bevy/crates/bevy_gizmos/src/circles.rs

364 lines
11 KiB
Rust
Raw Normal View History

//! Additional [`Gizmos`] Functions -- Circles
//!
//! Includes the implementation of [`Gizmos::circle`] and [`Gizmos::circle_2d`],
//! and assorted support items.
Multiple Configurations for Gizmos (#10342) # Objective This PR aims to implement multiple configs for gizmos as discussed in #9187. ## Solution Configs for the new `GizmoConfigGroup`s are stored in a `GizmoConfigStore` resource and can be accesses using a type based key or iterated over. This type based key doubles as a standardized location where plugin authors can put their own configuration not covered by the standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a default color and toggle to show all AABBs. New configs can be registered using `app.init_gizmo_group::<T>()` during startup. When requesting the `Gizmos<T>` system parameter the generic type determines which config is used. The config structs are available through the `Gizmos` system parameter allowing for easy access while drawing your gizmos. Internally, resources and systems used for rendering (up to an including the extract system) are generic over the type based key and inserted on registering a new config. ## Alternatives The configs could be stored as components on entities with markers which would make better use of the ECS. I also implemented this approach ([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and believe that the ergonomic benefits of a central config store outweigh the decreased use of the ECS. ## Unsafe Code Implementing system parameter by hand is unsafe but seems to be required to access the config store once and not on every gizmo draw function call. This is critical for performance. ~Is there a better way to do this?~ ## Future Work New gizmos (such as #10038, and ideas from #9400) will require custom configuration structs. Should there be a new custom config for every gizmo type, or should we group them together in a common configuration? (for example `EditorGizmoConfig`, or something more fine-grained) ## Changelog - Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait - Added `init_gizmo_group` to `App` - Added early returns to gizmo drawing increasing performance when gizmos are disabled - Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore` - Changed `Gizmos` system parameter to use type based key to retrieve config - Changed resources and systems used for gizmo rendering to be generic over type based key - Changed examples (3d_gizmos, 2d_gizmos) to showcase new API ## Migration Guide - `GizmoConfig` is no longer a resource and has to be accessed through `GizmoConfigStore` resource. The default config group is `DefaultGizmoGroup`, but consider using your own custom config group if applicable. --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-18 15:52:50 +00:00
use crate::prelude::{GizmoConfigGroup, Gizmos};
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
use bevy_color::Color;
use bevy_math::{ops, Isometry2d, Isometry3d, Quat, Vec2, Vec3};
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
use core::f32::consts::TAU;
pub(crate) const DEFAULT_CIRCLE_RESOLUTION: u32 = 32;
fn ellipse_inner(half_size: Vec2, resolution: u32) -> impl Iterator<Item = Vec2> {
(0..resolution + 1).map(move |i| {
let angle = i as f32 * TAU / resolution as f32;
let (x, y) = ops::sin_cos(angle);
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
Vec2::new(x, y) * half_size
})
}
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
impl<'w, 's, Config, Clear> Gizmos<'w, 's, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
/// Draw an ellipse in 3D with the given `isometry` applied.
///
/// If `isometry == Isometry3d::IDENTITY` then
///
/// - the center is at `Vec3::ZERO`
/// - the `half_sizes` are aligned with the `Vec3::X` and `Vec3::Y` axes.
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
///
/// This should be called for each frame the ellipse needs to be rendered.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
/// # use bevy_color::palettes::basic::{RED, GREEN};
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
/// fn system(mut gizmos: Gizmos) {
/// gizmos.ellipse(Isometry3d::IDENTITY, Vec2::new(1., 2.), GREEN);
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
///
/// // Ellipses have 32 line-segments by default.
/// // You may want to increase this for larger ellipses.
