2021-12-14 03:58:23 +00:00
|
|
|
|
use std::collections::HashSet;
|
|
|
|
|
|
|
|
|
|
use bevy_ecs::prelude::*;
|
|
|
|
|
use bevy_math::{Mat4, UVec2, UVec3, Vec2, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
|
|
|
|
|
use bevy_render::{
|
|
|
|
|
camera::{Camera, CameraProjection, OrthographicProjection},
|
|
|
|
|
color::Color,
|
|
|
|
|
primitives::{Aabb, CubemapFrusta, Frustum, Sphere},
|
|
|
|
|
view::{ComputedVisibility, RenderLayers, Visibility, VisibleEntities},
|
|
|
|
|
};
|
2020-09-14 21:00:32 +00:00
|
|
|
|
use bevy_transform::components::GlobalTransform;
|
2021-12-14 03:58:23 +00:00
|
|
|
|
use bevy_window::Windows;
|
|
|
|
|
|
|
|
|
|
use crate::{
|
2021-12-14 23:42:35 +00:00
|
|
|
|
calculate_cluster_factors, CubeMapFace, CubemapVisibleEntities, ViewClusterBindings,
|
|
|
|
|
CUBE_MAP_FACES, POINT_LIGHT_NEAR_Z,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
};
|
2019-12-02 04:03:04 +00:00
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
/// A light that emits light in all directions from a central point.
|
|
|
|
|
///
|
|
|
|
|
/// Real-world values for `intensity` (luminous power in lumens) based on the electrical power
|
|
|
|
|
/// consumption of the type of real-world light are:
|
|
|
|
|
///
|
|
|
|
|
/// | Luminous Power (lumen) (i.e. the intensity member) | Incandescent non-halogen (Watts) | Incandescent halogen (Watts) | Compact fluorescent (Watts) | LED (Watts |
|
|
|
|
|
/// |------|-----|----|--------|-------|
|
|
|
|
|
/// | 200 | 25 | | 3-5 | 3 |
|
|
|
|
|
/// | 450 | 40 | 29 | 9-11 | 5-8 |
|
|
|
|
|
/// | 800 | 60 | | 13-15 | 8-12 |
|
|
|
|
|
/// | 1100 | 75 | 53 | 18-20 | 10-16 |
|
|
|
|
|
/// | 1600 | 100 | 72 | 24-28 | 14-17 |
|
|
|
|
|
/// | 2400 | 150 | | 30-52 | 24-30 |
|
|
|
|
|
/// | 3100 | 200 | | 49-75 | 32 |
|
|
|
|
|
/// | 4000 | 300 | | 75-100 | 40.5 |
|
|
|
|
|
///
|
|
|
|
|
/// Source: [Wikipedia](https://en.wikipedia.org/wiki/Lumen_(unit)#Lighting)
|
|
|
|
|
#[derive(Component, Debug, Clone, Copy)]
|
2021-04-13 02:21:24 +00:00
|
|
|
|
pub struct PointLight {
|
2020-03-10 06:43:40 +00:00
|
|
|
|
pub color: Color,
|
2021-03-20 03:22:33 +00:00
|
|
|
|
pub intensity: f32,
|
|
|
|
|
pub range: f32,
|
2021-04-22 18:49:02 +00:00
|
|
|
|
pub radius: f32,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
pub shadows_enabled: bool,
|
|
|
|
|
pub shadow_depth_bias: f32,
|
|
|
|
|
/// A bias applied along the direction of the fragment's surface normal. It is scaled to the
|
|
|
|
|
/// shadow map's texel size so that it can be small close to the camera and gets larger further
|
|
|
|
|
/// away.
|
|
|
|
|
pub shadow_normal_bias: f32,
|
2020-02-18 03:06:12 +00:00
|
|
|
|
}
|
|
|
|
|
|
2021-04-13 02:21:24 +00:00
|
|
|
|
impl Default for PointLight {
|
2020-02-18 03:06:12 +00:00
|
|
|
|
fn default() -> Self {
|
2021-04-13 02:21:24 +00:00
|
|
|
|
PointLight {
|
2020-03-10 06:43:40 +00:00
|
|
|
|
color: Color::rgb(1.0, 1.0, 1.0),
|
2021-12-14 03:58:23 +00:00
|
|
|
|
/// Luminous power in lumens
|
|
|
|
|
intensity: 800.0, // Roughly a 60W non-halogen incandescent bulb
|
2021-03-20 03:22:33 +00:00
|
|
|
|
range: 20.0,
|
2021-04-22 18:49:02 +00:00
|
|
|
|
radius: 0.0,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
shadows_enabled: false,
|
|
|
|
|
shadow_depth_bias: Self::DEFAULT_SHADOW_DEPTH_BIAS,
|
|
|
|
|
shadow_normal_bias: Self::DEFAULT_SHADOW_NORMAL_BIAS,
|
2020-02-18 03:06:12 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
2019-12-02 04:03:04 +00:00
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
impl PointLight {
|
|
|
|
|
pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
|
|
|
|
|
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.6;
|
2019-12-02 04:03:04 +00:00
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
#[derive(Clone, Debug)]
|
|
|
|
|
pub struct PointLightShadowMap {
|
|
|
|
|
pub size: usize,
|
|
|
|
|
}
|
2021-04-22 18:49:02 +00:00
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
impl Default for PointLightShadowMap {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
Self { size: 1024 }
|
2019-12-02 04:03:04 +00:00
|
|
|
|
}
|
2020-01-11 10:11:27 +00:00
|
|
|
|
}
|
2020-11-15 19:34:55 +00:00
|
|
|
|
|
2021-05-14 20:37:34 +00:00
|
|
|
|
/// A Directional light.
