2022-04-02 22:36:02 +00:00
|
|
|
[package]
|
|
|
|
name = "bevy_animation"
|
2024-07-08 12:54:08 +00:00
|
|
|
version = "0.15.0-dev"
|
2022-04-02 22:36:02 +00:00
|
|
|
edition = "2021"
|
|
|
|
description = "Provides animation functionality for Bevy Engine"
|
|
|
|
homepage = "https://bevyengine.org"
|
|
|
|
repository = "https://github.com/bevyengine/bevy"
|
|
|
|
license = "MIT OR Apache-2.0"
|
|
|
|
keywords = ["bevy"]
|
|
|
|
|
|
|
|
[dependencies]
|
|
|
|
# bevy
|
2024-07-08 12:54:08 +00:00
|
|
|
bevy_app = { path = "../bevy_app", version = "0.15.0-dev" }
|
|
|
|
bevy_asset = { path = "../bevy_asset", version = "0.15.0-dev" }
|
|
|
|
bevy_color = { path = "../bevy_color", version = "0.15.0-dev" }
|
|
|
|
bevy_core = { path = "../bevy_core", version = "0.15.0-dev" }
|
|
|
|
bevy_derive = { path = "../bevy_derive", version = "0.15.0-dev" }
|
|
|
|
bevy_log = { path = "../bevy_log", version = "0.15.0-dev" }
|
|
|
|
bevy_math = { path = "../bevy_math", version = "0.15.0-dev" }
|
|
|
|
bevy_reflect = { path = "../bevy_reflect", version = "0.15.0-dev", features = [
|
2023-11-21 01:04:14 +00:00
|
|
|
"bevy",
|
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
Note that the implementation strategy is different from the one outlined
in that RFC, because two-phase animation has now landed.
# Objective
Bevy needs animation blending. The RFC for this is [RFC 51].
## Solution
This is an implementation of the RFC. Note that the implementation
strategy is different from the one outlined there, because two-phase
animation has now landed.
This is just a draft to get the conversation started. Currently we're
missing a few things:
- [x] A fully-fleshed-out mechanism for transitions
- [x] A serialization format for `AnimationGraph`s
- [x] Examples are broken, other than `animated_fox`
- [x] Documentation
---
## Changelog
### Added
* The `AnimationPlayer` has been reworked to support blending multiple
animations together through an `AnimationGraph`, and as such will no
longer function unless a `Handle<AnimationGraph>` has been added to the
entity containing the player. See [RFC 51] for more details.
* Transition functionality has moved from the `AnimationPlayer` to a new
component, `AnimationTransitions`, which works in tandem with the
`AnimationGraph`.
## Migration Guide
* `AnimationPlayer`s can no longer play animations by themselves and
need to be paired with a `Handle<AnimationGraph>`. Code that was using
`AnimationPlayer` to play animations will need to create an
`AnimationGraph` asset first, add a node for the clip (or clips) you
want to play, and then supply the index of that node to the
`AnimationPlayer`'s `play` method.
* The `AnimationPlayer::play_with_transition()` method has been removed
and replaced with the `AnimationTransitions` component. If you were
previously using `AnimationPlayer::play_with_transition()`, add all
animations that you were playing to the `AnimationGraph`, and create an
`AnimationTransitions` component to manage the blending between them.
[RFC 51]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
|
|
|
"petgraph",
|
2023-11-21 01:04:14 +00:00
|
|
|
] }
|
2024-07-08 12:54:08 +00:00
|
|
|
bevy_render = { path = "../bevy_render", version = "0.15.0-dev" }
|
|
|
|
bevy_time = { path = "../bevy_time", version = "0.15.0-dev" }
|
|
|
|
bevy_utils = { path = "../bevy_utils", version = "0.15.0-dev" }
|
|
|
|
bevy_ecs = { path = "../bevy_ecs", version = "0.15.0-dev" }
|
|
|
|
bevy_transform = { path = "../bevy_transform", version = "0.15.0-dev" }
|
|
|
|
bevy_hierarchy = { path = "../bevy_hierarchy", version = "0.15.0-dev" }
|
Allow animation clips to animate arbitrary properties. (#15282)
Currently, Bevy restricts animation clips to animating
`Transform::translation`, `Transform::rotation`, `Transform::scale`, or
`MorphWeights`, which correspond to the properties that glTF can
animate. This is insufficient for many use cases such as animating UI,
as the UI layout systems expect to have exclusive control over UI
elements' `Transform`s and therefore the `Style` properties must be
animated instead.
This commit fixes this, allowing for `AnimationClip`s to animate
arbitrary properties. The `Keyframes` structure has been turned into a
low-level trait that can be implemented to achieve arbitrary animation
behavior. Along with `Keyframes`, this patch adds a higher-level trait,
`AnimatableProperty`, that simplifies the task of animating single
interpolable properties. Built-in `Keyframes` implementations exist for
translation, rotation, scale, and morph weights. For the most part, you
can migrate by simply changing your code from
`Keyframes::Translation(...)` to `TranslationKeyframes(...)`, and
likewise for rotation, scale, and morph weights.