/// gizmos
/// .ellipse(Isometry3d::IDENTITY, Vec2::new(5., 1.), RED)
/// .resolution(64);
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn ellipse(
&mut self,
isometry: Isometry3d,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size: Vec2,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: impl Into<Color>,
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
) -> EllipseBuilder<'_, 'w, 's, Config, Clear> {
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
EllipseBuilder {
gizmos: self,
isometry,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: color.into(),
resolution: DEFAULT_CIRCLE_RESOLUTION,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
}
}
/// Draw an ellipse in 2D with the given `isometry` applied.
///
/// If `isometry == Isometry2d::IDENTITY` then
///
/// - the center is at `Vec2::ZERO`
/// - the `half_sizes` are aligned with the `Vec2::X` and `Vec2::Y` axes.
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
///
/// This should be called for each frame the ellipse needs to be rendered.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
/// # use bevy_color::palettes::basic::{RED, GREEN};
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
/// fn system(mut gizmos: Gizmos) {
/// gizmos.ellipse_2d(Isometry2d::from_rotation(Rot2::degrees(180.0)), Vec2::new(2., 1.), GREEN);
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
///
/// // Ellipses have 32 line-segments by default.
/// // You may want to increase this for larger ellipses.
/// gizmos
/// .ellipse_2d(Isometry2d::from_rotation(Rot2::degrees(180.0)), Vec2::new(5., 1.), RED)
/// .resolution(64);
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn ellipse_2d(
&mut self,
isometry: Isometry2d,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size: Vec2,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: impl Into<Color>,
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
) -> Ellipse2dBuilder<'_, 'w, 's, Config, Clear> {
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
Ellipse2dBuilder {
gizmos: self,
isometry,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: color.into(),
resolution: DEFAULT_CIRCLE_RESOLUTION,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
}
}
/// Draw a circle in 3D with the given `isometry` applied.
///
/// If `isometry == Isometry3d::IDENTITY` then
///
/// - the center is at `Vec3::ZERO`
/// - the radius is aligned with the `Vec3::X` and `Vec3::Y` axes.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
/// # use bevy_color::palettes::basic::{RED, GREEN};
/// fn system(mut gizmos: Gizmos) {
/// gizmos.circle(Isometry3d::IDENTITY, 1., GREEN);
///
/// // Circles have 32 line-segments by default.
/// // You may want to increase this for larger circles.
/// gizmos
/// .circle(Isometry3d::IDENTITY, 5., RED)
/// .resolution(64);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn circle(
&mut self,
isometry: Isometry3d,
radius: f32,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: impl Into<Color>,
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
) -> EllipseBuilder<'_, 'w, 's, Config, Clear> {
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
EllipseBuilder {
gizmos: self,
isometry,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size: Vec2::splat(radius),
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: color.into(),
resolution: DEFAULT_CIRCLE_RESOLUTION,
}
}
/// Draw a circle in 2D with the given `isometry` applied.
///
/// If `isometry == Isometry2d::IDENTITY` then
///
/// - the center is at `Vec2::ZERO`
/// - the radius is aligned with the `Vec2::X` and `Vec2::Y` axes.
///
/// This should be called for each frame the circle needs to be rendered.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
/// # use bevy_color::palettes::basic::{RED, GREEN};
/// fn system(mut gizmos: Gizmos) {
/// gizmos.circle_2d(Isometry2d::IDENTITY, 1., GREEN);
///
/// // Circles have 32 line-segments by default.
/// // You may want to increase this for larger circles.
/// gizmos
/// .circle_2d(Isometry2d::IDENTITY, 5., RED)
/// .resolution(64);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn circle_2d(
&mut self,
isometry: Isometry2d,
radius: f32,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: impl Into<Color>,
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
) -> Ellipse2dBuilder<'_, 'w, 's, Config, Clear> {
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
Ellipse2dBuilder {
gizmos: self,
isometry,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size: Vec2::splat(radius),
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: color.into(),
resolution: DEFAULT_CIRCLE_RESOLUTION,
}
}
/// Draw a wireframe sphere in 3D made out of 3 circles around the axes with the given
/// `isometry` applied.
