bevy/examples/tools/gamepad_viewer.rs

471 lines
14 KiB
Rust
Raw Normal View History

//! Shows a visualization of gamepad buttons, sticks, and triggers
use std::f32::consts::PI;
use bevy::{
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
input::gamepad::{GamepadAxisChangedEvent, GamepadButtonChangedEvent, GamepadConnectionEvent},
prelude::*,
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
sprite::Anchor,
};
const BUTTON_RADIUS: f32 = 25.;
const BUTTON_CLUSTER_RADIUS: f32 = 50.;
const START_SIZE: Vec2 = Vec2::new(30., 15.);
const TRIGGER_SIZE: Vec2 = Vec2::new(70., 20.);
const STICK_BOUNDS_SIZE: f32 = 100.;
const BUTTONS_X: f32 = 150.;
const BUTTONS_Y: f32 = 80.;
const STICKS_X: f32 = 150.;
const STICKS_Y: f32 = -135.;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
const NORMAL_BUTTON_COLOR: Color = Color::srgb(0.3, 0.3, 0.3);
const ACTIVE_BUTTON_COLOR: Color = Color::srgb(0.5, 0., 0.5);
const LIVE_COLOR: Color = Color::srgb(0.4, 0.4, 0.4);
const DEAD_COLOR: Color = Color::srgb(0.13, 0.13, 0.13);
#[derive(Component, Deref)]
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
struct ReactTo(GamepadButton);
#[derive(Component)]
struct MoveWithAxes {
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
x_axis: GamepadAxis,
y_axis: GamepadAxis,
scale: f32,
}
#[derive(Component)]
struct TextWithAxes {
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
x_axis: GamepadAxis,
y_axis: GamepadAxis,
}
#[derive(Component, Deref)]
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
struct TextWithButtonValue(GamepadButton);
#[derive(Component)]
struct ConnectedGamepadsText;
#[derive(Resource)]
struct ButtonMaterials {
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
normal: MeshMaterial2d<ColorMaterial>,
active: MeshMaterial2d<ColorMaterial>,
}
impl FromWorld for ButtonMaterials {
fn from_world(world: &mut World) -> Self {
Self {
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
normal: world.add_asset(NORMAL_BUTTON_COLOR).into(),
active: world.add_asset(ACTIVE_BUTTON_COLOR).into(),
}
}
}
#[derive(Resource)]
struct ButtonMeshes {
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
circle: Mesh2d,
triangle: Mesh2d,
start_pause: Mesh2d,
trigger: Mesh2d,
}
impl FromWorld for ButtonMeshes {
fn from_world(world: &mut World) -> Self {
Self {
circle: world.add_asset(Circle::new(BUTTON_RADIUS)).into(),
triangle: world
.add_asset(RegularPolygon::new(BUTTON_RADIUS, 3))
.into(),
start_pause: world.add_asset(Rectangle::from_size(START_SIZE)).into(),
trigger: world.add_asset(Rectangle::from_size(TRIGGER_SIZE)).into(),
}
}
}
#[derive(Bundle)]
struct GamepadButtonBundle {
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
mesh: Mesh2d,
material: MeshMaterial2d<ColorMaterial>,
transform: Transform,
react_to: ReactTo,
}
impl GamepadButtonBundle {
pub fn new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
button_type: GamepadButton,
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
mesh: Mesh2d,
material: MeshMaterial2d<ColorMaterial>,
x: f32,
y: f32,
) -> Self {
Self {
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
mesh,
material,
transform: Transform::from_xyz(x, y, 0.),
react_to: ReactTo(button_type),
}
}
pub fn with_rotation(mut self, angle: f32) -> Self {
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
self.transform.rotation = Quat::from_rotation_z(angle);
self
}
}
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.init_resource::<ButtonMaterials>()
.init_resource::<ButtonMeshes>()
.add_systems(
Startup,
(setup, setup_sticks, setup_triggers, setup_connected),
)
.add_systems(
Update,
(
update_buttons,
update_button_values,
update_axes,
update_connected,
),
)
.run();
}
fn setup(mut commands: Commands, meshes: Res<ButtonMeshes>, materials: Res<ButtonMaterials>) {
commands.spawn(Camera2d);
