Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
//! Additional [`GizmoBuffer`] Functions -- Arrows
|
2023-11-20 09:47:50 +00:00
|
|
|
//!
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
//! Includes the implementation of [`GizmoBuffer::arrow`] and [`GizmoBuffer::arrow_2d`],
|
2023-11-20 09:47:50 +00:00
|
|
|
//! and assorted support items.
|
2023-11-15 14:19:15 +00:00
|
|
|
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
use crate::{gizmos::GizmoBuffer, prelude::GizmoConfigGroup};
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
use bevy_color::{
|
|
|
|
palettes::basic::{BLUE, GREEN, RED},
|
|
|
|
Color,
|
|
|
|
};
|
2024-06-04 00:02:38 +00:00
|
|
|
use bevy_math::{Quat, Vec2, Vec3, Vec3Swizzles};
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
use bevy_transform::TransformPoint;
|
2023-11-15 14:19:15 +00:00
|
|
|
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
/// A builder returned by [`GizmoBuffer::arrow`] and [`GizmoBuffer::arrow_2d`]
|
|
|
|
pub struct ArrowBuilder<'a, Config, Clear>
|
2024-04-23 00:16:12 +00:00
|
|
|
where
|
|
|
|
Config: GizmoConfigGroup,
|
|
|
|
Clear: 'static + Send + Sync,
|
|
|
|
{
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
gizmos: &'a mut GizmoBuffer<Config, Clear>,
|
2023-11-15 14:19:15 +00:00
|
|
|
start: Vec3,
|
|
|
|
end: Vec3,
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
color: Color,
|
2024-04-16 01:34:22 +00:00
|
|
|
double_ended: bool,
|
2023-11-15 14:19:15 +00:00
|
|
|
tip_length: f32,
|
|
|
|
}
|
|
|
|
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
impl<Config, Clear> ArrowBuilder<'_, Config, Clear>
|
2024-04-23 00:16:12 +00:00
|
|
|
where
|
|
|
|
Config: GizmoConfigGroup,
|
|
|
|
Clear: 'static + Send + Sync,
|
|
|
|
{
|
2023-11-15 14:19:15 +00:00
|
|
|
/// Change the length of the tips to be `length`.
|
|
|
|
/// The default tip length is [length of the arrow]/10.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use bevy_gizmos::prelude::*;
|
|
|
|
/// # use bevy_math::prelude::*;
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
/// # use bevy_color::palettes::basic::GREEN;
|
2023-11-15 14:19:15 +00:00
|
|
|
/// fn system(mut gizmos: Gizmos) {
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
/// gizmos.arrow(Vec3::ZERO, Vec3::ONE, GREEN)
|
2023-11-15 14:19:15 +00:00
|
|
|
/// .with_tip_length(3.);
|
|
|
|
/// }
|
|
|
|
/// # bevy_ecs::system::assert_is_system(system);
|
|
|
|
/// ```
|
|
|
|
#[doc(alias = "arrow_head_length")]
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
pub fn with_tip_length(mut self, length: f32) -> Self {
|
2023-11-15 14:19:15 +00:00
|
|
|
self.tip_length = length;
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
self
|
2023-11-15 14:19:15 +00:00
|
|
|
}
|
2024-04-16 01:34:22 +00:00
|
|
|
|
|
|
|
/// Adds another tip to the arrow, appended in the start point.
|
|
|
|
/// the default is only one tip at the end point.