|
|
|
|
|
///
|
|
|
|
|
/// Directional lights don't exist in reality but they are a good
|
|
|
|
|
/// approximation for light sources VERY far away, like the sun or
|
|
|
|
|
/// the moon.
|
|
|
|
|
///
|
|
|
|
|
/// Valid values for `illuminance` are:
|
|
|
|
|
///
|
|
|
|
|
/// | Illuminance (lux) | Surfaces illuminated by |
|
|
|
|
|
/// |-------------------|------------------------------------------------|
|
|
|
|
|
/// | 0.0001 | Moonless, overcast night sky (starlight) |
|
|
|
|
|
/// | 0.002 | Moonless clear night sky with airglow |
|
|
|
|
|
/// | 0.05–0.3 | Full moon on a clear night |
|
|
|
|
|
/// | 3.4 | Dark limit of civil twilight under a clear sky |
|
|
|
|
|
/// | 20–50 | Public areas with dark surroundings |
|
|
|
|
|
/// | 50 | Family living room lights |
|
|
|
|
|
/// | 80 | Office building hallway/toilet lighting |
|
|
|
|
|
/// | 100 | Very dark overcast day |
|
|
|
|
|
/// | 150 | Train station platforms |
|
|
|
|
|
/// | 320–500 | Office lighting |
|
|
|
|
|
/// | 400 | Sunrise or sunset on a clear day. |
|
|
|
|
|
/// | 1000 | Overcast day; typical TV studio lighting |
|
|
|
|
|
/// | 10,000–25,000 | Full daylight (not direct sun) |
|
|
|
|
|
/// | 32,000–100,000 | Direct sunlight |
|
|
|
|
|
///
|
|
|
|
|
/// Source: [Wikipedia](https://en.wikipedia.org/wiki/Lux)
|
2021-12-14 03:58:23 +00:00
|
|
|
|
#[derive(Component, Debug, Clone)]
|
2021-05-14 20:37:34 +00:00
|
|
|
|
pub struct DirectionalLight {
|
|
|
|
|
pub color: Color,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
/// Illuminance in lux
|
2021-05-14 20:37:34 +00:00
|
|
|
|
pub illuminance: f32,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
pub shadows_enabled: bool,
|
|
|
|
|
pub shadow_projection: OrthographicProjection,
|
|
|
|
|
pub shadow_depth_bias: f32,
|
|
|
|
|
/// A bias applied along the direction of the fragment's surface normal. It is scaled to the
|
|
|
|
|
/// shadow map's texel size so that it is automatically adjusted to the orthographic projection.
|
|
|
|
|
pub shadow_normal_bias: f32,
|
2021-05-14 20:37:34 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Default for DirectionalLight {
|
|
|
|
|
fn default() -> Self {
|
2021-12-14 03:58:23 +00:00
|
|
|
|
let size = 100.0;
|
2021-05-14 20:37:34 +00:00
|
|
|
|
DirectionalLight {
|
|
|
|
|
color: Color::rgb(1.0, 1.0, 1.0),
|
|
|
|
|
illuminance: 100000.0,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
shadows_enabled: false,
|
|
|
|
|
shadow_projection: OrthographicProjection {
|
|
|
|
|
left: -size,
|
|
|
|
|
right: size,
|
|
|
|
|
bottom: -size,
|
|
|
|
|
top: size,
|
|
|
|
|
near: -size,
|
|
|
|
|
far: size,
|
|
|
|
|
..Default::default()
|
|
|
|
|
},
|
|
|
|
|
shadow_depth_bias: Self::DEFAULT_SHADOW_DEPTH_BIAS,
|
|
|
|
|
shadow_normal_bias: Self::DEFAULT_SHADOW_NORMAL_BIAS,
|
2021-05-14 20:37:34 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
impl DirectionalLight {
|
|
|
|
|
pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
|
|
|
|
|
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.6;
|
2021-05-14 20:37:34 +00:00
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
#[derive(Clone, Debug)]
|
|
|
|
|
pub struct DirectionalLightShadowMap {
|
|
|
|
|
pub size: usize,
|
|
|
|
|
}
|
2021-05-14 20:37:34 +00:00
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
impl Default for DirectionalLightShadowMap {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
Self { size: 4096 }
|
2021-05-14 20:37:34 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 03:58:23 +00:00
|
|
|
|
/// An ambient light, which lights the entire scene equally.
|
2020-11-15 19:34:55 +00:00
|
|
|
|
#[derive(Debug)]
|
|
|
|
|
pub struct AmbientLight {
|
|
|
|
|
pub color: Color,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
/// A direct scale factor multiplied with `color` before being passed to the shader.
|
2021-03-12 18:59:24 +00:00
|
|
|
|
pub brightness: f32,
|
2020-11-15 19:34:55 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Default for AmbientLight {
|
|
|
|
|
fn default() -> Self {
|
|
|
|
|
Self {
|
2021-03-12 18:59:24 +00:00
|
|
|
|
color: Color::rgb(1.0, 1.0, 1.0),
|
|
|
|
|
brightness: 0.05,
|
2020-11-15 19:34:55 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2021-12-14 03:58:23 +00:00
|
|
|
|
|
|
|
|
|
/// Add this component to make a [`Mesh`](bevy_render::mesh::Mesh) not cast shadows.
