bevy/crates/bevy_math/src/lib.rs

33 lines
860 B
Rust
Raw Normal View History

//! Provides math types and functionality for the Bevy game engine.
//!
//! The commonly used types are vectors like [`Vec2`] and [`Vec3`],
//! matrices like [`Mat2`], [`Mat3`] and [`Mat4`] and orientation representations
//! like [`Quat`].
#![allow(clippy::type_complexity)]
#![warn(missing_docs)]
2020-07-17 02:23:47 +00:00
Reduce the size of MeshUniform to improve performance (#9416) # Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ```
2023-08-15 06:00:23 +00:00
mod affine3;
Add generic cubic splines to `bevy_math` (#7683) # Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
2023-03-03 22:06:42 +00:00
pub mod cubic_splines;
mod ray;
mod rects;
Move `sprite::Rect` into `bevy_math` (#5686) # Objective Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle by its minimum and maximum corners, to the `bevy_math` crate to make it available as a general math type to all crates without the need to depend on the `bevy_sprite` crate. Fixes #5575 ## Solution Move `sprite::Rect` into `bevy_math` and fix all uses. Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by having `bevy_reflect` depend on `bevy_math`. This looks like a new dependency, but the `bevy_reflect` was "cheating" for other math types by directly depending on `glam` to reflect other math types, thereby giving the illusion that there was no dependency on `bevy_math`. In practice conceptually Bevy's math types are reflected into the `bevy_reflect` crate to avoid a dependency of that crate to a "lower level" utility crate like `bevy_math` (which in turn would make `bevy_reflect` be a dependency of most other crates, and increase the risk of circular dependencies). So this change simply formalizes that dependency in `Cargo.toml`. The `Rect` struct is also augmented in this change with a collection of utility methods to improve its usability. A few uses cases are updated to use those new methods, resulting is more clear and concise syntax. --- ## Changelog ### Changed - Moved the `sprite::Rect` type into `bevy_math`. ### Added - Added several utility methods to the `math::Rect` type. ## Migration Guide The `bevy::sprite::Rect` type moved to the math utility crate as `bevy::math::Rect`. You should change your imports from `use bevy::sprite::Rect` to `use bevy::math::Rect`.
2022-09-02 12:35:23 +00:00
Reduce the size of MeshUniform to improve performance (#9416) # Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ```
2023-08-15 06:00:23 +00:00
pub use affine3::*;
pub use ray::Ray;
pub use rects::*;
Move `sprite::Rect` into `bevy_math` (#5686) # Objective Promote the `Rect` utility of `sprite::Rect`, which defines a rectangle by its minimum and maximum corners, to the `bevy_math` crate to make it available as a general math type to all crates without the need to depend on the `bevy_sprite` crate. Fixes #5575 ## Solution Move `sprite::Rect` into `bevy_math` and fix all uses. Implement `Reflect` for `Rect` directly into the `bevy_reflect` crate by having `bevy_reflect` depend on `bevy_math`. This looks like a new dependency, but the `bevy_reflect` was "cheating" for other math types by directly depending on `glam` to reflect other math types, thereby giving the illusion that there was no dependency on `bevy_math`. In practice conceptually Bevy's math types are reflected into the `bevy_reflect` crate to avoid a dependency of that crate to a "lower level" utility crate like `bevy_math` (which in turn would make `bevy_reflect` be a dependency of most other crates, and increase the risk of circular dependencies). So this change simply formalizes that dependency in `Cargo.toml`. The `Rect` struct is also augmented in this change with a collection of utility methods to improve its usability. A few uses cases are updated to use those new methods, resulting is more clear and concise syntax. --- ## Changelog ### Changed - Moved the `sprite::Rect` type into `bevy_math`. ### Added - Added several utility methods to the `math::Rect` type. ## Migration Guide The `bevy::sprite::Rect` type moved to the math utility crate as `bevy::math::Rect`. You should change your imports from `use bevy::sprite::Rect` to `use bevy::math::Rect`.
2022-09-02 12:35:23 +00:00
/// The `bevy_math` prelude.
2020-07-17 02:23:47 +00:00
pub mod prelude {
#[doc(hidden)]
pub use crate::{
cubic_splines::{
BSpline, CardinalSpline, CubicBezier, CubicGenerator, CubicSegment, Hermite,
},
BVec2, BVec3, BVec4, EulerRot, IRect, IVec2, IVec3, IVec4, Mat2, Mat3, Mat4, Quat, Ray,
Rect, URect, UVec2, UVec3, UVec4, Vec2, Vec2Swizzles, Vec3, Vec3Swizzles, Vec4,
Vec4Swizzles,
};
2020-07-17 02:23:47 +00:00
}
pub use glam::*;