///
/// If `isometry == Isometry3d::IDENTITY` then
///
/// - the center is at `Vec3::ZERO`
/// - the 3 circles are in the XY, YZ and XZ planes.
///
/// This should be called for each frame the sphere needs to be rendered.
///
/// # Example
/// ```
/// # use bevy_gizmos::prelude::*;
/// # use bevy_math::prelude::*;
/// # use bevy_color::Color;
/// fn system(mut gizmos: Gizmos) {
/// gizmos.sphere(Isometry3d::IDENTITY, 1., Color::BLACK);
///
/// // Each circle has 32 line-segments by default.
/// // You may want to increase this for larger spheres.
/// gizmos
/// .sphere(Isometry3d::IDENTITY, 5., Color::BLACK)
/// .resolution(64);
/// }
/// # bevy_ecs::system::assert_is_system(system);
/// ```
#[inline]
pub fn sphere(
&mut self,
isometry: Isometry3d,
radius: f32,
color: impl Into<Color>,
) -> SphereBuilder<'_, 'w, 's, Config, Clear> {
SphereBuilder {
gizmos: self,
radius,
isometry,
color: color.into(),
resolution: DEFAULT_CIRCLE_RESOLUTION,
}
}
}
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
/// A builder returned by [`Gizmos::ellipse`].
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
pub struct EllipseBuilder<'a, 'w, 's, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
gizmos: &'a mut Gizmos<'w, 's, Config, Clear>,
isometry: Isometry3d,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size: Vec2,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: Color,
resolution: u32,
}
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
impl<Config, Clear> EllipseBuilder<'_, '_, '_, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
/// Set the number of lines used to approximate the geometry of this ellipse.
pub fn resolution(mut self, resolution: u32) -> Self {
self.resolution = resolution;
self
}
}
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
impl<Config, Clear> Drop for EllipseBuilder<'_, '_, '_, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
fn drop(&mut self) {
Multiple Configurations for Gizmos (#10342) # Objective This PR aims to implement multiple configs for gizmos as discussed in #9187. ## Solution Configs for the new `GizmoConfigGroup`s are stored in a `GizmoConfigStore` resource and can be accesses using a type based key or iterated over. This type based key doubles as a standardized location where plugin authors can put their own configuration not covered by the standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a default color and toggle to show all AABBs. New configs can be registered using `app.init_gizmo_group::<T>()` during startup. When requesting the `Gizmos<T>` system parameter the generic type determines which config is used. The config structs are available through the `Gizmos` system parameter allowing for easy access while drawing your gizmos. Internally, resources and systems used for rendering (up to an including the extract system) are generic over the type based key and inserted on registering a new config. ## Alternatives The configs could be stored as components on entities with markers which would make better use of the ECS. I also implemented this approach ([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and believe that the ergonomic benefits of a central config store outweigh the decreased use of the ECS. ## Unsafe Code Implementing system parameter by hand is unsafe but seems to be required to access the config store once and not on every gizmo draw function call. This is critical for performance. ~Is there a better way to do this?~ ## Future Work New gizmos (such as #10038, and ideas from #9400) will require custom configuration structs. Should there be a new custom config for every gizmo type, or should we group them together in a common configuration? (for example `EditorGizmoConfig`, or something more fine-grained) ## Changelog - Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait - Added `init_gizmo_group` to `App` - Added early returns to gizmo drawing increasing performance when gizmos are disabled - Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore` - Changed `Gizmos` system parameter to use type based key to retrieve config - Changed resources and systems used for gizmo rendering to be generic over type based key - Changed examples (3d_gizmos, 2d_gizmos) to showcase new API ## Migration Guide - `GizmoConfig` is no longer a resource and has to be accessed through `GizmoConfigStore` resource. The default config group is `DefaultGizmoGroup`, but consider using your own custom config group if applicable. --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-18 15:52:50 +00:00
if !self.gizmos.enabled {
return;
}
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
let positions = ellipse_inner(self.half_size, self.resolution)
.map(|vec2| self.isometry * vec2.extend(0.));
self.gizmos.linestrip(positions, self.color);
}
}
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
/// A builder returned by [`Gizmos::ellipse_2d`].
