|
.spawn(SpatialBundle {
|
|
|
|
transform: Transform::from_xyz(BUTTONS_X, BUTTONS_Y, 0.),
|
|
|
|
..default()
|
|
|
|
})
|
|
|
|
.with_children(|parent| {
|
2022-10-06 13:33:29 +00:00
|
|
|
parent.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::North,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.circle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
0.,
|
|
|
|
BUTTON_CLUSTER_RADIUS,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
2022-10-06 13:33:29 +00:00
|
|
|
parent.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::South,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.circle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
0.,
|
|
|
|
-BUTTON_CLUSTER_RADIUS,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
2022-10-06 13:33:29 +00:00
|
|
|
parent.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::West,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.circle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
-BUTTON_CLUSTER_RADIUS,
|
|
|
|
0.,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
2022-10-06 13:33:29 +00:00
|
|
|
parent.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::East,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.circle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
BUTTON_CLUSTER_RADIUS,
|
|
|
|
0.,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
|
|
|
});
|
|
|
|
|
|
|
|
// Start and Pause
|
|
|
|
|
2022-10-06 13:33:29 +00:00
|
|
|
commands.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::Select,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.start_pause.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
-30.,
|
|
|
|
BUTTONS_Y,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
|
|
|
|
2022-10-06 13:33:29 +00:00
|
|
|
commands.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::Start,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.start_pause.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
30.,
|
|
|
|
BUTTONS_Y,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
|
|
|
|
|
|
|
// D-Pad
|
|
|
|
|
|
|
|
commands
|
|
|
|
.spawn(SpatialBundle {
|
|
|
|
transform: Transform::from_xyz(-BUTTONS_X, BUTTONS_Y, 0.),
|
|
|
|
..default()
|
|
|
|
})
|
|
|
|
.with_children(|parent| {
|
2022-10-06 13:33:29 +00:00
|
|
|
parent.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::DPadUp,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.triangle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
0.,
|
|
|
|
BUTTON_CLUSTER_RADIUS,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
2022-10-06 13:33:29 +00:00
|
|
|
parent.spawn(
|
|
|
|
GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::DPadDown,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.triangle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
0.,
|
|
|
|
-BUTTON_CLUSTER_RADIUS,
|
|
|
|
)
|
|
|
|
.with_rotation(PI),
|
|
|
|
);
|
|
|
|
parent.spawn(
|
|
|
|
GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::DPadLeft,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.triangle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
-BUTTON_CLUSTER_RADIUS,
|
|
|
|
0.,
|
|
|
|
)
|
|
|
|
.with_rotation(PI / 2.),
|
|
|
|
);
|
|
|
|
parent.spawn(
|
|
|
|
GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::DPadRight,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.triangle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
BUTTON_CLUSTER_RADIUS,
|
|
|
|
0.,
|
|
|
|
)
|
|
|
|
.with_rotation(-PI / 2.),
|
|
|
|
);
|
2022-09-24 13:21:01 +00:00
|
|
|
});
|
|
|
|
|
|
|
|
// Triggers
|
|
|
|
|
2022-10-06 13:33:29 +00:00
|
|
|