|
|
|
|
|
#[derive(Component)]
|
|
|
|
|
pub struct NotShadowCaster;
|
|
|
|
|
/// Add this component to make a [`Mesh`](bevy_render::mesh::Mesh) not receive shadows.
|
|
|
|
|
#[derive(Component)]
|
|
|
|
|
pub struct NotShadowReceiver;
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemLabel)]
|
|
|
|
|
pub enum SimulationLightSystems {
|
|
|
|
|
AddClusters,
|
|
|
|
|
UpdateClusters,
|
|
|
|
|
AssignLightsToClusters,
|
|
|
|
|
UpdateDirectionalLightFrusta,
|
|
|
|
|
UpdatePointLightFrusta,
|
|
|
|
|
CheckLightVisibility,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Clustered-forward rendering notes
|
|
|
|
|
// The main initial reference material used was this rather accessible article:
|
|
|
|
|
// http://www.aortiz.me/2018/12/21/CG.html
|
|
|
|
|
// Some inspiration was taken from “Practical Clustered Shading” which is part 2 of:
|
|
|
|
|
// https://efficientshading.com/2015/01/01/real-time-many-light-management-and-shadows-with-clustered-shading/
|
|
|
|
|
// (Also note that Part 3 of the above shows how we could support the shadow mapping for many lights.)
|
|
|
|
|
// The z-slicing method mentioned in the aortiz article is originally from Tiago Sousa’s Siggraph 2016 talk about Doom 2016:
|
|
|
|
|
// http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
|
|
|
|
|
|
|
|
|
|
#[derive(Component, Debug)]
|
|
|
|
|
pub struct Clusters {
|
|
|
|
|
/// Tile size
|
|
|
|
|
pub(crate) tile_size: UVec2,
|
|
|
|
|
/// Number of clusters in x / y / z in the view frustum
|
|
|
|
|
pub(crate) axis_slices: UVec3,
|
|
|
|
|
aabbs: Vec<Aabb>,
|
|
|
|
|
pub(crate) lights: Vec<VisiblePointLights>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl Clusters {
|
|
|
|
|
fn new(tile_size: UVec2, screen_size: UVec2, z_slices: u32) -> Self {
|
|
|
|
|
let mut clusters = Self {
|
|
|
|
|
tile_size,
|
|
|
|
|
axis_slices: Default::default(),
|
|
|
|
|
aabbs: Default::default(),
|
|
|
|
|
lights: Default::default(),
|
|
|
|
|
};
|
|
|
|
|
clusters.update(tile_size, screen_size, z_slices);
|
|
|
|
|
clusters
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn from_screen_size_and_z_slices(screen_size: UVec2, z_slices: u32) -> Self {
|
|
|
|
|
let aspect_ratio = screen_size.x as f32 / screen_size.y as f32;
|
|
|
|
|
let n_tiles_y =
|
|
|
|
|
((ViewClusterBindings::MAX_OFFSETS as u32 / z_slices) as f32 / aspect_ratio).sqrt();
|
|
|
|
|
// NOTE: Round down the number of tiles in order to avoid overflowing the maximum number of
|
|
|
|
|
// clusters.
|
|
|
|
|
let n_tiles = UVec2::new(
|
|
|
|
|
(aspect_ratio * n_tiles_y).floor() as u32,
|
|
|
|
|
n_tiles_y.floor() as u32,
|
|
|
|
|
);
|
|
|
|
|
Clusters::new((screen_size + UVec2::ONE) / n_tiles, screen_size, Z_SLICES)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn update(&mut self, tile_size: UVec2, screen_size: UVec2, z_slices: u32) {
|
|
|
|
|
self.tile_size = tile_size;
|
|
|
|
|
self.axis_slices = UVec3::new(
|
|
|
|
|
(screen_size.x + 1) / tile_size.x,
|
|
|
|
|
(screen_size.y + 1) / tile_size.y,
|
|
|
|
|
z_slices,
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn clip_to_view(inverse_projection: Mat4, clip: Vec4) -> Vec4 {
|
|
|
|
|
let view = inverse_projection * clip;
|
|
|
|
|
view / view.w
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn screen_to_view(screen_size: Vec2, inverse_projection: Mat4, screen: Vec2, ndc_z: f32) -> Vec4 {
|
|
|
|
|
let tex_coord = screen / screen_size;
|
|
|
|
|
let clip = Vec4::new(
|
|
|
|
|
tex_coord.x * 2.0 - 1.0,
|
|
|
|
|
(1.0 - tex_coord.y) * 2.0 - 1.0,
|
|
|
|
|
ndc_z,
|
|
|
|
|
1.0,
|
|
|
|
|
);
|
|
|
|
|
clip_to_view(inverse_projection, clip)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate the intersection of a ray from the eye through the view space position to a z plane
|
|
|
|
|
fn line_intersection_to_z_plane(origin: Vec3, p: Vec3, z: f32) -> Vec3 {
|
|
|
|
|
let v = p - origin;
|
|
|
|
|
let t = (z - Vec3::Z.dot(origin)) / Vec3::Z.dot(v);
|
|
|
|
|
origin + t * v
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 23:42:35 +00:00
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
2021-12-14 03:58:23 +00:00
|
|
|
|
fn compute_aabb_for_cluster(
|
|
|
|
|
z_near: f32,
|
|
|
|
|
z_far: f32,
|
|
|
|
|
tile_size: Vec2,
|
|
|
|
|
screen_size: Vec2,
|
|
|
|
|
inverse_projection: Mat4,