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
pub struct Ellipse2dBuilder<'a, 'w, 's, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
gizmos: &'a mut Gizmos<'w, 's, Config, Clear>,
isometry: Isometry2d,
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
half_size: Vec2,
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
color: Color,
resolution: u32,
}
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
impl<Config, Clear> Ellipse2dBuilder<'_, '_, '_, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
/// Set the number of line-segments used to approximate the geometry of this ellipse.
pub fn resolution(mut self, resolution: u32) -> Self {
self.resolution = resolution;
self
}
}
Contextually clearing gizmos (#10973) # Objective Allow `Gizmos` to work in `FixedUpdate` without any changes needed. This changes `Gizmos` from being a purely immediate mode api, but allows the user to use it as if it were an immediate mode API regardless of schedule context. Also allows for extending by other custom schedules by adding their own `GizmoStorage<Clear>` and the requisite systems: - `propagate_gizmos::<Clear>` before `update_gizmo_meshes` - `stash_default_gizmos` when starting a clear context - `pop_default_gizmos` when ending a clear context - `collect_default_gizmos` when grabbing the requested gizmos - `clear_gizmos` for clearing the context's gizmos ## Solution Adds a generic to `Gizmos` that defaults to `Update` (the current way gizmos works). When entering a new clear context the default `Gizmos` gets swapped out for that context's duration so the context can collect the gizmos requested. Prior work: https://github.com/bevyengine/bevy/pull/9153 ## To do - [x] `FixedUpdate` should probably get its own First, Pre, Update, Post, Last system sets for this. Otherwise users will need to make sure to order their systems before `clear_gizmos`. This could alternatively be fixed by moving the setup of this to `bevy_time::fixed`? PR to fix this issue: https://github.com/bevyengine/bevy/pull/10977 - [x] use mem::take internally for the swaps? - [x] Better name for the `Context` generic on gizmos? `Clear`? --- ## Changelog - Gizmos drawn in `FixedMain` now last until the next `FixedMain` iteration runs.
2024-04-23 00:16:12 +00:00
impl<Config, Clear> Drop for Ellipse2dBuilder<'_, '_, '_, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
/// Set the number of line-segments for this ellipse.
fn drop(&mut self) {
Multiple Configurations for Gizmos (#10342) # Objective This PR aims to implement multiple configs for gizmos as discussed in #9187. ## Solution Configs for the new `GizmoConfigGroup`s are stored in a `GizmoConfigStore` resource and can be accesses using a type based key or iterated over. This type based key doubles as a standardized location where plugin authors can put their own configuration not covered by the standard `GizmoConfig` struct. For example the `AabbGizmoGroup` has a default color and toggle to show all AABBs. New configs can be registered using `app.init_gizmo_group::<T>()` during startup. When requesting the `Gizmos<T>` system parameter the generic type determines which config is used. The config structs are available through the `Gizmos` system parameter allowing for easy access while drawing your gizmos. Internally, resources and systems used for rendering (up to an including the extract system) are generic over the type based key and inserted on registering a new config. ## Alternatives The configs could be stored as components on entities with markers which would make better use of the ECS. I also implemented this approach ([here](https://github.com/jeliag/bevy/tree/gizmo-multiconf-comp)) and believe that the ergonomic benefits of a central config store outweigh the decreased use of the ECS. ## Unsafe Code Implementing system parameter by hand is unsafe but seems to be required to access the config store once and not on every gizmo draw function call. This is critical for performance. ~Is there a better way to do this?