bevy/crates/bevy_ecs/src/system/observer_system.rs

87 lines
2.2 KiB
Rust
Raw Normal View History

Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
use crate::{
prelude::{Bundle, Trigger},
Support systems that take references as input (#15184) # Objective - Fixes #14924 - Closes #9584 ## Solution - We introduce a new trait, `SystemInput`, that serves as a type function from the `'static` form of the input, to its lifetime'd version, similarly to `SystemParam` or `WorldQuery`. - System functions now take the lifetime'd wrapped version, `SystemInput::Param<'_>`, which prevents the issue presented in #14924 (i.e. `InRef<T>`). - Functions for running systems now take the lifetime'd unwrapped version, `SystemInput::Inner<'_>` (i.e. `&T`). - Due to the above change, system piping had to be re-implemented as a standalone type, rather than `CombinatorSystem` as it was previously. - Removes the `Trigger<'static, E, B>` transmute in observer runner code. ## Testing - All current tests pass. - Added additional tests and doc-tests. --- ## Showcase ```rust let mut world = World::new(); let mut value = 2; // Currently possible: fn square(In(input): In<usize>) -> usize { input * input } value = world.run_system_once_with(value, square); // Now possible: fn square_mut(InMut(input): InMut<usize>) { *input *= *input; } world.run_system_once_with(&mut value, square_mut); // Or: fn square_ref(InRef(input): InRef<usize>) -> usize { *input * *input } value = world.run_system_once_with(&value, square_ref); ``` ## Migration Guide - All current explicit usages of the following types must be changed in the way specified: - `SystemId<I, O>` to `SystemId<In<I>, O>` - `System<In = T>` to `System<In = In<T>>` - `IntoSystem<I, O, M>` to `IntoSystem<In<I>, O, M>` - `Condition<M, T>` to `Condition<M, In<T>>` - `In<Trigger<E, B>>` is no longer a valid input parameter type. Use `Trigger<E, B>` directly, instead. --------- Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
2024-09-23 17:37:29 +00:00
system::System,
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
};
use super::IntoSystem;
/// Implemented for [`System`]s that have a [`Trigger`] as the first argument.
pub trait ObserverSystem<E: 'static, B: Bundle, Out = ()>:
System<In = Trigger<'static, E, B>, Out = Out> + Send + 'static
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
{
}
impl<
E: 'static,
B: Bundle,
Out,
T: System<In = Trigger<'static, E, B>, Out = Out> + Send + 'static,
> ObserverSystem<E, B, Out> for T
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
{
}
/// Implemented for systems that convert into [`ObserverSystem`].
Added `on_unimplemented` Diagnostic for `IntoObserverSystem` (#14840) # Objective - Fixes #14658. ## Solution - Added `on_unimplemented` Diagnostic for `IntoObserverSystem` calling out argument ordering in a `note` - Added an example to the documentation on `App::observe` to provide some explanation to users. ## Testing - Ran CI locally - Deliberately introduced a parameter order error in the `ecs/observers.rs` example as a test. --- ## Showcase <details> <summary>Error Before</summary> ``` error[E0277]: the trait bound `{closure@examples/ecs/observers.rs:19:13: 22:37}: IntoObserverSystem<_, _, _>` is not satisfied --> examples/ecs/observers.rs:19:13 | 18 | .observe( | ------- required by a bound introduced by this call 19 | / |mines: Query<&Mine>, 20 | | trigger: Trigger<ExplodeMines>, 21 | | index: Res<SpatialIndex>, 22 | | mut commands: Commands| { ... | 34 | | } 35 | | }, | |_____________^ the trait `bevy::prelude::IntoSystem<bevy::prelude::Trigger<'static, _, _>, (), _>` is not implemented for closure `{closure@examples/ecs/observers.rs:19:13: 22:37}`, which is required by `{closure@examples/ecs/observers.rs:19:13: 22:37}: IntoObserverSystem<_, _, _>` | = note: required for `{closure@examples/ecs/observers.rs:19:13: 