bevy/crates/bevy_pbr/Cargo.toml

50 lines
1.5 KiB
TOML
Raw Normal View History

[package]
name = "bevy_pbr"
version = "0.14.0-dev"
edition = "2021"
2020-08-10 00:24:27 +00:00
description = "Adds PBR rendering to Bevy Engine"
homepage = "https://bevyengine.org"
repository = "https://github.com/bevyengine/bevy"
Relicense Bevy under the dual MIT or Apache-2.0 license (#2509) This relicenses Bevy under the dual MIT or Apache-2.0 license. For rationale, see #2373. * Changes the LICENSE file to describe the dual license. Moved the MIT license to docs/LICENSE-MIT. Added the Apache-2.0 license to docs/LICENSE-APACHE. I opted for this approach over dumping both license files at the root (the more common approach) for a number of reasons: * Github links to the "first" license file (LICENSE-APACHE) in its license links (you can see this in the wgpu and rust-analyzer repos). People clicking these links might erroneously think that the apache license is the only option. Rust and Amethyst both use COPYRIGHT or COPYING files to solve this problem, but this creates more file noise (if you do everything at the root) and the naming feels way less intuitive. * People have a reflex to look for a LICENSE file. By providing a single license file at the root, we make it easy for them to understand our licensing approach. * I like keeping the root clean and noise free * There is precedent for putting the apache and mit license text in sub folders (amethyst) * Removed the `Copyright (c) 2020 Carter Anderson` copyright notice from the MIT license. I don't care about this attribution, it might make license compliance more difficult in some cases, and it didn't properly attribute other contributors. We shoudn't replace it with something like "Copyright (c) 2021 Bevy Contributors" because "Bevy Contributors" is not a legal entity. Instead, we just won't include the copyright line (which has precedent ... Rust also uses this approach). * Updates crates to use the new "MIT OR Apache-2.0" license value * Removes the old legion-transform license file from bevy_transform. bevy_transform has been its own, fully custom implementation for a long time and that license no longer applies. * Added a License section to the main readme * Updated our Bevy Plugin licensing guidelines. As a follow-up we should update the website to properly describe the new license. Closes #2373
2021-07-23 21:11:51 +00:00
license = "MIT OR Apache-2.0"
2020-08-10 00:24:27 +00:00
keywords = ["bevy"]
[features]
webgl = []
Update to wgpu 0.19 and raw-window-handle 0.6 (#11280) # Objective Keep core dependencies up to date. ## Solution Update the dependencies. wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was included in this. The rwh 0.6 version bump is just the simplest way of doing it. There might be a way we can take advantage of wgpu's new safe surface creation api, but I'm not familiar enough with bevy's window management to untangle it and my attempt ended up being a mess of lifetimes and rustc complaining about missing trait impls (that were implemented). Thanks to @MiniaczQ for the (much simpler) rwh 0.6 version bump code. Unblocks https://github.com/bevyengine/bevy/pull/9172 and https://github.com/bevyengine/bevy/pull/10812 ~~This might be blocked on cpal and oboe updating their ndk versions to 0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested on android, and everything seems to work correctly (audio properly stops when minimized, and plays when re-focusing the app). --- ## Changelog - `wgpu` has been updated to 0.19! The long awaited arcanization has been merged (for more info, see https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan should now be working again on Intel GPUs. - Targeting WebGPU now requires that you add the new `webgpu` feature (setting the `RUSTFLAGS` environment variable to `--cfg=web_sys_unstable_apis` is still required). This feature currently overrides the `webgl2` feature if you have both enabled (the `webgl2` feature is enabled by default), so it is not recommended to add it as a default feature to libraries without putting it behind a flag that allows library users to opt out of it! In the future we plan on supporting wasm binaries that can target both webgl2 and webgpu now that wgpu added support for doing so (see https://github.com/bevyengine/bevy/issues/11505). - `raw-window-handle` has been updated to version 0.6. ## Migration Guide - `bevy_render::instance_index::get_instance_index()` has been removed as the webgl2 workaround is no longer required as it was fixed upstream