commands.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::LeftTrigger,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.trigger.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
-BUTTONS_X,
|
|
|
|
BUTTONS_Y + 115.,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
|
|
|
|
2022-10-06 13:33:29 +00:00
|
|
|
commands.spawn(GamepadButtonBundle::new(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadButton::RightTrigger,
|
2022-10-06 13:33:29 +00:00
|
|
|
meshes.trigger.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
BUTTONS_X,
|
|
|
|
BUTTONS_Y + 115.,
|
2022-09-24 13:21:01 +00:00
|
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
fn setup_sticks(
|
|
|
|
mut commands: Commands,
|
|
|
|
meshes: Res<ButtonMeshes>,
|
|
|
|
materials: Res<ButtonMaterials>,
|
|
|
|
) {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
// NOTE: This stops making sense because in entities because there isn't a "global" default,
|
|
|
|
// instead each gamepad has its own default setting
|
|
|
|
let gamepad_settings = GamepadSettings::default();
|
2022-10-17 14:38:55 +00:00
|
|
|
let dead_upper =
|
|
|
|
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.deadzone_upperbound();
|
|
|
|
let dead_lower =
|
|
|
|
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.deadzone_lowerbound();
|
2022-09-24 13:21:01 +00:00
|
|
|
let dead_size = dead_lower.abs() + dead_upper.abs();
|
|
|
|
let dead_mid = (dead_lower + dead_upper) / 2.0;
|
|
|
|
|
2022-10-17 14:38:55 +00:00
|
|
|
let live_upper =
|
|
|
|
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.livezone_upperbound();
|
|
|
|
let live_lower =
|
|
|
|
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.livezone_lowerbound();
|
2022-09-24 13:21:01 +00:00
|
|
|
let live_size = live_lower.abs() + live_upper.abs();
|
|
|
|
let live_mid = (live_lower + live_upper) / 2.0;
|
|
|
|
|
|
|
|
let mut spawn_stick = |x_pos, y_pos, x_axis, y_axis, button| {
|
|
|
|
commands
|
|
|
|
.spawn(SpatialBundle {
|
|
|
|
transform: Transform::from_xyz(x_pos, y_pos, 0.),
|
|
|
|
..default()
|
|
|
|
})
|
|
|
|
.with_children(|parent| {
|
|
|
|
// full extent
|
|
|
|
parent.spawn(SpriteBundle {
|
|
|
|
sprite: Sprite {
|
|
|
|
custom_size: Some(Vec2::splat(STICK_BOUNDS_SIZE * 2.)),
|
2024-01-23 06:27:43 +00:00
|
|
|
color: DEAD_COLOR,
|
2022-09-24 13:21:01 +00:00
|
|
|
..default()
|
|
|
|
},
|
|
|
|
..default()
|
|
|
|
});
|
|
|
|
// live zone
|
|
|
|
parent.spawn(SpriteBundle {
|
|
|
|
transform: Transform::from_xyz(live_mid, live_mid, 2.),
|
|
|
|
sprite: Sprite {
|
|
|
|
custom_size: Some(Vec2::new(live_size, live_size)),
|
|
|
|
color: LIVE_COLOR,
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
..default()
|
|
|
|
});
|
|
|
|
// dead zone
|
|
|
|
parent.spawn(SpriteBundle {
|
|
|
|
transform: Transform::from_xyz(dead_mid, dead_mid, 3.),
|
|
|
|
sprite: Sprite {
|
|
|
|
custom_size: Some(Vec2::new(dead_size, dead_size)),
|
|
|
|
color: DEAD_COLOR,
|
|
|
|
..default()
|
|
|
|
},
|
|
|
|
..default()
|
|
|
|
});
|
|
|
|
// text
|
|
|
|
let style = TextStyle {
|
2024-09-16 23:14:37 +00:00
|
|
|
font_size: 13.,
|
2023-04-21 22:30:18 +00:00
|
|
|
..default()
|
2022-09-24 13:21:01 +00:00
|
|
|
};
|
|
|
|
parent.spawn((
|
|
|
|
Text2dBundle {
|
|
|
|
transform: Transform::from_xyz(0., STICK_BOUNDS_SIZE + 2., 4.),
|
|
|
|
text: Text::from_sections([
|
|
|
|
TextSection {
|
|
|
|
value: format!("{:.3}", 0.),
|
|
|
|
style: style.clone(),
|
|
|
|
},
|
|
|
|
TextSection {
|
|
|
|
value: ", ".to_string(),
|
|
|
|
style: style.clone(),
|
|
|
|
},
|
|
|
|
TextSection {
|
|
|
|
value: format!("{:.3}", 0.),
|
|
|
|
style,
|
|
|
|
},
|
Remove VerticalAlign from TextAlignment (#6807)
# Objective
Remove the `VerticalAlign` enum.