|
|
|
|
pub fn with_double_end(mut self) -> Self {
|
|
|
|
self.double_ended = true;
|
|
|
|
self
|
|
|
|
}
|
2023-11-15 14:19:15 +00:00
|
|
|
}
|
|
|
|
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
impl<Config, Clear> Drop for ArrowBuilder<'_, Config, Clear>
|
2024-04-23 00:16:12 +00:00
|
|
|
where
|
|
|
|
Config: GizmoConfigGroup,
|
|
|
|
Clear: 'static + Send + Sync,
|
|
|
|
{
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
/// Draws the arrow, by drawing lines with the stored [`GizmoBuffer`]
|
2023-11-15 14:19:15 +00:00
|
|
|
fn drop(&mut self) {
|
2024-01-18 15:52:50 +00:00
|
|
|
if !self.gizmos.enabled {
|
|
|
|
return;
|
|
|
|
}
|
2023-11-15 14:19:15 +00:00
|
|
|
// first, draw the body of the arrow
|
|
|
|
self.gizmos.line(self.start, self.end, self.color);
|
|
|
|
// now the hard part is to draw the head in a sensible way
|
|
|
|
// put us in a coordinate system where the arrow is pointing towards +x and ends at the origin
|
2024-04-16 01:34:22 +00:00
|
|
|
let pointing_end = (self.end - self.start).normalize();
|
|
|
|
let rotation_end = Quat::from_rotation_arc(Vec3::X, pointing_end);
|
2023-11-15 14:19:15 +00:00
|
|
|
let tips = [
|
|
|
|
Vec3::new(-1., 1., 0.),
|
|
|
|
Vec3::new(-1., 0., 1.),
|
|
|
|
Vec3::new(-1., -1., 0.),
|
|
|
|
Vec3::new(-1., 0., -1.),
|
|
|
|
];
|
|
|
|
// - extend the vectors so their length is `tip_length`
|
|
|
|
// - rotate the world so +x is facing in the same direction as the arrow
|
|
|
|
// - translate over to the tip of the arrow
|
2024-04-16 01:34:22 +00:00
|
|
|
let tips_end = tips.map(|v| rotation_end * (v.normalize() * self.tip_length) + self.end);
|
|
|
|
for v in tips_end {
|
2023-11-15 14:19:15 +00:00
|
|
|
// then actually draw the tips
|
|
|
|
self.gizmos.line(self.end, v, self.color);
|
|
|
|
}
|
2024-04-16 01:34:22 +00:00
|
|
|
if self.double_ended {
|
|
|
|
let pointing_start = (self.start - self.end).normalize();
|
|
|
|
let rotation_start = Quat::from_rotation_arc(Vec3::X, pointing_start);
|
|
|
|
let tips_start =
|
|
|
|
tips.map(|v| rotation_start * (v.normalize() * self.tip_length) + self.start);
|
|
|
|
for v in tips_start {
|
|
|
|
// draw the start points tips
|
|
|
|
self.gizmos.line(self.start, v, self.color);
|
|
|
|
}
|
|
|
|
}
|
2023-11-15 14:19:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
impl<Config, Clear> GizmoBuffer<Config, Clear>
|
2024-04-23 00:16:12 +00:00
|
|
|
where
|
|
|
|
Config: GizmoConfigGroup,
|
|
|
|
Clear: 'static + Send + Sync,
|
|
|
|
{
|
2024-02-02 21:13:03 +00:00
|
|
|
/// Draw an arrow in 3D, from `start` to `end`. Has four tips for convenient viewing from any direction.
|
2023-11-15 14:19:15 +00:00
|
|
|
///
|
|
|
|
/// This should be called for each frame the arrow needs to be rendered.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use bevy_gizmos::prelude::*;
|
|
|
|
/// # use bevy_math::prelude::*;
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
/// # use bevy_color::palettes::basic::GREEN;
|
2023-11-15 14:19:15 +00:00
|
|
|
/// fn system(mut gizmos: Gizmos) {
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
/// gizmos.arrow(Vec3::ZERO, Vec3::ONE, GREEN);
|
2023-11-15 14:19:15 +00:00
|
|
|
/// }
|
|
|
|
/// # bevy_ecs::system::assert_is_system(system);
|
|
|
|
/// ```
|
2024-02-24 21:35:32 +00:00
|
|
|
pub fn arrow(
|
|
|
|
&mut self,
|
|
|
|
start: Vec3,
|
|
|
|
end: Vec3,
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
color: impl Into<Color>,
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
) -> ArrowBuilder<'_, Config, Clear> {
|
2023-11-15 14:19:15 +00:00
|
|
|
let length = (end - start).length();
|
|
|
|
ArrowBuilder {
|
|
|
|
gizmos: self,
|
|
|
|
start,
|
|
|
|
end,
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
color: color.into(),
|
2024-04-16 01:34:22 +00:00
|
|
|
double_ended: false,
|
2023-11-15 14:19:15 +00:00
|
|
|
tip_length: length / 10.,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Draw an arrow in 2D (on the xy plane), from `start` to `end`.
|
|
|
|
///
|
|
|
|
/// This should be called for each frame the arrow needs to be rendered.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use bevy_gizmos::prelude::*;
|
|
|
|
/// # use bevy_math::prelude::*;
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
/// # use bevy_color::palettes::basic::GREEN;
|
2023-11-15 14:19:15 +00:00
|
|
|
/// fn system(mut gizmos: Gizmos) {
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
/// gizmos.arrow_2d(Vec2::ZERO, Vec2::X, GREEN);
|
2023-11-15 14:19:15 +00:00
|
|
|
/// }
|
|
|
|
/// # bevy_ecs::system::assert_is_system(system);
|
|
|
|
/// ```
|
2024-01-18 15:52:50 +00:00
|
|
|
pub fn arrow_2d(
|
|
|
|
&mut self,
|
|
|
|
start: Vec2,
|
|
|
|
end: Vec2,
|
Migrate from `LegacyColor` to `bevy_color::Color` (#12163)
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes #12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
|
|
|
color: impl Into<Color>,
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
) -> ArrowBuilder<'_, Config, Clear> {
|
2023-11-15 14:19:15 +00:00
|
|
|
self.arrow(start.extend(0.), end.extend(0.), color)
|
|
|
|
}
|
|
|
|
}
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
|
Retained `Gizmo`s (#15473)
# Objective
Add a way to use the gizmo API in a retained manner, for increased
performance.