in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed. - WebGPU now requires the new `webgpu` feature to be enabled. The `webgpu` feature currently overrides the `webgl2` feature so you no longer need to disable all default features and re-add them all when targeting `webgpu`, but binaries built with both the `webgpu` and `webgl2` features will only target the webgpu backend, and will only work on browsers that support WebGPU. - Places where you conditionally compiled things for webgl2 need to be updated because of this change, eg: - `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]` becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"), feature = "webgpu"))]` - `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes `#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]` - `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))` - `create_texture_with_data` now also takes a `TextureDataOrder`. You can probably just set this to `TextureDataOrder::default()` - `TextureFormat`'s `block_size` has been renamed to `block_copy_size` - See the `wgpu` changelog for anything I might've missed: https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md --------- Co-authored-by: François <mockersf@gmail.com>
2024-01-26 18:14:21 +00:00
webgpu = []
`StandardMaterial` Light Transmission (#8015) # Objective <img width="1920" alt="Screenshot 2023-04-26 at 01 07 34" src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png"> This PR adds both diffuse and specular light transmission capabilities to the `StandardMaterial`, with support for screen space refractions. This enables realistically representing a wide range of real-world materials, such as: - Glass; (Including frosted glass) - Transparent and translucent plastics; - Various liquids and gels; - Gemstones; - Marble; - Wax; - Paper; - Leaves; - Porcelain. Unlike existing support for transparency, light transmission does not rely on fixed function alpha blending, and therefore works with both `AlphaMode::Opaque` and `AlphaMode::Mask` materials. ## Solution - Introduces a number of transmission related fields in the `StandardMaterial`; - For specular transmission: - Adds logic to take a view main texture snapshot after the opaque phase; (in order to perform screen space refractions) - Introduces a new `Transmissive3d` phase to the renderer, to which all meshes with `transmission > 0.0` materials are sent. - Calculates a light exit point (of the approximate mesh volume) using `ior` and `thickness` properties - Samples the snapshot texture with an adaptive number of taps across a `roughness`-controlled radius enabling “blurry” refractions - For diffuse transmission: - Approximates transmitted diffuse light by using a second, flipped + displaced, diffuse-only Lambertian lobe for each light source. ## To Do - [x] Figure out where `fresnel_mix()` is taking place, if at all, and where `dielectric_specular` is being calculated, if at all, and update them to use the `ior` value (Not a blocker, just a nice-to-have for more correct BSDF) - To the _best of my knowledge, this is now taking place, after 964340cdd. The fresnel mix is actually "split" into two parts in our implementation, one `(1 - fresnel(...))` in the transmission, and `fresnel()` in the light implementations. A surface with more reflectance now will produce slightly dimmer transmission towards the grazing angle, as more of the light gets reflected. - [x] Add `transmission_texture` - [x] Add `diffuse_transmission_texture` - [x] Add `thickness_texture` - [x] Add `attenuation_distance` and `attenuation_color` - [x] Connect values to glTF loader - [x] `transmission` and `transmission_texture` - [x] `thickness` and `thickness_texture` - [x] `ior` - [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs upstream support in `gltf` crate, not a blocker) - [x] Add support for multiple screen space refraction “steps” - [x] Conditionally create no transmission snapshot texture at all if `steps == 0` - [x] Conditionally enable/disable screen space refraction transmission snapshots - [x] Read from depth pre-pass to prevent refracting pixels in front of the light exit point - [x] Use `interleaved_gradient_noise()` function for sampling blur in a way that benefits from TAA - [x] Drill down a TAA `#define`, tweak some aspects of the effect conditionally based on it - [x] Remove const array that's crashing under HLSL (unless a new `naga` release with https://github.com/gfx-rs/naga/pull/2496 comes out before we merge this) - [ ] Look into alternatives to the `switch` hack for