bevy/crates/bevy_pbr/src/render/mesh_functions.wgsl

124 lines
5.5 KiB
WebGPU Shading Language
Raw Normal View History

Add reusable shader functions for transforming position/normal/tangent (#4901) # Objective - Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way - The next step in #3969 so check there for more details. ## Solution - Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports - These contain `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` - Use them everywhere where it is appropriate - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there - NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D. --- ## Changelog - Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` ## Migration Guide - The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
#define_import_path bevy_pbr::mesh_functions
update shader imports (#10180) # Objective - bump naga_oil to 0.10 - update shader imports to use rusty syntax ## Migration Guide naga_oil 0.10 reworks the import mechanism to support more syntax to make it more rusty, and test for item use before importing to determine which imports are modules and which are items, which allows: - use rust-style imports ``` #import bevy_pbr::{ pbr_functions::{alpha_discard as discard, apply_pbr_lighting}, mesh_bindings, } ``` - import partial paths: ``` #import part::of::path ... path::remainder::function(); ``` which will call to `part::of::path::remainder::function` - use fully qualified paths without importing: ``` // #import bevy_pbr::pbr_functions bevy_pbr::pbr_functions::pbr() ``` - use imported items without qualifying ``` #import bevy_pbr::pbr_functions::pbr // for backwards compatibility the old style is still supported: // #import bevy_pbr::pbr_functions pbr ... pbr() ``` - allows most imported items to end with `_` and numbers (naga_oil#30). still doesn't allow struct members to end with `_` or numbers but it's progress. - the vast majority of existing shader code will work without changes, but will emit "deprecated" warnings for old-style imports. these can be suppressed with the `allow-deprecated` feature. - partly breaks overrides (as far as i'm aware nobody uses these yet) - now overrides will only be applied if the overriding module is added as an additional import in the arguments to `Composer::make_naga_module` or `Composer::add_composable_module`. this is necessary to support determining whether imports are modules or items.
2023-10-21 11:51:58 +00:00
#import bevy_pbr::{
mesh_view_bindings::{
view,
visibility_ranges,
VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE
},
update shader imports (#10180) # Objective - bump naga_oil to 0.10 - update shader imports to use rusty syntax ## Migration Guide naga_oil 0.10 reworks the import mechanism to support more syntax to make it more rusty, and test for item use before importing to determine which imports are modules and which are items, which allows: - use rust-style imports ``` #import bevy_pbr::{ pbr_functions::{alpha_discard as discard, apply_pbr_lighting}, mesh_bindings, } ``` - import partial paths: ``` #import part::of::path ... path::remainder::function(); ``` which will call to `part::of::path::remainder::function` - use fully qualified paths without importing: ``` // #import bevy_pbr::pbr_functions bevy_pbr::pbr_functions::pbr() ``` - use imported items without qualifying ``` #import bevy_pbr::pbr_functions::pbr // for backwards compatibility the old style is still supported: // #import bevy_pbr::pbr_functions pbr ... pbr() ``` - allows most imported items to end with `_` and numbers (naga_oil#30). still doesn't allow struct members to end with `_` or numbers but it's progress. - the vast majority of existing shader code will work without changes, but will emit "deprecated" warnings for old-style imports. these can be suppressed with the `allow-deprecated` feature. - partly breaks overrides (as far as i'm aware nobody uses these yet) - now overrides will only be applied if the overriding module is added as an additional import in the arguments to `Composer::make_naga_module` or `Composer::add_composable_module`. this is necessary to support determining whether imports are modules or items.