// Buttons
commands
2024-10-13 17:28:22 +00:00
.spawn((
Transform::from_xyz(BUTTONS_X, BUTTONS_Y, 0.),
Visibility::default(),
))
.with_children(|parent| {
parent.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::North,
meshes.circle.clone(),
materials.normal.clone(),
0.,
BUTTON_CLUSTER_RADIUS,
));
parent.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::South,
meshes.circle.clone(),
materials.normal.clone(),
0.,
-BUTTON_CLUSTER_RADIUS,
));
parent.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::West,
meshes.circle.clone(),
materials.normal.clone(),
-BUTTON_CLUSTER_RADIUS,
0.,
));
parent.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::East,
meshes.circle.clone(),
materials.normal.clone(),
BUTTON_CLUSTER_RADIUS,
0.,
));
});
// Start and Pause
commands.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::Select,
meshes.start_pause.clone(),
materials.normal.clone(),
-30.,
BUTTONS_Y,
));
commands.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::Start,
meshes.start_pause.clone(),
materials.normal.clone(),
30.,
BUTTONS_Y,
));
// D-Pad
commands
2024-10-13 17:28:22 +00:00
.spawn((
Transform::from_xyz(-BUTTONS_X, BUTTONS_Y, 0.),
Visibility::default(),
))
.with_children(|parent| {
parent.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::DPadUp,
meshes.triangle.clone(),
materials.normal.clone(),
0.,
BUTTON_CLUSTER_RADIUS,
));
parent.spawn(
GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::DPadDown,
meshes.triangle.clone(),
materials.normal.clone(),
0.,
-BUTTON_CLUSTER_RADIUS,
)
.with_rotation(PI),
);
parent.spawn(
GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::DPadLeft,
meshes.triangle.clone(),
materials.normal.clone(),
-BUTTON_CLUSTER_RADIUS,
0.,
)
.with_rotation(PI / 2.),
);
parent.spawn(
GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::DPadRight,
meshes.triangle.clone(),
materials.normal.clone(),
BUTTON_CLUSTER_RADIUS,
0.,
)
.with_rotation(-PI / 2.),
);
});
// Triggers
commands.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::LeftTrigger,
meshes.trigger.clone(),
materials.normal.clone(),
-BUTTONS_X,
BUTTONS_Y + 115.,
));
commands.spawn(GamepadButtonBundle::new(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadButton::RightTrigger,
meshes.trigger.clone(),
materials.normal.clone(),
BUTTONS_X,
BUTTONS_Y + 115.,
));
}
fn setup_sticks(
mut commands: Commands,
meshes: Res<ButtonMeshes>,
materials: Res<ButtonMaterials>,
) {
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
// NOTE: This stops making sense because in entities because there isn't a "global" default,
// instead each gamepad has its own default setting
let gamepad_settings = GamepadSettings::default();
let dead_upper =
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.deadzone_upperbound();
let dead_lower =
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.deadzone_lowerbound();
let dead_size = dead_lower.abs() + dead_upper.abs();
let dead_mid = (dead_lower + dead_upper) / 2.0;
let live_upper =
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.livezone_upperbound();
let live_lower =
STICK_BOUNDS_SIZE * gamepad_settings.default_axis_settings.livezone_lowerbound();
let live_size = live_lower.abs() + live_upper.abs();
let live_mid = (live_lower + live_upper) / 2.0;
let mut spawn_stick = |x_pos, y_pos, x_axis, y_axis, button| {
commands
2024-10-13 17:28:22 +00:00
.spawn((Transform::from_xyz(x_pos, y_pos, 0.), Visibility::default()))
.with_children(|parent| {
// full extent
parent.spawn(Sprite::from_color(
DEAD_COLOR,
Vec2::splat(STICK_BOUNDS_SIZE * 2.),
));
// live zone
parent.spawn((
Sprite::from_color(LIVE_COLOR, Vec2::splat(live_size)),
Transform::from_xyz(live_mid, live_mid, 2.),
));
// dead zone
parent.spawn((
Sprite::from_color(DEAD_COLOR, Vec2::splat(dead_size)),