Text's alignment field should only affect the text's internal text alignment, not its position. The only way to control a `TextBundle`'s position and bounds should be through the manipulation of the constraints in the `Style` components of the nodes in the Bevy UI's layout tree.
`Text2dBundle` should have a separate `Anchor` component that sets its position relative to its transform.
Related issues: #676, #1490, #5502, #5513, #5834, #6717, #6724, #6741, #6748
## Changelog
* Changed `TextAlignment` into an enum with `Left`, `Center`, and `Right` variants.
* Removed the `HorizontalAlign` and `VerticalAlign` types.
* Added an `Anchor` component to `Text2dBundle`
* Added `Component` derive to `Anchor`
* Use `f32::INFINITY` instead of `f32::MAX` to represent unbounded text in Text2dBounds
## Migration Guide
The `alignment` field of `Text` now only affects the text's internal alignment.
### Change `TextAlignment` to TextAlignment` which is now an enum. Replace:
* `TextAlignment::TOP_LEFT`, `TextAlignment::CENTER_LEFT`, `TextAlignment::BOTTOM_LEFT` with `TextAlignment::Left`
* `TextAlignment::TOP_CENTER`, `TextAlignment::CENTER_LEFT`, `TextAlignment::BOTTOM_CENTER` with `TextAlignment::Center`
* `TextAlignment::TOP_RIGHT`, `TextAlignment::CENTER_RIGHT`, `TextAlignment::BOTTOM_RIGHT` with `TextAlignment::Right`
### Changes for `Text2dBundle`
`Text2dBundle` has a new field 'text_anchor' that takes an `Anchor` component that controls its position relative to its transform.
2023-01-18 02:19:17 +00:00
|
|
|
]),
|
|
|
|
text_anchor: Anchor::BottomCenter,
|
2022-09-24 13:21:01 +00:00
|
|
|
..default()
|
|
|
|
},
|
|
|
|
TextWithAxes { x_axis, y_axis },
|
|
|
|
));
|
|
|
|
// cursor
|
|
|
|
parent.spawn((
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
meshes.circle.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
Transform::from_xyz(0., 0., 5.).with_scale(Vec2::splat(0.15).extend(1.)),
|
2022-09-24 13:21:01 +00:00
|
|
|
MoveWithAxes {
|
|
|
|
x_axis,
|
|
|
|
y_axis,
|
|
|
|
scale: STICK_BOUNDS_SIZE,
|
|
|
|
},
|
|
|
|
ReactTo(button),
|
|
|
|
));
|
|
|
|
});
|
|
|
|
};
|
|
|
|
|
|
|
|
spawn_stick(
|
|
|
|
-STICKS_X,
|
|
|
|
STICKS_Y,
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadAxis::LeftStickX,
|
|
|
|
GamepadAxis::LeftStickY,
|
|
|
|
GamepadButton::LeftThumb,
|
2022-09-24 13:21:01 +00:00
|
|
|
);
|
|
|
|
spawn_stick(
|
|
|
|
STICKS_X,
|
|
|
|
STICKS_Y,
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
GamepadAxis::RightStickX,
|
|
|
|
GamepadAxis::RightStickY,
|
|
|
|
GamepadButton::RightThumb,
|
2022-09-24 13:21:01 +00:00
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn setup_triggers(
|
|
|
|
mut commands: Commands,
|
|
|
|
meshes: Res<ButtonMeshes>,
|
|
|
|
materials: Res<ButtonMaterials>,
|
|
|
|
) {
|
|
|
|
let mut spawn_trigger = |x, y, button_type| {
|
|
|
|
commands
|
2022-10-06 13:33:29 +00:00
|
|
|
.spawn(GamepadButtonBundle::new(
|
|
|
|
button_type,
|
|
|
|
meshes.trigger.clone(),
|
|
|
|
materials.normal.clone(),
|
|
|
|
x,
|
|
|
|
y,
|
2022-09-24 13:21:01 +00:00
|
|
|
))
|
|
|
|
.with_children(|parent| {
|
|
|
|
parent.spawn((
|
|
|
|
Text2dBundle {
|
|
|
|
transform: Transform::from_xyz(0., 0., 1.),
|
|
|
|
text: Text::from_section(
|
|
|
|
format!("{:.3}", 0.),
|
|
|
|
TextStyle {
|
2024-09-16 23:14:37 +00:00
|
|
|
font_size: 13.,
|
2023-04-21 22:30:18 +00:00
|
|
|
..default()
|
2022-09-24 13:21:01 +00:00
|
|
|
},
|
Remove VerticalAlign from TextAlignment (#6807)
# Objective
Remove the `VerticalAlign` enum.