|
2021-12-14 23:42:35 +00:00
|
|
|
|
is_orthographic: bool,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
cluster_dimensions: UVec3,
|
|
|
|
|
ijk: UVec3,
|
|
|
|
|
) -> Aabb {
|
|
|
|
|
let ijk = ijk.as_vec3();
|
|
|
|
|
|
|
|
|
|
// Calculate the minimum and maximum points in screen space
|
|
|
|
|
let p_min = ijk.xy() * tile_size;
|
|
|
|
|
let p_max = p_min + tile_size;
|
|
|
|
|
|
2021-12-14 23:42:35 +00:00
|
|
|
|
let cluster_min;
|
|
|
|
|
let cluster_max;
|
|
|
|
|
if is_orthographic {
|
|
|
|
|
// Use linear depth slicing for orthographic
|
|
|
|
|
|
|
|
|
|
// Convert to view space at the cluster near and far planes
|
|
|
|
|
// NOTE: 1.0 is the near plane due to using reverse z projections
|
|
|
|
|
let p_min = screen_to_view(
|
|
|
|
|
screen_size,
|
|
|
|
|
inverse_projection,
|
|
|
|
|
p_min,
|
|
|
|
|
1.0 - (ijk.z / cluster_dimensions.z as f32),
|
|
|
|
|
)
|
|
|
|
|
.xyz();
|
|
|
|
|
let p_max = screen_to_view(
|
|
|
|
|
screen_size,
|
|
|
|
|
inverse_projection,
|
|
|
|
|
p_max,
|
|
|
|
|
1.0 - ((ijk.z + 1.0) / cluster_dimensions.z as f32),
|
|
|
|
|
)
|
|
|
|
|
.xyz();
|
|
|
|
|
|
|
|
|
|
cluster_min = p_min.min(p_max);
|
|
|
|
|
cluster_max = p_min.max(p_max);
|
|
|
|
|
} else {
|
|
|
|
|
// Convert to view space at the near plane
|
|
|
|
|
// NOTE: 1.0 is the near plane due to using reverse z projections
|
|
|
|
|
let p_min = screen_to_view(screen_size, inverse_projection, p_min, 1.0);
|
|
|
|
|
let p_max = screen_to_view(screen_size, inverse_projection, p_max, 1.0);
|
|
|
|
|
|
|
|
|
|
let z_far_over_z_near = -z_far / -z_near;
|
|
|
|
|
let cluster_near = -z_near * z_far_over_z_near.powf(ijk.z / cluster_dimensions.z as f32);
|
|
|
|
|
// NOTE: This could be simplified to:
|
|
|
|
|
// cluster_far = cluster_near * z_far_over_z_near;
|
|
|
|
|
let cluster_far =
|
|
|
|
|
-z_near * z_far_over_z_near.powf((ijk.z + 1.0) / cluster_dimensions.z as f32);
|
|
|
|
|
|
|
|
|
|
// Calculate the four intersection points of the min and max points with the cluster near and far planes
|
|
|
|
|
let p_min_near = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_near);
|
|
|
|
|
let p_min_far = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_far);
|
|
|
|
|
let p_max_near = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_near);
|
|
|
|
|
let p_max_far = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_far);
|
|
|
|
|
|
|
|
|
|
cluster_min = p_min_near.min(p_min_far).min(p_max_near.min(p_max_far));
|
|
|
|
|
cluster_max = p_min_near.max(p_min_far).max(p_max_near.max(p_max_far));
|
|
|
|
|
}
|
2021-12-14 03:58:23 +00:00
|
|
|
|
|
|
|
|
|
Aabb::from_min_max(cluster_min, cluster_max)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const Z_SLICES: u32 = 24;
|
|
|
|
|
|
|
|
|
|
pub fn add_clusters(
|
|
|
|
|
mut commands: Commands,
|
|
|
|
|
windows: Res<Windows>,
|
|
|
|
|
cameras: Query<(Entity, &Camera), Without<Clusters>>,
|
|
|
|
|
) {
|
|
|
|
|
for (entity, camera) in cameras.iter() {
|
|
|
|
|
let window = windows.get(camera.window).unwrap();
|
|
|
|
|
let clusters = Clusters::from_screen_size_and_z_slices(
|
|
|
|
|
UVec2::new(window.physical_width(), window.physical_height()),
|
|
|
|
|
Z_SLICES,
|
|
|
|
|
);
|
|
|
|
|
commands.entity(entity).insert(clusters);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn update_clusters(windows: Res<Windows>, mut views: Query<(&Camera, &mut Clusters)>) {
|
|
|
|
|
for (camera, mut clusters) in views.iter_mut() {
|
2021-12-14 23:42:35 +00:00
|
|
|
|
let is_orthographic = camera.projection_matrix.w_axis.w == 1.0;
|
2021-12-14 03:58:23 +00:00
|
|
|
|
let inverse_projection = camera.projection_matrix.inverse();
|
|
|
|
|
let window = windows.get(camera.window).unwrap();
|
|
|
|
|
let screen_size_u32 = UVec2::new(window.physical_width(), window.physical_height());
|
|
|
|
|
*clusters =
|
|
|
|
|
Clusters::from_screen_size_and_z_slices(screen_size_u32, clusters.axis_slices.z);
|
|
|
|
|
let screen_size = screen_size_u32.as_vec2();
|
|
|
|
|
let tile_size_u32 = clusters.tile_size;
|
|
|
|
|
let tile_size = tile_size_u32.as_vec2();
|
|
|
|
|
|
|
|
|
|
// Calculate view space AABBs
|
|
|
|
|
// NOTE: It is important that these are iterated in a specific order
|
|
|
|
|
// so that we can calculate the cluster index in the fragment shader!