Transform::from_xyz(dead_mid, dead_mid, 3.),
));
// text
let style = TextFont {
font_size: 13.,
..default()
};
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
parent
.spawn((
Text2d::default(),
Transform::from_xyz(0., STICK_BOUNDS_SIZE + 2., 4.),
Anchor::BottomCenter,
TextWithAxes { x_axis, y_axis },
))
.with_children(|p| {
p.spawn((TextSpan(format!("{:.3}", 0.)), style.clone()));
p.spawn((TextSpan::new(", "), style.clone()));
p.spawn((TextSpan(format!("{:.3}", 0.)), style));
});
// cursor
parent.spawn((
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
meshes.circle.clone(),
materials.normal.clone(),
Transform::from_xyz(0., 0., 5.).with_scale(Vec2::splat(0.15).extend(1.)),
MoveWithAxes {
x_axis,
y_axis,
scale: STICK_BOUNDS_SIZE,
},
ReactTo(button),
));
});
};
spawn_stick(
-STICKS_X,
STICKS_Y,
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadAxis::LeftStickX,
GamepadAxis::LeftStickY,
GamepadButton::LeftThumb,
);
spawn_stick(
STICKS_X,
STICKS_Y,
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
GamepadAxis::RightStickX,
GamepadAxis::RightStickY,
GamepadButton::RightThumb,
);
}
fn setup_triggers(
mut commands: Commands,
meshes: Res<ButtonMeshes>,
materials: Res<ButtonMaterials>,
) {
let mut spawn_trigger = |x, y, button_type| {
commands
.spawn(GamepadButtonBundle::new(
button_type,
meshes.trigger.clone(),
materials.normal.clone(),
x,
y,
))
.with_children(|parent| {
parent.spawn((
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
Transform::from_xyz(0., 0., 1.),
Text(format!("{:.3}", 0.)),
TextFont {
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
font_size: 13.,
..default()
},
TextWithButtonValue(button_type),
));
});
};
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
spawn_trigger(-BUTTONS_X, BUTTONS_Y + 145., GamepadButton::LeftTrigger2);
spawn_trigger(BUTTONS_X, BUTTONS_Y + 145., GamepadButton::RightTrigger2);
}
fn setup_connected(mut commands: Commands) {
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
// This is UI text, unlike other text in this example which is 2d.
commands
.spawn((
Text::new("Connected Gamepads:\n"),
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.),
left: Val::Px(12.),
..default()
},
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
ConnectedGamepadsText,
))
.with_child(TextSpan::new("None"));
}
fn update_buttons(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
gamepads: Query<&Gamepad>,
materials: Res<ButtonMaterials>,
Migrate meshes and materials to required components (#15524) # Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material: ![Näyttökuva 2024-09-29 181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a) ![Näyttökuva 2024-09-29 181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909) Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
mut query: Query<(&mut MeshMaterial2d<ColorMaterial>, &ReactTo)>,
) {
for gamepad in &gamepads {
for (mut handle, react_to) in query.iter_mut() {
if gamepad.digital.just_pressed(**react_to) {
*handle = materials.active.clone();
}
if gamepad.digital.just_released(**react_to) {
*handle = materials.normal.clone();
}
}
}
}
fn update_button_values(
mut events: EventReader<GamepadButtonChangedEvent>,
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
mut query: Query<(&mut Text2d, &TextWithButtonValue)>,
) {
for button_event in events.read() {
for (mut text, text_with_button_value) in query.iter_mut() {
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
if button_event.button == **text_with_button_value {
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
**text = format!("{:.3}", button_event.value);
}
}
}
}
fn update_axes(
mut axis_events: EventReader<GamepadAxisChangedEvent>,
mut query: Query<(&mut Transform, &MoveWithAxes)>,
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