~ ## Future Work New gizmos (such as #10038, and ideas from #9400) will require custom configuration structs. Should there be a new custom config for every gizmo type, or should we group them together in a common configuration? (for example `EditorGizmoConfig`, or something more fine-grained) ## Changelog - Added `GizmoConfigStore` resource and `GizmoConfigGroup` trait - Added `init_gizmo_group` to `App` - Added early returns to gizmo drawing increasing performance when gizmos are disabled - Changed `GizmoConfig` and aabb gizmos to use new `GizmoConfigStore` - Changed `Gizmos` system parameter to use type based key to retrieve config - Changed resources and systems used for gizmo rendering to be generic over type based key - Changed examples (3d_gizmos, 2d_gizmos) to showcase new API ## Migration Guide - `GizmoConfig` is no longer a resource and has to be accessed through `GizmoConfigStore` resource. The default config group is `DefaultGizmoGroup`, but consider using your own custom config group if applicable. --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2024-01-18 15:52:50 +00:00
if !self.gizmos.enabled {
return;
Drawing Primitives with Gizmos (#11072) The PR is in a reviewable state now in the sense that the basic implementations are there. There are still some ToDos that I'm aware of: - [x] docs for all the new structs and traits - [x] implement `Default` and derive other useful traits for the new structs - [x] Take a look at the notes again (Do this after a first round of reviews) - [x] Take care of the repetition in the circle drawing functions --- # Objective - TLDR: This PR enables us to quickly draw all the newly added primitives from `bevy_math` in immediate mode with gizmos - Addresses #10571 ## Solution - This implements the first design idea I had that covered everything that was mentioned in the Issue https://github.com/bevyengine/bevy/issues/10571#issuecomment-1863646197 --- ## Caveats - I added the `Primitive(2/3)d` impls for `Direction(2/3)d` to make them work with the current solution. We could impose less strict requirements for the gizmoable objects and remove the impls afterwards if the community doesn't like the current approach. --- ## Changelog - implement capabilities to draw ellipses on the gizmo in general (this was required to have some code which is able to draw the ellipse primitive) - refactored circle drawing code to use the more general ellipse drawing code to keep code duplication low - implement `Primitive2d` for `Direction2d` and impl `Primitive3d` for `Direction3d` - implement trait to draw primitives with specialized details with gizmos - `GizmoPrimitive2d` for all the 2D primitives - `GizmoPrimitive3d` for all the 3D primitives - (question while writing this: Does it actually matter if we split this in 2D and 3D? I guess it could be useful in the future if we do something based on the main rendering mode even though atm it's kinda useless) --- --------- Co-authored-by: nothendev <borodinov.ilya@gmail.com>
2024-02-02 21:13:03 +00:00
};
let positions =
ellipse_inner(self.half_size, self.resolution).map(|vec2| self.isometry * vec2);
self.gizmos.linestrip_2d(positions, self.color);
}
}
/// A builder returned by [`Gizmos::sphere`].
pub struct SphereBuilder<'a, 'w, 's, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
gizmos: &'a mut Gizmos<'w, 's, Config, Clear>,
// Radius of the sphere
radius: f32,
isometry: Isometry3d,
// Color of the sphere
color: Color,
// Number of line-segments used to approximate the sphere geometry
resolution: u32,
}
impl<Config, Clear> SphereBuilder<'_, '_, '_, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
/// Set the number of line-segments used to approximate the sphere geometry.
pub fn resolution(mut self, resolution: u32) -> Self {
self.resolution = resolution;
self
}
}
impl<Config, Clear> Drop for SphereBuilder<'_, '_, '_, Config, Clear>
where
Config: GizmoConfigGroup,
Clear: 'static + Send + Sync,
{
fn drop(&mut self) {
if !self.gizmos.enabled {
return;
}
// draws one great circle around each of the local axes
Vec3::AXES.into_iter().for_each(|axis| {
let axis_rotation = Isometry3d::from_rotation(Quat::from_rotation_arc(Vec3::Z, axis));
self.gizmos
.circle(self.isometry * axis_rotation, self.radius, self.color)
.resolution(self.resolution);
});
}
}