## Solution
- Move gizmo API from `Gizmos` to `GizmoBuffer`, ~ab~using `Deref` to
keep usage the same as before.
- Merge non-strip and strip variant of `LineGizmo` into one, storing the
data in a `GizmoBuffer` to have the same API for retained `LineGizmo`s.
### Review guide
- The meat of the changes are in `lib.rs`, `retained.rs`, `gizmos.rs`,
`pipeline_3d.rs` and `pipeline_2d.rs`
- The other files contain almost exclusively the churn from moving the
gizmo API from `Gizmos` to `GizmoBuffer`
## Testing
### Performance
Performance compared to the immediate mode API is from 65 to 80 times
better for static lines.
```
7900 XTX, 3700X
1707.9k lines/ms: gizmos_retained (21.3ms)
3488.5k lines/ms: gizmos_retained_continuous_polyline (31.3ms)
0.5k lines/ms: gizmos_retained_separate (97.7ms)
3054.9k lines/ms: bevy_polyline_retained_nan (16.8ms)
3596.3k lines/ms: bevy_polyline_retained_continuous_polyline (14.2ms)
0.6k lines/ms: bevy_polyline_retained_separate (78.9ms)
26.9k lines/ms: gizmos_immediate (14.9ms)
43.8k lines/ms: gizmos_immediate_continuous_polyline (18.3ms)
```
Looks like performance is good enough, being close to par with
`bevy_polyline`.
Benchmarks can be found here:
This branch:
https://github.com/tim-blackbird/line_racing/tree/retained-gizmos
Bevy 0.14: https://github.com/DGriffin91/line_racing
## Showcase
```rust
fn setup(
mut commands: Commands,
mut gizmo_assets: ResMut<Assets<GizmoAsset>>
) {
let mut gizmo = GizmoAsset::default();
// A sphere made out of one million lines!
gizmo
.sphere(default(), 1., CRIMSON)
.resolution(1_000_000 / 3);
commands.spawn(Gizmo {
handle: gizmo_assets.add(gizmo),
..default()
});
}
```
## Follow-up work
- Port over to the retained rendering world proper
- Calculate visibility and cull `Gizmo`s
2024-12-04 21:21:06 +00:00
|
|
|
impl<Config, Clear> GizmoBuffer<Config, Clear>
|
2024-04-23 00:16:12 +00:00
|
|
|
where
|
|
|
|
Config: GizmoConfigGroup,
|
|
|
|
Clear: 'static + Send + Sync,
|
|
|
|
{
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
/// Draw a set of axes local to the given transform (`transform`), with length scaled by a factor
|
|
|
|
/// of `base_length`.
|
|
|
|
///
|
|
|
|
/// This should be called for each frame the axes need to be rendered.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use bevy_gizmos::prelude::*;
|
|
|
|
/// # use bevy_ecs::prelude::*;
|
|
|
|
/// # use bevy_transform::components::Transform;
|
|
|
|
/// # #[derive(Component)]
|
|
|
|
/// # struct MyComponent;
|
|
|
|
/// fn draw_axes(
|
|
|
|
/// mut gizmos: Gizmos,
|
|
|
|
/// query: Query<&Transform, With<MyComponent>>,
|
|
|
|
/// ) {
|
|
|
|
/// for &transform in &query {
|
|
|
|
/// gizmos.axes(transform, 1.);
|
|
|
|
/// }
|
|
|
|
/// }
|
|
|
|
/// # bevy_ecs::system::assert_is_system(draw_axes);
|
|
|
|
/// ```
|
|
|
|
pub fn axes(&mut self, transform: impl TransformPoint, base_length: f32) {
|
|
|
|
let start = transform.transform_point(Vec3::ZERO);
|
|
|
|
let end_x = transform.transform_point(base_length * Vec3::X);
|
|
|
|
let end_y = transform.transform_point(base_length * Vec3::Y);
|
|
|
|
let end_z = transform.transform_point(base_length * Vec3::Z);
|
|
|
|
|
|
|
|
self.arrow(start, end_x, RED);
|
|
|
|
self.arrow(start, end_y, GREEN);
|
|
|
|
self.arrow(start, end_z, BLUE);
|
|
|
|
}
|
2024-06-04 00:02:38 +00:00
|
|
|
|
|
|
|
/// Draw a set of axes local to the given transform (`transform`), with length scaled by a factor
|
|
|
|
/// of `base_length`.