2023-10-21 11:51:58 +00:00
mesh_bindings::mesh,
mesh_types::MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT,
view_transformations::position_world_to_clip,
update shader imports (#10180) # Objective - bump naga_oil to 0.10 - update shader imports to use rusty syntax ## Migration Guide naga_oil 0.10 reworks the import mechanism to support more syntax to make it more rusty, and test for item use before importing to determine which imports are modules and which are items, which allows: - use rust-style imports ``` #import bevy_pbr::{ pbr_functions::{alpha_discard as discard, apply_pbr_lighting}, mesh_bindings, } ``` - import partial paths: ``` #import part::of::path ... path::remainder::function(); ``` which will call to `part::of::path::remainder::function` - use fully qualified paths without importing: ``` // #import bevy_pbr::pbr_functions bevy_pbr::pbr_functions::pbr() ``` - use imported items without qualifying ``` #import bevy_pbr::pbr_functions::pbr // for backwards compatibility the old style is still supported: // #import bevy_pbr::pbr_functions pbr ... pbr() ``` - allows most imported items to end with `_` and numbers (naga_oil#30). still doesn't allow struct members to end with `_` or numbers but it's progress. - the vast majority of existing shader code will work without changes, but will emit "deprecated" warnings for old-style imports. these can be suppressed with the `allow-deprecated` feature. - partly breaks overrides (as far as i'm aware nobody uses these yet) - now overrides will only be applied if the overriding module is added as an additional import in the arguments to `Composer::make_naga_module` or `Composer::add_composable_module`. this is necessary to support determining whether imports are modules or items.
2023-10-21 11:51:58 +00:00
}
Add support for KHR_texture_transform (#11904) Adopted #8266, so copy-pasting the description from there: # Objective Support the KHR_texture_transform extension for the glTF loader. - Fixes #6335 - Fixes #11869 - Implements part of #11350 - Implements the GLTF part of #399 ## Solution As is, this only supports a single transform. Looking at Godot's source, they support one transform with an optional second one for detail, AO, and emission. glTF specifies one per texture. The public domain materials I looked at seem to share the same transform. So maybe having just one is acceptable for now. I tried to include a warning if multiple different transforms exist for the same material. Note the gltf crate doesn't expose the texture transform for the normal and occlusion textures, which it should, so I just ignored those for now. (note by @janhohenheim: this is still the case) Via `cargo run --release --example scene_viewer ~/src/clone/glTF-Sample-Models/2.0/TextureTransformTest/glTF/TextureTransformTest.gltf`: ![texture_transform](https://user-images.githubusercontent.com/283864/228938298-aa2ef524-555b-411d-9637-fd0dac226fb0.png) ## Changelog Support for the [KHR_texture_transform](https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_texture_transform) extension added. Texture UVs that were scaled, rotated, or offset in a GLTF are now properly handled. --------- Co-authored-by: Al McElrath <hello@yrns.org> Co-authored-by: Kanabenki <lucien.menassol@gmail.com>
2024-02-21 01:11:28 +00:00
#import bevy_render::maths::{affine3_to_square, mat2x4_f32_to_mat3x3_unpack}
Update to wgpu 0.19 and raw-window-handle 0.6 (#11280) # Objective Keep core dependencies up to date. ## Solution Update the dependencies. wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was included in this. The rwh 0.6 version bump is just the simplest way of doing it. There might be a way we can take advantage of wgpu's new safe surface creation api, but I'm not familiar enough with bevy's window management to untangle it and my attempt ended up being a mess of lifetimes and rustc complaining about missing trait impls (that were implemented). Thanks to @MiniaczQ for the (much simpler) rwh 0.6 version bump code. Unblocks https://github.com/bevyengine/bevy/pull/9172 and https://github.com/bevyengine/bevy/pull/10812 ~~This might be blocked on cpal and oboe updating their ndk versions to 0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested on android, and everything seems to work correctly (audio properly stops when minimized, and plays when re-focusing the app). --- ## Changelog - `wgpu` has been updated to 0.19! The long awaited arcanization has been merged (for more info, see https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan should now be working again on Intel GPUs. - Targeting WebGPU now requires that you add the new `webgpu` feature (setting the `RUSTFLAGS` environment variable to `--cfg=web_sys_unstable_apis` is still required). This feature currently overrides the `webgl2` feature if you have both enabled (the `webgl2` feature is enabled by default), so it is not recommended to add it as a default feature to libraries without putting it behind a flag that allows library users to opt out of it! In the future we plan on supporting wasm binaries that can target both webgl2 and webgpu now that wgpu added support for doing so (see