|
|
|
|
|
// I (Rob Swain) choose to scan along rows of tiles in x,y, and for each tile then scan
|
|
|
|
|
// along z
|
|
|
|
|
let mut aabbs = Vec::with_capacity(
|
|
|
|
|
(clusters.axis_slices.y * clusters.axis_slices.x * clusters.axis_slices.z) as usize,
|
|
|
|
|
);
|
|
|
|
|
for y in 0..clusters.axis_slices.y {
|
|
|
|
|
for x in 0..clusters.axis_slices.x {
|
|
|
|
|
for z in 0..clusters.axis_slices.z {
|
|
|
|
|
aabbs.push(compute_aabb_for_cluster(
|
|
|
|
|
camera.near,
|
|
|
|
|
camera.far,
|
|
|
|
|
tile_size,
|
|
|
|
|
screen_size,
|
|
|
|
|
inverse_projection,
|
2021-12-14 23:42:35 +00:00
|
|
|
|
is_orthographic,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
clusters.axis_slices,
|
|
|
|
|
UVec3::new(x, y, z),
|
|
|
|
|
));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
clusters.aabbs = aabbs;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[derive(Clone, Component, Debug, Default)]
|
|
|
|
|
pub struct VisiblePointLights {
|
|
|
|
|
pub entities: Vec<Entity>,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl VisiblePointLights {
|
|
|
|
|
pub fn from_light_count(count: usize) -> Self {
|
|
|
|
|
Self {
|
|
|
|
|
entities: Vec::with_capacity(count),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Entity> {
|
|
|
|
|
self.entities.iter()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn len(&self) -> usize {
|
|
|
|
|
self.entities.len()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
|
|
|
self.entities.is_empty()
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 23:42:35 +00:00
|
|
|
|
fn view_z_to_z_slice(cluster_factors: Vec2, view_z: f32, is_orthographic: bool) -> u32 {
|
|
|
|
|
if is_orthographic {
|
|
|
|
|
// NOTE: view_z is correct in the orthographic case
|
|
|
|
|
((view_z - cluster_factors.x) * cluster_factors.y).floor() as u32
|
|
|
|
|
} else {
|
|
|
|
|
// NOTE: had to use -view_z to make it positive else log(negative) is nan
|
|
|
|
|
((-view_z).ln() * cluster_factors.x - cluster_factors.y).floor() as u32
|
|
|
|
|
}
|
2021-12-14 03:58:23 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn ndc_position_to_cluster(
|
|
|
|
|
cluster_dimensions: UVec3,
|
|
|
|
|
cluster_factors: Vec2,
|
2021-12-14 23:42:35 +00:00
|
|
|
|
is_orthographic: bool,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
ndc_p: Vec3,
|
|
|
|
|
view_z: f32,
|
|
|
|
|
) -> UVec3 {
|
|
|
|
|
let cluster_dimensions_f32 = cluster_dimensions.as_vec3();
|
|
|
|
|
let frag_coord =
|
|
|
|
|
(ndc_p.xy() * Vec2::new(0.5, -0.5) + Vec2::splat(0.5)).clamp(Vec2::ZERO, Vec2::ONE);
|
|
|
|
|
let xy = (frag_coord * cluster_dimensions_f32.xy()).floor();
|
2021-12-14 23:42:35 +00:00
|
|
|
|
let z_slice = view_z_to_z_slice(cluster_factors, view_z, is_orthographic);
|
2021-12-14 03:58:23 +00:00
|
|
|
|
xy.as_uvec2()
|
|
|
|
|
.extend(z_slice)
|
|
|
|
|
.clamp(UVec3::ZERO, cluster_dimensions - UVec3::ONE)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn cluster_to_index(cluster_dimensions: UVec3, cluster: UVec3) -> usize {
|
|
|
|
|
((cluster.y * cluster_dimensions.x + cluster.x) * cluster_dimensions.z + cluster.z) as usize
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NOTE: Run this before update_point_light_frusta!