dynamically indexing the const array (might not be needed, compilers seem to be decent at expanding it) - [ ] Add pipeline keys for gating transmission (do we really want/need this?) - [x] Tweak some material field/function names? ## A Note on Texture Packing _This was originally added as a comment to the `specular_transmission_texture`, `thickness_texture` and `diffuse_transmission_texture` documentation, I removed it since it was more confusing than helpful, and will likely be made redundant/will need to be updated once we have a better infrastructure for preprocessing assets_ Due to how channels are mapped, you can more efficiently use a single shared texture image for configuring the following: - R - `specular_transmission_texture` - G - `thickness_texture` - B - _unused_ - A - `diffuse_transmission_texture` The `KHR_materials_diffuse_transmission` glTF extension also defines a `diffuseTransmissionColorTexture`, that _we don't currently support_. One might choose to pack the intensity and color textures together, using RGB for the color and A for the intensity, in which case this packing advice doesn't really apply. --- ## Changelog - Added a new `Transmissive3d` render phase for rendering specular transmissive materials with screen space refractions - Added rendering support for transmitted environment map light on the `StandardMaterial` as a fallback for screen space refractions - Added `diffuse_transmission`, `specular_transmission`, `thickness`, `ior`, `attenuation_distance` and `attenuation_color` to the `StandardMaterial` - Added `diffuse_transmission_texture`, `specular_transmission_texture`, `thickness_texture` to the `StandardMaterial`, gated behind a new `pbr_transmission_textures` cargo feature (off by default, for maximum hardware compatibility) - Added `Camera3d::screen_space_specular_transmission_steps` for controlling the number of “layers of transparency” rendered for transmissive objects - Added a `TransmittedShadowReceiver` component for enabling shadows in (diffusely) transmitted light. (disabled by default, as it requires carefully setting up the `thickness` to avoid self-shadow artifacts) - Added support for the `KHR_materials_transmission`, `KHR_materials_ior` and `KHR_materials_volume` glTF extensions - Renamed items related to temporal jitter for greater consistency ## Migration Guide - `SsaoPipelineKey::temporal_noise` has been renamed to `SsaoPipelineKey::temporal_jitter` - The `TAA` shader def (controlled by the presence of the `TemporalAntiAliasSettings` component in the camera) has been replaced with the `TEMPORAL_JITTER` shader def (controlled by the presence of the `TemporalJitter` component in the camera) - `MeshPipelineKey::TAA` has been replaced by `MeshPipelineKey::TEMPORAL_JITTER` - The `TEMPORAL_NOISE` shader def has been consolidated with `TEMPORAL_JITTER`
2023-10-31 20:59:02 +00:00
pbr_transmission_textures = []
shader_format_glsl = ["bevy_render/shader_format_glsl"]
trace = ["bevy_render/trace"]
ios_simulator = ["bevy_render/ios_simulator"]
[dependencies]
# bevy
bevy_app = { path = "../bevy_app", version = "0.14.0-dev" }
bevy_asset = { path = "../bevy_asset", version = "0.14.0-dev" }
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
bevy_color = { path = "../bevy_color", version = "0.14.0-dev" }
bevy_core_pipeline = { path = "../bevy_core_pipeline", version = "0.14.0-dev" }
bevy_ecs = { path = "../bevy_ecs", version = "0.14.0-dev" }
bevy_math = { path = "../bevy_math", version = "0.14.0-dev" }
bevy_reflect = { path = "../bevy_reflect", version = "0.14.0-dev", features = [
"bevy",
] }
bevy_render = { path = "../bevy_render", version = "0.14.0-dev" }
bevy_transform = { path = "../bevy_transform", version = "0.14.0-dev" }
bevy_utils = { path = "../bevy_utils", version = "0.14.0-dev" }
bevy_window = { path = "../bevy_window", version = "0.14.0-dev" }
bevy_derive = { path = "../bevy_derive", version = "0.14.0-dev" }
# other
bitflags = "2.3"
fixedbitset = "0.5"
# direct dependency required for derive macro
bytemuck = { version = "1", features = ["derive"] }
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
radsort = "0.1"
Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366) This pull request re-submits #10057, which was backed out for breaking macOS, iOS, and Android. I've tested this version on macOS and Android and on the iOS simulator. # Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
2024-01-19 07:33:52 +00:00
smallvec = "1.6"
nonmax = "0.5"
[lints]
workspace = true
[package.metadata.docs.rs]
all-features = true