Text's alignment field should only affect the text's internal text alignment, not its position. The only way to control a `TextBundle`'s position and bounds should be through the manipulation of the constraints in the `Style` components of the nodes in the Bevy UI's layout tree.
`Text2dBundle` should have a separate `Anchor` component that sets its position relative to its transform.
Related issues: #676, #1490, #5502, #5513, #5834, #6717, #6724, #6741, #6748
## Changelog
* Changed `TextAlignment` into an enum with `Left`, `Center`, and `Right` variants.
* Removed the `HorizontalAlign` and `VerticalAlign` types.
* Added an `Anchor` component to `Text2dBundle`
* Added `Component` derive to `Anchor`
* Use `f32::INFINITY` instead of `f32::MAX` to represent unbounded text in Text2dBounds
## Migration Guide
The `alignment` field of `Text` now only affects the text's internal alignment.
### Change `TextAlignment` to TextAlignment` which is now an enum. Replace:
* `TextAlignment::TOP_LEFT`, `TextAlignment::CENTER_LEFT`, `TextAlignment::BOTTOM_LEFT` with `TextAlignment::Left`
* `TextAlignment::TOP_CENTER`, `TextAlignment::CENTER_LEFT`, `TextAlignment::BOTTOM_CENTER` with `TextAlignment::Center`
* `TextAlignment::TOP_RIGHT`, `TextAlignment::CENTER_RIGHT`, `TextAlignment::BOTTOM_RIGHT` with `TextAlignment::Right`
### Changes for `Text2dBundle`
`Text2dBundle` has a new field 'text_anchor' that takes an `Anchor` component that controls its position relative to its transform.
2023-01-18 02:19:17 +00:00
|
|
|
),
|
2022-09-24 13:21:01 +00:00
|
|
|
..default()
|
|
|
|
},
|
|
|
|
TextWithButtonValue(button_type),
|
|
|
|
));
|
|
|
|
});
|
|
|
|
};
|
|
|
|
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
spawn_trigger(-BUTTONS_X, BUTTONS_Y + 145., GamepadButton::LeftTrigger2);
|
|
|
|
spawn_trigger(BUTTONS_X, BUTTONS_Y + 145., GamepadButton::RightTrigger2);
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
|
2023-04-21 22:30:18 +00:00
|
|
|
fn setup_connected(mut commands: Commands) {
|
2024-05-31 16:41:27 +00:00
|
|
|
let text_style = TextStyle::default();
|
|
|
|
|
2022-09-24 13:21:01 +00:00
|
|
|
commands.spawn((
|
2024-01-23 06:27:43 +00:00
|
|
|
TextBundle {
|
|
|
|
text: Text::from_sections([
|
|
|
|
TextSection {
|
|
|
|
value: "Connected Gamepads:\n".to_string(),
|
|
|
|
style: text_style.clone(),
|
|
|
|
},
|
|
|
|
TextSection {
|
|
|
|
value: "None".to_string(),
|
|
|
|
style: text_style,
|
|
|
|
},
|
|
|
|
]),
|
|
|
|
style: Style {
|
|
|
|
position_type: PositionType::Absolute,
|
|
|
|
top: Val::Px(12.),
|
|
|
|
left: Val::Px(12.),
|
|
|
|
..default()
|
2022-09-24 13:21:01 +00:00
|
|
|
},
|
2024-01-23 06:27:43 +00:00
|
|
|
..default()
|
|
|
|
},
|
2022-09-24 13:21:01 +00:00
|
|
|
ConnectedGamepadsText,
|
|
|
|
));
|
|
|
|
}
|
|
|
|
|
|
|
|
fn update_buttons(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
gamepads: Query<&Gamepad>,
|
2022-09-24 13:21:01 +00:00
|
|
|
materials: Res<ButtonMaterials>,
|
Migrate meshes and materials to required components (#15524)
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
|
|
|
mut query: Query<(&mut MeshMaterial2d<ColorMaterial>, &ReactTo)>,
|
2022-09-24 13:21:01 +00:00
|
|
|
) {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
for buttons in &gamepads {
|
2022-09-24 13:21:01 +00:00
|
|
|