https://github.com/bevyengine/bevy/issues/11505). - `raw-window-handle` has been updated to version 0.6. ## Migration Guide - `bevy_render::instance_index::get_instance_index()` has been removed as the webgl2 workaround is no longer required as it was fixed upstream in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed. - WebGPU now requires the new `webgpu` feature to be enabled. The `webgpu` feature currently overrides the `webgl2` feature so you no longer need to disable all default features and re-add them all when targeting `webgpu`, but binaries built with both the `webgpu` and `webgl2` features will only target the webgpu backend, and will only work on browsers that support WebGPU. - Places where you conditionally compiled things for webgl2 need to be updated because of this change, eg: - `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]` becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"), feature = "webgpu"))]` - `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes `#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]` - `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))` - `create_texture_with_data` now also takes a `TextureDataOrder`. You can probably just set this to `TextureDataOrder::default()` - `TextureFormat`'s `block_size` has been renamed to `block_copy_size` - See the `wgpu` changelog for anything I might've missed: https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md --------- Co-authored-by: François <mockersf@gmail.com>
2024-01-26 18:14:21 +00:00
Reduce the size of MeshUniform to improve performance (#9416) # Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ```
2023-08-15 06:00:23 +00:00
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
fn get_world_from_local(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].world_from_local);
Reduce the size of MeshUniform to improve performance (#9416) # Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ```
2023-08-15 06:00:23 +00:00
}
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
fn get_previous_world_from_local(instance_index: u32) -> mat4x4<f32> {
return affine3_to_square(mesh[instance_index].previous_world_from_local);
Reduce the size of MeshUniform to improve performance (#9416) # Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ```
2023-08-15 06:00:23 +00:00
}
improve shader import model (#5703) # Objective operate on naga IR directly to improve handling of shader modules. - give codespan reporting into imported modules - allow glsl to be used from wgsl and vice-versa the ultimate objective is to make it possible to - provide user hooks for core shader functions (to modify light behaviour within the standard pbr pipeline, for example) - make automatic binding slot allocation possible but ... since this is already big, adds some value and (i think) is at feature parity with the existing code, i wanted to push this now. ## Solution i made a crate called naga_oil (https://github.com/robtfm/naga_oil - unpublished for now, could be part of bevy) which manages modules by - building each module independantly to naga IR - creating "header" files for each supported language, which are used to build dependent modules/shaders - make final shaders by combining the shader IR with the IR for imported modules then integrated this into bevy, replacing some of the existing shader processing stuff. also reworked examples to reflect this. ## Migration Guide shaders that don't use `#import` directives should work without changes. the most notable user-facing difference is that imported functions/variables/etc need to be qualified at point of use, and there's no "leakage" of visible stuff into your shader scope from the imports of your imports, so if you used things imported by your imports, you now need to import them directly and qualify them. the current strategy of including/'spreading' `mesh_vertex_output` directly into a struct doesn't work any more, so these need to be modified as per the examples (e.g. color_material.wgsl, or many others). mesh data is assumed to be in bindgroup 2 by default, if mesh data is bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1` needs to be added to the pipeline shader_defs.
2023-06-27 00:29:22 +00:00
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
fn mesh_position_local_to_world(world_from_local: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
return world_from_local * vertex_position;
Add reusable shader functions for transforming position/normal/tangent (#4901) # Objective - Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way - The next step in #3969 so check there for more details. ## Solution - Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports - These contain `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` - Use them everywhere where it is appropriate - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there - NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D. --- ## Changelog - Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` ## Migration Guide - The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
}
// NOTE: The intermediate world_position assignment is important
// for precision purposes when using the 'equals' depth comparison
// function.