|
|
|
|
|
pub fn assign_lights_to_clusters(
|
|
|
|
|
mut commands: Commands,
|
|
|
|
|
mut global_lights: ResMut<VisiblePointLights>,
|
|
|
|
|
mut views: Query<(Entity, &GlobalTransform, &Camera, &Frustum, &mut Clusters)>,
|
|
|
|
|
lights: Query<(Entity, &GlobalTransform, &PointLight)>,
|
|
|
|
|
) {
|
|
|
|
|
let light_count = lights.iter().count();
|
|
|
|
|
let mut global_lights_set = HashSet::with_capacity(light_count);
|
|
|
|
|
for (view_entity, view_transform, camera, frustum, mut clusters) in views.iter_mut() {
|
|
|
|
|
let view_transform = view_transform.compute_matrix();
|
|
|
|
|
let inverse_view_transform = view_transform.inverse();
|
|
|
|
|
let cluster_count = clusters.aabbs.len();
|
2021-12-14 23:42:35 +00:00
|
|
|
|
let is_orthographic = camera.projection_matrix.w_axis.w == 1.0;
|
|
|
|
|
let cluster_factors = calculate_cluster_factors(
|
|
|
|
|
camera.near,
|
|
|
|
|
camera.far,
|
|
|
|
|
clusters.axis_slices.z as f32,
|
|
|
|
|
is_orthographic,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
let mut clusters_lights =
|
|
|
|
|
vec![VisiblePointLights::from_light_count(light_count); cluster_count];
|
|
|
|
|
let mut visible_lights_set = HashSet::with_capacity(light_count);
|
|
|
|
|
|
|
|
|
|
for (light_entity, light_transform, light) in lights.iter() {
|
|
|
|
|
let light_sphere = Sphere {
|
|
|
|
|
center: light_transform.translation,
|
|
|
|
|
radius: light.range,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Check if the light is within the view frustum
|
|
|
|
|
if !frustum.intersects_sphere(&light_sphere) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculate an AABB for the light in view space, find the corresponding clusters for the min and max
|
|
|
|
|
// points of the AABB, then iterate over just those clusters for this light
|
|
|
|
|
let light_aabb_view = Aabb {
|
|
|
|
|
center: (inverse_view_transform * light_sphere.center.extend(1.0)).xyz(),
|
|
|
|
|
half_extents: Vec3::splat(light_sphere.radius),
|
|
|
|
|
};
|
|
|
|
|
let (light_aabb_view_min, light_aabb_view_max) =
|
|
|
|
|
(light_aabb_view.min(), light_aabb_view.max());
|
|
|
|
|
// Is there a cheaper way to do this? The problem is that because of perspective
|
|
|
|
|
// the point at max z but min xy may be less xy in screenspace, and similar. As
|
|
|
|
|
// such, projecting the min and max xy at both the closer and further z and taking
|
|
|
|
|
// the min and max of those projected points addresses this.
|
|
|
|
|
let (
|
|
|
|
|
light_aabb_view_xymin_near,
|
|
|
|
|
light_aabb_view_xymin_far,
|
|
|
|
|
light_aabb_view_xymax_near,
|
|
|
|
|
light_aabb_view_xymax_far,
|
|
|
|
|
) = (
|
|
|
|
|
light_aabb_view_min,
|
|
|
|
|
light_aabb_view_min.xy().extend(light_aabb_view_max.z),
|
|
|
|
|
light_aabb_view_max.xy().extend(light_aabb_view_min.z),
|
|
|
|
|
light_aabb_view_max,
|
|
|
|
|
);
|
|
|
|
|
let (
|
|
|
|
|
light_aabb_clip_xymin_near,
|
|
|
|
|
light_aabb_clip_xymin_far,
|
|
|
|
|
light_aabb_clip_xymax_near,
|
|
|
|
|
light_aabb_clip_xymax_far,
|
|
|
|
|
) = (
|
|
|
|
|
camera.projection_matrix * light_aabb_view_xymin_near.extend(1.0),
|
|
|
|
|
camera.projection_matrix * light_aabb_view_xymin_far.extend(1.0),
|
|
|
|
|
camera.projection_matrix * light_aabb_view_xymax_near.extend(1.0),
|
|
|
|
|
camera.projection_matrix * light_aabb_view_xymax_far.extend(1.0),
|
|
|
|
|
);
|
|
|
|
|
let (
|
|
|
|
|
light_aabb_ndc_xymin_near,
|
|
|
|
|
light_aabb_ndc_xymin_far,
|
|
|
|
|
light_aabb_ndc_xymax_near,
|
|
|
|
|
light_aabb_ndc_xymax_far,
|
|
|
|
|
) = (
|
|
|
|
|
light_aabb_clip_xymin_near.xyz() / light_aabb_clip_xymin_near.w,
|
|
|
|
|
light_aabb_clip_xymin_far.xyz() / light_aabb_clip_xymin_far.w,
|
|
|
|
|
light_aabb_clip_xymax_near.xyz() / light_aabb_clip_xymax_near.w,
|
|
|
|
|
light_aabb_clip_xymax_far.xyz() / light_aabb_clip_xymax_far.w,
|
|
|
|
|
);
|
|
|
|
|
let (light_aabb_ndc_min, light_aabb_ndc_max) = (
|
|
|
|
|
light_aabb_ndc_xymin_near
|
|
|
|
|
.min(light_aabb_ndc_xymin_far)
|
|
|
|
|
.min(light_aabb_ndc_xymax_near)