for (mut handle, react_to) in query.iter_mut() {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
if buttons.just_pressed(**react_to) {
|
2022-09-24 13:21:01 +00:00
|
|
|
*handle = materials.active.clone();
|
|
|
|
}
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
if buttons.just_released(**react_to) {
|
2022-09-24 13:21:01 +00:00
|
|
|
*handle = materials.normal.clone();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fn update_button_values(
|
Gamepad events refactor (#6965)
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
2023-01-09 19:24:52 +00:00
|
|
|
mut events: EventReader<GamepadButtonChangedEvent>,
|
2022-09-24 13:21:01 +00:00
|
|
|
mut query: Query<(&mut Text, &TextWithButtonValue)>,
|
|
|
|
) {
|
2023-08-30 14:20:03 +00:00
|
|
|
for button_event in events.read() {
|
Gamepad events refactor (#6965)
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
2023-01-09 19:24:52 +00:00
|
|
|
for (mut text, text_with_button_value) in query.iter_mut() {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
if button_event.button == **text_with_button_value {
|
Gamepad events refactor (#6965)
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
2023-01-09 19:24:52 +00:00
|
|
|
text.sections[0].value = format!("{:.3}", button_event.value);
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn update_axes(
|
Gamepad events refactor (#6965)
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
2023-01-09 19:24:52 +00:00
|
|
|
mut axis_events: EventReader<GamepadAxisChangedEvent>,
|
2022-09-24 13:21:01 +00:00
|
|
|
mut query: Query<(&mut Transform, &MoveWithAxes)>,
|
|
|
|
mut text_query: Query<(&mut Text, &TextWithAxes)>,
|
|
|
|
) {
|
2023-08-30 14:20:03 +00:00
|
|
|
for axis_event in axis_events.read() {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
let axis_type = axis_event.axis;
|
Gamepad events refactor (#6965)
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
2023-01-09 19:24:52 +00:00
|
|
|
let value = axis_event.value;
|
|
|
|
for (mut transform, move_with) in query.iter_mut() {
|
|
|
|
if axis_type == move_with.x_axis {
|
|
|
|
transform.translation.x = value * move_with.scale;
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
Gamepad events refactor (#6965)
# Objective
- Remove redundant gamepad events
- Simplify consuming gamepad events.
- Refactor: Separate handling of gamepad events into multiple systems.
## Solution
- Removed `GamepadEventRaw`, and `GamepadEventType`.
- Added bespoke `GamepadConnectionEvent`, `GamepadAxisChangedEvent`, and `GamepadButtonChangedEvent`.
- Refactored `gamepad_event_system`.
- Added `gamepad_button_event_system`, `gamepad_axis_event_system`, and `gamepad_connection_system`, which update the `Input` and `Axis` resources using their corresponding event type.
Gamepad events are now handled in their own systems and have their own types.
This allows for querying for gamepad events without having to match on `GamepadEventType` and makes creating handlers for specific gamepad event types, like a `GamepadConnectionEvent` or `GamepadButtonChangedEvent` possible.
We remove `GamepadEventRaw` by filtering the gamepad events, using `GamepadSettings`, _at the source_, in `bevy_gilrs`. This way we can create `GamepadEvent`s directly and avoid creating `GamepadEventRaw` which do not pass the user defined filters.