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
fn mesh_position_local_to_clip(world_from_local: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
let world_position = mesh_position_local_to_world(world_from_local, vertex_position);
return position_world_to_clip(world_position.xyz);
Add reusable shader functions for transforming position/normal/tangent (#4901) # Objective - Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way - The next step in #3969 so check there for more details. ## Solution - Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports - These contain `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` - Use them everywhere where it is appropriate - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there - NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D. --- ## Changelog - Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` ## Migration Guide - The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
}
Use GpuArrayBuffer for MeshUniform (#9254) # Objective - Reduce the number of rebindings to enable batching of draw commands ## Solution - Use the new `GpuArrayBuffer` for `MeshUniform` data to store all `MeshUniform` data in arrays within fewer bindings - Sort opaque/alpha mask prepass, opaque/alpha mask main, and shadow phases also by the batch per-object data binding dynamic offset to improve performance on WebGL2. --- ## Changelog - Changed: Per-object `MeshUniform` data is now managed by `GpuArrayBuffer` as arrays in buffers that need to be indexed into. ## Migration Guide Accessing the `model` member of an individual mesh object's shader `Mesh` struct the old way where each `MeshUniform` was stored at its own dynamic offset: ```rust struct Vertex { @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh.model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` The new way where one needs to index into the array of `Mesh`es for the batch: ```rust struct Vertex { @builtin(instance_index) instance_index: u32, @location(0) position: vec3<f32>, }; fn vertex(vertex: Vertex) -> VertexOutput { var out: VertexOutput; out.clip_position = mesh_position_local_to_clip( mesh[vertex.instance_index].model, vec4<f32>(vertex.position, 1.0) ); return out; } ``` Note that using the instance_index is the default way to pass the per-object index into the shader, but if you wish to do custom rendering approaches you can pass it in however you like. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com>
2023-07-30 13:17:08 +00:00
fn mesh_normal_local_to_world(vertex_normal: vec3<f32>, instance_index: u32) -> vec3<f32> {
// NOTE: The mikktspace method of normal mapping requires that the world normal is
// re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents
// and normal maps so that the exact inverse process is applied when shading. Blender, Unity,
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
// Unreal Engine, Godot, and more all use the mikktspace method.
// We only skip normalization for invalid normals so that they don't become NaN.
// Do not change this code unless you really know what you are doing.
// http://www.mikktspace.com/
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
if any(vertex_normal != vec3<f32>(0.0)) {
return normalize(
mat2x4_f32_to_mat3x3_unpack(
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
mesh[instance_index].local_from_world_transpose_a,
mesh[instance_index].local_from_world_transpose_b,
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
) * vertex_normal
);
} else {
return vertex_normal;
}
}
// Calculates the sign of the determinant of the 3x3 model matrix based on a
// mesh flag
fn sign_determinant_model_3x3m(mesh_flags: u32) -> f32 {
// bool(u32) is false if 0u else true
// f32(bool) is 1.0 if true else 0.0
// * 2.0 - 1.0 remaps 0.0 or 1.0 to -1.0 or 1.0 respectively
return f32(bool(mesh_flags & MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT)) * 2.0 - 1.0;
Add reusable shader functions for transforming position/normal/tangent (#4901) # Objective - Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way - The next step in #3969 so check there for more details. ## Solution - Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports - These contain `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` - Use them everywhere where it is appropriate - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there - NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D. --- ## Changelog - Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` ## Migration Guide - The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
}
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
fn mesh_tangent_local_to_world(world_from_local: mat4x4<f32>, vertex_tangent: vec4<f32>, instance_index: u32) -> vec4<f32> {
// NOTE: The mikktspace method of normal mapping requires that the world tangent is
// re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents
// and normal maps so that the exact inverse process is applied when shading. Blender, Unity,
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
// Unreal Engine, Godot, and more all use the mikktspace method.
// We only skip normalization for invalid tangents so that they don't become NaN.
// Do not change this code unless you really know what you are doing.
// http://www.mikktspace.com/
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
if any(vertex_tangent != vec4<f32>(0.0)) {
return vec4<f32>(
normalize(
mat3x3<f32>(
Normalise matrix naming (#13489) # Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
world_from_local[0].xyz,
world_from_local[1].xyz,
world_from_local[2].xyz,
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
) * vertex_tangent.xyz
),
// NOTE: Multiplying by the sign of the determinant of the 3x3 model matrix accounts for
// situations such as negative scaling.