|
|
|
|
|
.min(light_aabb_ndc_xymax_far),
|
|
|
|
|
light_aabb_ndc_xymin_near
|
|
|
|
|
.max(light_aabb_ndc_xymin_far)
|
|
|
|
|
.max(light_aabb_ndc_xymax_near)
|
|
|
|
|
.max(light_aabb_ndc_xymax_far),
|
|
|
|
|
);
|
|
|
|
|
let min_cluster = ndc_position_to_cluster(
|
|
|
|
|
clusters.axis_slices,
|
|
|
|
|
cluster_factors,
|
2021-12-14 23:42:35 +00:00
|
|
|
|
is_orthographic,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
light_aabb_ndc_min,
|
|
|
|
|
light_aabb_view_min.z,
|
|
|
|
|
);
|
|
|
|
|
let max_cluster = ndc_position_to_cluster(
|
|
|
|
|
clusters.axis_slices,
|
|
|
|
|
cluster_factors,
|
2021-12-14 23:42:35 +00:00
|
|
|
|
is_orthographic,
|
2021-12-14 03:58:23 +00:00
|
|
|
|
light_aabb_ndc_max,
|
|
|
|
|
light_aabb_view_max.z,
|
|
|
|
|
);
|
|
|
|
|
let (min_cluster, max_cluster) =
|
|
|
|
|
(min_cluster.min(max_cluster), min_cluster.max(max_cluster));
|
|
|
|
|
for y in min_cluster.y..=max_cluster.y {
|
|
|
|
|
for x in min_cluster.x..=max_cluster.x {
|
|
|
|
|
for z in min_cluster.z..=max_cluster.z {
|
|
|
|
|
let cluster_index =
|
|
|
|
|
cluster_to_index(clusters.axis_slices, UVec3::new(x, y, z));
|
|
|
|
|
let cluster_aabb = &clusters.aabbs[cluster_index];
|
|
|
|
|
if light_sphere.intersects_obb(cluster_aabb, &view_transform) {
|
|
|
|
|
global_lights_set.insert(light_entity);
|
|
|
|
|
visible_lights_set.insert(light_entity);
|
|
|
|
|
clusters_lights[cluster_index].entities.push(light_entity);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for cluster_lights in clusters_lights.iter_mut() {
|
|
|
|
|
cluster_lights.entities.shrink_to_fit();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
clusters.lights = clusters_lights;
|
|
|
|
|
commands.entity(view_entity).insert(VisiblePointLights {
|
|
|
|
|
entities: visible_lights_set.into_iter().collect(),
|
|
|
|
|
});
|
|
|
|
|
}
|
|
|
|
|
global_lights.entities = global_lights_set.into_iter().collect();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn update_directional_light_frusta(
|
|
|
|
|
mut views: Query<(&GlobalTransform, &DirectionalLight, &mut Frustum)>,
|
|
|
|
|
) {
|
|
|
|
|
for (transform, directional_light, mut frustum) in views.iter_mut() {
|
|
|
|
|
// The frustum is used for culling meshes to the light for shadow mapping
|
|
|
|
|
// so if shadow mapping is disabled for this light, then the frustum is
|
|
|
|
|
// not needed.
|
|
|
|
|
if !directional_light.shadows_enabled {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let view_projection = directional_light.shadow_projection.get_projection_matrix()
|
|
|
|
|
* transform.compute_matrix().inverse();
|
|
|
|
|
*frustum = Frustum::from_view_projection(
|
|
|
|
|
&view_projection,
|
|
|
|
|
&transform.translation,
|
|
|
|
|
&transform.back(),
|
|
|
|
|
directional_light.shadow_projection.far(),
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NOTE: Run this after assign_lights_to_clusters!
|
|
|
|
|
pub fn update_point_light_frusta(
|
|
|
|
|
global_lights: Res<VisiblePointLights>,
|
|
|
|
|
mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
|
|
|
|
|
) {
|
|
|
|
|
let projection =
|
|
|
|
|
Mat4::perspective_infinite_reverse_rh(std::f32::consts::FRAC_PI_2, 1.0, POINT_LIGHT_NEAR_Z);
|
|
|
|
|
let view_rotations = CUBE_MAP_FACES
|
|
|
|
|
.iter()
|
|
|
|
|
.map(|CubeMapFace { target, up }| GlobalTransform::identity().looking_at(*target, *up))
|
|
|
|
|
.collect::<Vec<_>>();
|
|
|
|
|
|
|
|
|
|
let global_lights_set = global_lights
|
|
|
|
|
.entities
|
|
|
|
|
.iter()
|
|
|
|
|
.copied()
|
|
|
|
|
.collect::<HashSet<_>>();
|
|
|
|
|
for (entity, transform, point_light, mut cubemap_frusta) in views.iter_mut() {
|
|
|
|
|
// The frusta are used for culling meshes to the light for shadow mapping
|
|
|
|
|
// so if shadow mapping is disabled for this light, then the frusta are
|
|
|
|
|
// not needed.
|
|
|
|
|
// Also, if the light is not relevant for any cluster, it will not be in the
|
|
|
|
|
// global lights set and so there is no need to update its frusta.