|
|
|
|
///
|
|
|
|
/// This should be called for each frame the axes need to be rendered.
|
|
|
|
///
|
|
|
|
/// # Example
|
|
|
|
/// ```
|
|
|
|
/// # use bevy_gizmos::prelude::*;
|
|
|
|
/// # use bevy_ecs::prelude::*;
|
|
|
|
/// # use bevy_transform::components::Transform;
|
|
|
|
/// # #[derive(Component)]
|
|
|
|
/// # struct AxesComponent;
|
|
|
|
/// fn draw_axes_2d(
|
|
|
|
/// mut gizmos: Gizmos,
|
|
|
|
/// query: Query<&Transform, With<AxesComponent>>,
|
|
|
|
/// ) {
|
|
|
|
/// for &transform in &query {
|
|
|
|
/// gizmos.axes_2d(transform, 1.);
|
|
|
|
/// }
|
|
|
|
/// }
|
|
|
|
/// # bevy_ecs::system::assert_is_system(draw_axes_2d);
|
|
|
|
/// ```
|
|
|
|
pub fn axes_2d(&mut self, transform: impl TransformPoint, base_length: f32) {
|
|
|
|
let start = transform.transform_point(Vec3::ZERO);
|
|
|
|
let end_x = transform.transform_point(base_length * Vec3::X);
|
|
|
|
let end_y = transform.transform_point(base_length * Vec3::Y);
|
|
|
|
|
|
|
|
self.arrow_2d(start.xy(), end_x.xy(), RED);
|
|
|
|
self.arrow_2d(start.xy(), end_y.xy(), GREEN);
|
|
|
|
}
|
Add coordinate axes gizmo (#12211)
# Objective
- We introduce a gizmo that displays coordinate axes relative to a
Transform*, primarily for debugging purposes.
- See #9400
## Solution
A new method, `Gizmos::axes`, takes a `Transform`* as input and displays
the standard coordinate axes, transformed according to it; its signature
looks like this:
````rust
pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... }
````
If my carefully placed asterisks hadn't already tipped you off, the
argument here is not actually a `Transform` but instead anything which
implements `TransformPoint`, which allows it to work also with
`GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens
to be hand-rolling transformations in some way).
The `base_length` parameter is a scaling factor applied to the
coordinate vectors before the transformation takes place; in other
words, the caller can use this to help size the coordinate axes
appropriately for the entity that they are attached to.
An example invocation of this method looks something like this:
````rust
fn draw_axes_system(
mut gizmos: Gizmos,
query: Query<&Transform, With<MyMarkerComponent>>,
) {
for &transform in &query {
gizmos.axes(transform, 2.);
}
}
````
The result is the three coordinate axes, X, Y, Z (colored red, green,
and blue, respectively), drawn onto the entity:
<img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037">
Note that, if scaling was applied as part of the given transformation,
it shows up in scaling on the axes as well:
<img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM"
src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72">
---
## Changelog
- Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs
- Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly
implementing builder style (no external impact)
---
## Discussion
### Design considerations
I feel pretty strongly that having no default length scale is for the
best, at least for the time being, since it's very easy for the length
scale to be too small, leading to the axes being hidden inside the body
of the object they are associated with. That is, if the API instead
looked like this:
````rust
gizmos.axes(transform); // or
gizmos.axes(transform).with_length_scale(3.0);
````
then I think it's a reasonable expectation that the first thing would
"just work" for most applications, and it wouldn't, which would be kind
of a footgun.
### Future steps
There are a few directions that this might expand in the future:
1. Introduce additional options via the standard builder pattern; i.e.
introducing `AxesBuilder<T: TransformPoint>` so that people can
configure the axis colors, normalize all axes to a fixed length
independent of scale deformations, etc.
2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that
the functionality becomes more-or-less automatic based on certain fixed
marker components. This wouldn't be very hard to implement, and it has
the benefit of making the axes more frictionless to use. Furthermore, if
we coupled this to the AABB functionality we already have, we could also
ensure that the plugin automatically sizes the axes (by coupling their
size to the dimensions of the AABB, for example).
3. Implement something similar for 2d. Honestly, I have no idea if this
is desired/useful, but I could probably just implement it in this PR if
that's the case.
2024-02-29 23:52:05 +00:00
|
|
|
}
|