vertex_tangent.w * sign_determinant_model_3x3m(mesh[instance_index].flags)
Normalize only nonzero normals for mikktspace normal maps (#10905) # Objective Fixes #5891. For mikktspace normal maps, normals must be renormalized in vertex shaders to match the way mikktspace bakes vertex tangents and normal maps so that the exact inverse process is applied when shading. However, for invalid normals like `vec3<f32>(0.0, 0.0, 0.0)`, this normalization causes NaN values, and because it's in the vertex shader, it affects the entire triangle and causes it to be shaded as black: ![incorrectly shaded cone](https://github.com/bevyengine/bevy/assets/57632562/3334b3a9-f72a-4a08-853e-8077a346f5c9) *A cone with a tip that has a vertex normal of [0, 0, 0], causing the mesh to be shaded as black.* In some cases, normals of zero are actually *useful*. For example, a smoothly shaded cone without creases requires the apex vertex normal to be zero, because there is no singular normal that works correctly, so the apex shouldn't contribute to the overall shading. Duplicate vertices for the apex fix some shading issues, but it causes visible creases and is more expensive. See #5891 and #10298 for more details. For correctly shaded cones and other similar low-density shapes with sharp tips, vertex normals of zero can not be normalized in the vertex shader. ## Solution Only normalize the vertex normals and tangents in the vertex shader if the normal isn't [0, 0, 0]. This way, mikktspace normal maps should still work for everything except the zero normals, and the zero normals will only be normalized in the fragment shader. This allows us to render cones correctly: ![smooth cone with some banding](https://github.com/bevyengine/bevy/assets/57632562/6b36e264-22c6-453b-a6de-c404b314ca1a) Notice how there is still a weird shadow banding effect in one area. I noticed that it can be fixed by normalizing [here](https://github.com/bevyengine/bevy/blob/d2614f2d802d0fb8000821a81553b600cc85f734/crates/bevy_pbr/src/render/pbr_functions.wgsl#L51), which produces a perfectly smooth cone without duplicate vertices: ![smooth cone](https://github.com/bevyengine/bevy/assets/57632562/64f9ad5d-b249-4eae-880b-a1e61e07ae73) I didn't add this change yet, because it seems a bit arbitrary. I can add it here if that'd be useful or make another PR though.
2023-12-10 11:42:47 +00:00
);
} else {
return vertex_tangent;
}
Add reusable shader functions for transforming position/normal/tangent (#4901) # Objective - Add reusable shader functions for transforming positions / normals / tangents between local and world / clip space for 2D and 3D so that they are done in a simple and correct way - The next step in #3969 so check there for more details. ## Solution - Add `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports - These contain `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` - Use them everywhere where it is appropriate - Notably not in the sprite and UI shaders where `mesh2d_position_world_to_clip` could have been used, but including all the functions depends on the mesh binding so I chose to not use the function there - NOTE: The `mesh_` and `mesh2d_` functions are currently identical. However, if I had defined only `bevy_pbr::mesh_functions` and used that in bevy_sprite, then bevy_sprite would have a runtime dependency on bevy_pbr, which seems undesirable. I also expect that when we have a proper 2D rendering API, these functions will diverge between 2D and 3D. --- ## Changelog - Added: `bevy_pbr::mesh_functions` and `bevy_sprite::mesh2d_functions` shader imports containing `mesh_` and `mesh2d_` versions of the following functions: - `mesh_position_local_to_world` - `mesh_position_world_to_clip` - `mesh_position_local_to_clip` - `mesh_normal_local_to_world` - `mesh_tangent_local_to_world` ## Migration Guide - The `skin_tangents` function from the `bevy_pbr::skinning` shader import has been replaced with the `mesh_tangent_local_to_world` function from the `bevy_pbr::mesh_functions` shader import
2022-06-14 00:32:33 +00:00
}
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916) Implement visibility ranges, also known as hierarchical levels of detail (HLODs). This commit introduces a new component, `VisibilityRange`, which allows developers to specify camera distances in which meshes are to be shown and hidden. Hiding meshes happens early in the rendering pipeline, so this feature can be used for level of detail optimization. Additionally, this feature is properly evaluated per-view, so different views can show different levels of detail. This feature differs from proper mesh LODs, which can be implemented later. Engines generally implement true mesh LODs later in the pipeline; they're typically more efficient than HLODs with GPU-driven rendering. However, mesh LODs are more limited than HLODs, because they require the lower levels of detail to be meshes with the same vertex layout and shader (and perhaps the same material) as the original mesh. Games often want to use objects other than meshes to replace distant