|
|
|
|
|
if !point_light.shadows_enabled || !global_lights_set.contains(&entity) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// ignore scale because we don't want to effectively scale light radius and range
|
|
|
|
|
// by applying those as a view transform to shadow map rendering of objects
|
|
|
|
|
// and ignore rotation because we want the shadow map projections to align with the axes
|
|
|
|
|
let view_translation = GlobalTransform::from_translation(transform.translation);
|
|
|
|
|
let view_backward = transform.back();
|
|
|
|
|
|
|
|
|
|
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
|
|
|
|
|
let view = view_translation * *view_rotation;
|
|
|
|
|
let view_projection = projection * view.compute_matrix().inverse();
|
|
|
|
|
|
|
|
|
|
*frustum = Frustum::from_view_projection(
|
|
|
|
|
&view_projection,
|
|
|
|
|
&transform.translation,
|
|
|
|
|
&view_backward,
|
|
|
|
|
point_light.range,
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn check_light_mesh_visibility(
|
|
|
|
|
// NOTE: VisiblePointLights is an alias for VisibleEntities so the Without<DirectionalLight>
|
|
|
|
|
// is needed to avoid an unnecessary QuerySet
|
|
|
|
|
visible_point_lights: Query<&VisiblePointLights, Without<DirectionalLight>>,
|
|
|
|
|
mut point_lights: Query<(
|
|
|
|
|
&PointLight,
|
|
|
|
|
&GlobalTransform,
|
|
|
|
|
&CubemapFrusta,
|
|
|
|
|
&mut CubemapVisibleEntities,
|
|
|
|
|
Option<&RenderLayers>,
|
|
|
|
|
)>,
|
|
|
|
|
mut directional_lights: Query<(
|
|
|
|
|
&DirectionalLight,
|
|
|
|
|
&Frustum,
|
|
|
|
|
&mut VisibleEntities,
|
|
|
|
|
Option<&RenderLayers>,
|
|
|
|
|
)>,
|
|
|
|
|
mut visible_entity_query: Query<
|
|
|
|
|
(
|
|
|
|
|
Entity,
|
|
|
|
|
&Visibility,
|
|
|
|
|
&mut ComputedVisibility,
|
|
|
|
|
Option<&RenderLayers>,
|
|
|
|
|
Option<&Aabb>,
|
|
|
|
|
Option<&GlobalTransform>,
|
|
|
|
|
),
|
|
|
|
|
Without<NotShadowCaster>,
|
|
|
|
|
>,
|
|
|
|
|
) {
|
|
|
|
|
// Directonal lights
|
|
|
|
|
for (directional_light, frustum, mut visible_entities, maybe_view_mask) in
|
|
|
|
|
directional_lights.iter_mut()
|
|
|
|
|
{
|
|
|
|
|
visible_entities.entities.clear();
|
|
|
|
|
|
|
|
|
|
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
|
|
|
|
|
if !directional_light.shadows_enabled {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let view_mask = maybe_view_mask.copied().unwrap_or_default();
|
|
|
|
|
|
|
|
|
|
for (
|
|
|
|
|
entity,
|
|
|
|
|
visibility,
|
|
|
|
|
mut computed_visibility,
|
|
|
|
|
maybe_entity_mask,
|
|
|
|
|
maybe_aabb,
|
|
|
|
|
maybe_transform,
|
|
|
|
|
) in visible_entity_query.iter_mut()
|
|
|
|
|
{
|
|
|
|
|
if !visibility.is_visible {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let entity_mask = maybe_entity_mask.copied().unwrap_or_default();
|
|
|
|
|
if !view_mask.intersects(&entity_mask) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we have an aabb and transform, do frustum culling
|
|
|
|
|
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
|
|
|
|
|
if !frustum.intersects_obb(aabb, &transform.compute_matrix()) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
computed_visibility.is_visible = true;
|
|
|
|
|
visible_entities.entities.push(entity);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO: check for big changes in visible entities len() vs capacity() (ex: 2x) and resize
|
|
|
|
|
// to prevent holding unneeded memory
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Point lights
|
|
|
|
|
for visible_lights in visible_point_lights.iter() {
|
|
|
|
|
for light_entity in visible_lights.entities.iter().copied() {
|
|
|
|
|
if let Ok((
|
|
|
|
|
point_light,
|
|
|
|
|
transform,
|
|
|
|
|
cubemap_frusta,
|
|
|
|
|
mut cubemap_visible_entities,
|
|
|
|
|
maybe_view_mask,
|
|
|
|
|
)) = point_lights.get_mut(light_entity)
|
|
|
|
|
{
|
|
|
|
|
for visible_entities in cubemap_visible_entities.iter_mut() {
|
|
|
|
|
visible_entities.entities.clear();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
|
|
|
|
|
if !point_light.shadows_enabled {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let view_mask = maybe_view_mask.copied().unwrap_or_default();
|
|
|
|
|
let light_sphere = Sphere {
|
|
|
|
|
center: transform.translation,
|
|
|
|
|
radius: point_light.range,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
for (
|
|
|
|
|
entity,
|
|
|
|
|
visibility,
|
|
|
|
|
mut computed_visibility,
|
|
|
|
|
maybe_entity_mask,
|
|
|
|
|
maybe_aabb,
|
|
|
|
|
maybe_transform,
|
|
|
|
|
) in visible_entity_query.iter_mut()
|
|
|
|
|
{
|
|
|
|
|
if !visibility.is_visible {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let entity_mask = maybe_entity_mask.copied().unwrap_or_default();
|
|
|
|
|
if !view_mask.intersects(&entity_mask) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// If we have an aabb and transform, do frustum culling
|
|
|
|
|
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
|
|
|
|
|
let model_to_world = transform.compute_matrix();
|
|
|
|
|
// Do a cheap sphere vs obb test to prune out most meshes outside the sphere of the light
|
|
|
|
|
if !light_sphere.intersects_obb(aabb, &model_to_world) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
for (frustum, visible_entities) in cubemap_frusta
|
|
|
|
|
.iter()
|
|
|
|
|
.zip(cubemap_visible_entities.iter_mut())
|
|
|
|
|
{
|
|
|
|
|
if frustum.intersects_obb(aabb, &model_to_world) {
|
|
|
|
|
computed_visibility.is_visible = true;
|
|
|
|
|
visible_entities.entities.push(entity);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
computed_visibility.is_visible = true;
|
|
|
|
|
for visible_entities in cubemap_visible_entities.iter_mut() {
|
|
|
|
|
visible_entities.entities.push(entity)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO: check for big changes in visible entities len() vs capacity() (ex: 2x) and resize
|
|
|
|
|
// to prevent holding unneeded memory
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|