We expose ordered `GamepadEvent`s and we can respond to individual gamepad event types.
## Migration Guide
- Replace `GamepadEvent` and `GamepadEventRaw` types with their specific gamepad event type.
2023-01-09 19:24:52 +00:00
|
|
|
if axis_type == move_with.y_axis {
|
|
|
|
transform.translation.y = value * move_with.scale;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (mut text, text_with_axes) in text_query.iter_mut() {
|
|
|
|
if axis_type == text_with_axes.x_axis {
|
|
|
|
text.sections[0].value = format!("{value:.3}");
|
|
|
|
}
|
|
|
|
if axis_type == text_with_axes.y_axis {
|
|
|
|
text.sections[2].value = format!("{value:.3}");
|
2022-09-24 13:21:01 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn update_connected(
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
mut connected: EventReader<GamepadConnectionEvent>,
|
|
|
|
gamepads: Query<(Entity, &Gamepad)>,
|
2022-09-24 13:21:01 +00:00
|
|
|
mut query: Query<&mut Text, With<ConnectedGamepadsText>>,
|
|
|
|
) {
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
if connected.is_empty() {
|
2022-09-24 13:21:01 +00:00
|
|
|
return;
|
|
|
|
}
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
connected.clear();
|
2022-09-24 13:21:01 +00:00
|
|
|
let mut text = query.single_mut();
|
|
|
|
|
|
|
|
let formatted = gamepads
|
|
|
|
.iter()
|
Implement gamepads as entities (#12770)
# Objective
- Significantly improve the ergonomics of gamepads and allow new
features
Gamepads are a bit unergonomic to work with, they use resources but
unlike other inputs, they are not limited to a single gamepad, to get
around this it uses an identifier (Gamepad) to interact with anything
causing all sorts of issues.
1. There are too many: Gamepads, GamepadSettings, GamepadInfo,
ButtonInput<T>, 2 Axis<T>.
2. ButtonInput/Axis generic methods become really inconvenient to use
e.g. any_pressed()
3. GamepadButton/Axis structs are unnecessary boilerplate:
```rust
for gamepad in gamepads.iter() {
if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) {
info!("{:?} just pressed South", gamepad);
} else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South))
{
info!("{:?} just released South", gamepad);
}
}
```
4. Projects often need to create resources to store the selected gamepad
and have to manually check if their gamepad is still valid anyways.
- Previously attempted by #3419 and #12674
## Solution
- Implement gamepads as entities.
Using entities solves all the problems above and opens new
possibilities.
1. Reduce boilerplate and allows iteration
```rust
let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South))
```
2. ButtonInput/Axis generic methods become ergonomic again
```rust
gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select])
```
3. Reduces the number of public components significantly (Gamepad,
GamepadSettings, GamepadButtons, GamepadAxes)
4. Components are highly convenient. Gamepad optional features could now
be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs
to attach their own components and filter them, so code like this
becomes possible:
```rust
fn move_player<const T: usize>(
player: Query<&Transform, With<Player<T>>>,
gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>,
) {
if let Ok(gamepad_buttons) = gamepads_buttons.get_single() {
if gamepad_buttons.pressed(GamepadButtonType::South) {
// move player
}
}
}
```
---
## Follow-up
- [ ] Run conditions?
- [ ] Rumble component
# Changelog
## Added
TODO
## Changed
TODO
## Removed
TODO
## Migration Guide
TODO
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
|
|
|
.map(|(entity, gamepad)| format!("{} - {}", entity, gamepad.name()))
|
2022-09-24 13:21:01 +00:00
|
|
|
.collect::<Vec<_>>()
|
|
|
|
.join("\n");
|
|
|
|
|
|
|
|
text.sections[1].value = if !formatted.is_empty() {
|
|
|
|
formatted
|
|
|
|
} else {
|
|
|
|
"None".to_string()
|
|
|
|
}
|
|
|
|
}
|