models, such as *octahedral imposters* or *billboard imposters*. The reason why the feature is called *hierarchical level of detail* is that HLODs can replace multiple meshes with a single mesh when the camera is far away. This can be useful for reducing drawcall count. Note that `VisibilityRange` doesn't automatically propagate down to children; it must be placed on every mesh. Crossfading between different levels of detail is supported, using the standard 4x4 ordered dithering pattern from [1]. The shader code to compute the dithering patterns should be well-optimized. The dithering code is only active when visibility ranges are in use for the mesh in question, so that we don't lose early Z. Cascaded shadow maps show the HLOD level of the view they're associated with. Point light and spot light shadow maps, which have no CSMs, display all HLOD levels that are visible in any view. To support this efficiently and avoid doing visibility checks multiple times, we precalculate all visible HLOD levels for each entity with a `VisibilityRange` during the `check_visibility_range` system. A new example, `visibility_range`, has been added to the tree, as well as a new low-poly version of the flight helmet model to go with it. It demonstrates use of the visibility range feature to provide levels of detail. [1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map [^1]: Unreal doesn't have a feature that exactly corresponds to visibility ranges, but Unreal's HLOD system serves roughly the same purpose. ## Changelog ### Added * A new `VisibilityRange` component is available to conditionally enable entity visibility at camera distances, with optional crossfade support. This can be used to implement different levels of detail (LODs). ## Screenshots High-poly model: ![Screenshot 2024-04-09 185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623) Low-poly model up close: ![Screenshot 2024-04-09 185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0) Crossfading between the two: ![Screenshot 2024-04-09 185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4) --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-05-03 00:11:35 +00:00
// Returns an appropriate dither level for the current mesh instance.
//
// This looks up the LOD range in the `visibility_ranges` table and compares the
// camera distance to determine the dithering level.
#ifdef VISIBILITY_RANGE_DITHER
fn get_visibility_range_dither_level(instance_index: u32, world_position: vec4<f32>) -> i32 {
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 6
// If we're using a storage buffer, then the length is variable.
let visibility_buffer_array_len = arrayLength(&visibility_ranges);
#else // AVAILABLE_STORAGE_BUFFER_BINDINGS >= 6
// If we're using a uniform buffer, then the length is constant
let visibility_buffer_array_len = VISIBILITY_RANGE_UNIFORM_BUFFER_SIZE;
#endif // AVAILABLE_STORAGE_BUFFER_BINDINGS >= 6
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916) Implement visibility ranges, also known as hierarchical levels of detail (HLODs). This commit introduces a new component, `VisibilityRange`, which allows developers to specify camera distances in which meshes are to be shown and hidden. Hiding meshes happens early in the rendering pipeline, so this feature can be used for level of detail optimization. Additionally, this feature is properly evaluated per-view, so different views can show different levels of detail. This feature differs from proper mesh LODs, which can be implemented later. Engines generally implement true mesh LODs later in the pipeline; they're typically more efficient than HLODs with GPU-driven rendering. However, mesh LODs are more limited than HLODs, because they require the lower levels of detail to be meshes with the same vertex layout and shader (and perhaps the same material) as the original mesh. Games often want to use objects other than meshes to replace distant models, such as *octahedral imposters* or *billboard imposters*. The reason why the feature is called *hierarchical level of detail* is that HLODs can replace multiple meshes with a single mesh when the camera is far away. This can be useful for reducing drawcall count. Note that `VisibilityRange` doesn't automatically propagate down to children; it must be placed on every mesh. Crossfading between different levels of detail is supported, using the standard 4x4 ordered dithering pattern from [1]. The shader code to compute the dithering patterns should be well-optimized. The dithering code is only active when visibility ranges are in use for the mesh in question, so that we don't lose early Z. Cascaded shadow maps show the HLOD level of the view they're associated with. Point light and spot light shadow maps, which have no CSMs, display all HLOD levels that are visible in any view. To support this efficiently and avoid doing visibility checks multiple times, we precalculate all visible HLOD levels for each entity with a `VisibilityRange` during the `check_visibility_range` system. A new example, `visibility_range`, has been