22:37}` to implement `IntoObserverSystem<_, _, _>` note: required by a bound in `bevy::prelude::App::observe` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:995:24 | 993 | pub fn observe<E: Event, B: Bundle, M>( | ------- required by a bound in this associated function 994 | &mut self, 995 | observer: impl IntoObserverSystem<E, B, M>, | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::observe` For more information about this error, try `rustc --explain E0277`. error: could not compile `bevy` (example "observers") due to 1 previous error ``` </details> <details> <summary>Error After</summary> ``` error[E0277]: `{closure@examples/ecs/observers.rs:19:13: 22:37}` cannot become an `ObserverSystem` --> examples/ecs/observers.rs:19:13 | 18 | .observe( | ------- required by a bound introduced by this call 19 | / |mines: Query<&Mine>, 20 | | trigger: Trigger<ExplodeMines>, 21 | | index: Res<SpatialIndex>, 22 | | mut commands: Commands| { ... | 34 | | } 35 | | }, | |_____________^ the trait `IntoObserverSystem` is not implemented | = help: the trait `bevy::prelude::IntoSystem<bevy::prelude::Trigger<'static, _, _>, (), _>` is not implemented for closure `{closure@examples/ecs/observers.rs:19:13: 22:37}`, which is required by `{closure@examples/ecs/observers.rs:19:13: 22:37}: IntoObserverSystem<_, _, _>` = note: for function `ObserverSystem`s, ensure the first argument is a `Trigger<T>` and any subsequent ones are `SystemParam` = note: required for `{closure@examples/ecs/observers.rs:19:13: 22:37}` to implement `IntoObserverSystem<_, _, _>` note: required by a bound in `bevy::prelude::App::observe` --> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:1025:24 | 1023 | pub fn observe<E: Event, B: Bundle, M>( | ------- required by a bound in this associated function 1024 | &mut self, 1025 | observer: impl IntoObserverSystem<E, B, M>, | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::observe` For more information about this error, try `rustc --explain E0277`. error: could not compile `bevy` (example "observers") due to 1 previous error ``` </details>
2024-08-25 14:15:49 +00:00
#[diagnostic::on_unimplemented(
message = "`{Self}` cannot become an `ObserverSystem`",
label = "the trait `IntoObserverSystem` is not implemented",
note = "for function `ObserverSystem`s, ensure the first argument is a `Trigger<T>` and any subsequent ones are `SystemParam`"
)]
pub trait IntoObserverSystem<E: 'static, B: Bundle, M, Out = ()>: Send + 'static {
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
/// The type of [`System`] that this instance converts into.
type System: ObserverSystem<E, B, Out>;
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
/// Turns this value into its corresponding [`System`].
fn into_system(this: Self) -> Self::System;
}
impl<
S: IntoSystem<Trigger<'static, E, B>, Out, M> + Send + 'static,
M,
Out,
E: 'static,
B: Bundle,
> IntoObserverSystem<E, B, M, Out> for S
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
where
S::System: ObserverSystem<E, B, Out>,
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
{
type System = <S as IntoSystem<Trigger<'static, E, B>, Out, M>>::System;
Generalised ECS reactivity with Observers (#10839) # Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-06-15 01:33:26 +00:00
fn into_system(this: Self) -> Self::System {
IntoSystem::into_system(this)
}
}
#[cfg(test)]
mod tests {
use crate::{
self as bevy_ecs,
event::Event,
observer::Trigger,
system::{In, IntoSystem},
world::World,
};
#[derive(Event)]
struct TriggerEvent;
#[test]
fn test_piped_observer_systems_no_input() {
fn a(_: Trigger<TriggerEvent>) {}
fn b() {}
let mut world = World::new();
world.observe(a.pipe(b));
}
#[test]
fn test_piped_observer_systems_with_inputs() {
fn a(_: Trigger<TriggerEvent>) -> u32 {
3
}
fn b(_: In<u32>) {}
let mut world = World::new();
world.observe(a.pipe(b));
}
}