text_query: Query<(Entity, &TextWithAxes)>,
mut writer: Text2dWriter,
) {
for axis_event in axis_events.read() {
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
let axis_type = axis_event.axis;
let value = axis_event.value;
for (mut transform, move_with) in query.iter_mut() {
if axis_type == move_with.x_axis {
transform.translation.x = value * move_with.scale;
}
if axis_type == move_with.y_axis {
transform.translation.y = value * move_with.scale;
}
}
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
for (text, text_with_axes) in text_query.iter() {
if axis_type == text_with_axes.x_axis {
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
*writer.text(text, 1) = format!("{value:.3}");
}
if axis_type == text_with_axes.y_axis {
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
*writer.text(text, 3) = format!("{value:.3}");
}
}
}
}
fn update_connected(
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
mut connected: EventReader<GamepadConnectionEvent>,
gamepads: Query<(Entity, &Name), With<Gamepad>>,
text: Single<Entity, With<ConnectedGamepadsText>>,
mut writer: TextUiWriter,
) {
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
if connected.is_empty() {
return;
}
Implement gamepads as entities (#12770) # Objective - Significantly improve the ergonomics of gamepads and allow new features Gamepads are a bit unergonomic to work with, they use resources but unlike other inputs, they are not limited to a single gamepad, to get around this it uses an identifier (Gamepad) to interact with anything causing all sorts of issues. 1. There are too many: Gamepads, GamepadSettings, GamepadInfo, ButtonInput<T>, 2 Axis<T>. 2. ButtonInput/Axis generic methods become really inconvenient to use e.g. any_pressed() 3. GamepadButton/Axis structs are unnecessary boilerplate: ```rust for gamepad in gamepads.iter() { if button_inputs.just_pressed(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just pressed South", gamepad); } else if button_inputs.just_released(GamepadButton::new(gamepad, GamepadButtonType::South)) { info!("{:?} just released South", gamepad); } } ``` 4. Projects often need to create resources to store the selected gamepad and have to manually check if their gamepad is still valid anyways. - Previously attempted by #3419 and #12674 ## Solution - Implement gamepads as entities. Using entities solves all the problems above and opens new possibilities. 1. Reduce boilerplate and allows iteration ```rust let is_pressed = gamepads_buttons.iter().any(|buttons| buttons.pressed(GamepadButtonType::South)) ``` 2. ButtonInput/Axis generic methods become ergonomic again ```rust gamepad_buttons.any_just_pressed([GamepadButtonType::Start, GamepadButtonType::Select]) ``` 3. Reduces the number of public components significantly (Gamepad, GamepadSettings, GamepadButtons, GamepadAxes) 4. Components are highly convenient. Gamepad optional features could now be expressed naturally (`Option<Rumble> or Option<Gyro>`), allows devs to attach their own components and filter them, so code like this becomes possible: ```rust fn move_player<const T: usize>( player: Query<&Transform, With<Player<T>>>, gamepads_buttons: Query<&GamepadButtons, With<Player<T>>>, ) { if let Ok(gamepad_buttons) = gamepads_buttons.get_single() { if gamepad_buttons.pressed(GamepadButtonType::South) { // move player } } } ``` --- ## Follow-up - [ ] Run conditions? - [ ] Rumble component # Changelog ## Added TODO ## Changed TODO ## Removed TODO ## Migration Guide TODO --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-09-27 20:07:20 +00:00
connected.clear();
let formatted = gamepads
.iter()
.map(|(entity, name)| format!("{} - {}", entity, name))
.collect::<Vec<_>>()
.join("\n");
*writer.text(*text, 1) = if !formatted.is_empty() {
formatted
} else {
"None".to_string()
}
}