added to the tree, as well as a new low-poly version of the flight helmet model to go with it. It demonstrates use of the visibility range feature to provide levels of detail. [1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map [^1]: Unreal doesn't have a feature that exactly corresponds to visibility ranges, but Unreal's HLOD system serves roughly the same purpose. ## Changelog ### Added * A new `VisibilityRange` component is available to conditionally enable entity visibility at camera distances, with optional crossfade support. This can be used to implement different levels of detail (LODs). ## Screenshots High-poly model: ![Screenshot 2024-04-09 185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623) Low-poly model up close: ![Screenshot 2024-04-09 185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0) Crossfading between the two: ![Screenshot 2024-04-09 185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4) --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-05-03 00:11:35 +00:00
let visibility_buffer_index = mesh[instance_index].flags & 0xffffu;
if (visibility_buffer_index > visibility_buffer_array_len) {
Implement visibility ranges, also known as hierarchical levels of detail (HLODs). (#12916) Implement visibility ranges, also known as hierarchical levels of detail (HLODs). This commit introduces a new component, `VisibilityRange`, which allows developers to specify camera distances in which meshes are to be shown and hidden. Hiding meshes happens early in the rendering pipeline, so this feature can be used for level of detail optimization. Additionally, this feature is properly evaluated per-view, so different views can show different levels of detail. This feature differs from proper mesh LODs, which can be implemented later. Engines generally implement true mesh LODs later in the pipeline; they're typically more efficient than HLODs with GPU-driven rendering. However, mesh LODs are more limited than HLODs, because they require the lower levels of detail to be meshes with the same vertex layout and shader (and perhaps the same material) as the original mesh. Games often want to use objects other than meshes to replace distant models, such as *octahedral imposters* or *billboard imposters*. The reason why the feature is called *hierarchical level of detail* is that HLODs can replace multiple meshes with a single mesh when the camera is far away. This can be useful for reducing drawcall count. Note that `VisibilityRange` doesn't automatically propagate down to children; it must be placed on every mesh. Crossfading between different levels of detail is supported, using the standard 4x4 ordered dithering pattern from [1]. The shader code to compute the dithering patterns should be well-optimized. The dithering code is only active when visibility ranges are in use for the mesh in question, so that we don't lose early Z. Cascaded shadow maps show the HLOD level of the view they're associated with. Point light and spot light shadow maps, which have no CSMs, display all HLOD levels that are visible in any view. To support this efficiently and avoid doing visibility checks multiple times, we precalculate all visible HLOD levels for each entity with a `VisibilityRange` during the `check_visibility_range` system. A new example, `visibility_range`, has been added to the tree, as well as a new low-poly version of the flight helmet model to go with it. It demonstrates use of the visibility range feature to provide levels of detail. [1]: https://en.wikipedia.org/wiki/Ordered_dithering#Threshold_map [^1]: Unreal doesn't have a feature that exactly corresponds to visibility ranges, but Unreal's HLOD system serves roughly the same purpose. ## Changelog ### Added * A new `VisibilityRange` component is available to conditionally enable entity visibility at camera distances, with optional crossfade support. This can be used to implement different levels of detail (LODs). ## Screenshots High-poly model: ![Screenshot 2024-04-09 185541](https://github.com/bevyengine/bevy/assets/157897/7e8be017-7187-4471-8866-974e2d8f2623) Low-poly model up close: ![Screenshot 2024-04-09 185546](https://github.com/bevyengine/bevy/assets/157897/429603fe-6bb7-4246-8b4e-b4888fd1d3a0) Crossfading between the two: ![Screenshot 2024-04-09 185604](https://github.com/bevyengine/bevy/assets/157897/86d0d543-f8f3-49ec-8fe5-caa4d0784fd4) --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-05-03 00:11:35 +00:00
return -16;
}
let lod_range = visibility_ranges[visibility_buffer_index];
let camera_distance = length(view.world_position.xyz - world_position.xyz);
// This encodes the following mapping:
//
// `lod_range.` x y z w camera distance
// ←───────┼────────┼────────┼────────┼────────→
// LOD level -16 -16 0 0 16 16 LOD level
let offset = select(-16, 0, camera_distance >= lod_range.z);
let bounds = select(lod_range.xy, lod_range.zw, camera_distance >= lod_range.z);
let level = i32(round((camera_distance - bounds.x) / (bounds.y - bounds.x) * 16.0));
return offset + clamp(level, 0, 16);
}
#endif