An example `AnimatableProperty` implementation for the font size of a
text section follows:
#[derive(Reflect)]
struct FontSizeProperty;
impl AnimatableProperty for FontSizeProperty {
type Component = Text;
type Property = f32;
fn get_mut(component: &mut Self::Component) -> Option<&mut
Self::Property> {
Some(&mut component.sections.get_mut(0)?.style.font_size)
}
}
In order to keep this patch relatively small, this patch doesn't include
an implementation of `AnimatableProperty` on top of the reflection
system. That can be a follow-up.
This patch builds on top of the new `EntityMutExcept<>` type in order to
widen the `AnimationTarget` query to include write access to all
components. Because `EntityMutExcept<>` has some performance overhead
over an explicit query, we continue to explicitly query `Transform` in
order to avoid regressing the performance of skeletal animation, such as
the `many_foxes` benchmark. I've measured the performance of that
benchmark and have found no significant regressions.
A new example, `animated_ui`, has been added. This example shows how to
use Bevy's built-in animation infrastructure to animate font size and
color, which wasn't possible before this patch.
## Showcase
https://github.com/user-attachments/assets/1fa73492-a9ce-405a-a8f2-4aacd7f6dc97
## Migration Guide
* Animation keyframes are now an extensible trait, not an enum. Replace
`Keyframes::Translation(...)`, `Keyframes::Scale(...)`,
`Keyframes::Rotation(...)`, and `Keyframes::Weights(...)` with
`Box::new(TranslationKeyframes(...))`, `Box::new(ScaleKeyframes(...))`,
`Box::new(RotationKeyframes(...))`, and
`Box::new(MorphWeightsKeyframes(...))` respectively.
2024-09-23 17:14:12 +00:00
|
|
|
bevy_ui = { path = "../bevy_ui", version = "0.15.0-dev", features = [
|
|
|
|
"bevy_text",
|
|
|
|
] }
|
|
|
|
bevy_text = { path = "../bevy_text", version = "0.15.0-dev" }
|
2023-11-18 20:58:48 +00:00
|
|
|
|
Rework animation to be done in two phases. (#11707)
# Objective
Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.
# Solution
Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.
To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.
# Migration guide
* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
|
|
|
# other
|
2024-03-17 18:43:05 +00:00
|
|
|
fixedbitset = "0.5"
|
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
Note that the implementation strategy is different from the one outlined
in that RFC, because two-phase animation has now landed.
# Objective
Bevy needs animation blending. The RFC for this is [RFC 51].
## Solution
This is an implementation of the RFC. Note that the implementation
strategy is different from the one outlined there, because two-phase
animation has now landed.
This is just a draft to get the conversation started. Currently we're
missing a few things:
- [x] A fully-fleshed-out mechanism for transitions
- [x] A serialization format for `AnimationGraph`s
- [x] Examples are broken, other than `animated_fox`
- [x] Documentation
---
## Changelog
### Added
* The `AnimationPlayer` has been reworked to support blending multiple
animations together through an `AnimationGraph`, and as such will no
longer function unless a `Handle<AnimationGraph>` has been added to the
entity containing the player. See [RFC 51] for more details.
* Transition functionality has moved from the `AnimationPlayer` to a new
component, `AnimationTransitions`, which works in tandem with the
`AnimationGraph`.
## Migration Guide
* `AnimationPlayer`s can no longer play animations by themselves and
need to be paired with a `Handle<AnimationGraph>`. Code that was using
`AnimationPlayer` to play animations will need to create an
`AnimationGraph` asset first, add a node for the clip (or clips) you
want to play, and then supply the index of that node to the
`AnimationPlayer`'s `play` method.
* The `AnimationPlayer::play_with_transition()` method has been removed
and replaced with the `AnimationTransitions` component. If you were
previously using `AnimationPlayer::play_with_transition()`, add all
animations that you were playing to the `AnimationGraph`, and create an
`AnimationTransitions` component to manage the blending between them.
[RFC 51]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
|
|
|
petgraph = { version = "0.6", features = ["serde-1"] }
|
|
|
|
ron = "0.8"
|
|
|
|
serde = "1"
|
2024-04-08 19:45:42 +00:00
|
|
|
blake3 = { version = "1.0" }
|
Implement the `AnimationGraph`, allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
Note that the implementation strategy is different from the one outlined
in that RFC, because two-phase animation has now landed.
# Objective
Bevy needs animation blending. The RFC for this is [RFC 51].
## Solution
This is an implementation of the RFC. Note that the implementation
strategy is different from the one outlined there, because two-phase
animation has now landed.
This is just a draft to get the conversation started. Currently we're
missing a few things:
- [x] A fully-fleshed-out mechanism for transitions
- [x] A serialization format for `AnimationGraph`s
- [x] Examples are broken, other than `animated_fox`
- [x] Documentation
---
## Changelog
### Added
* The `AnimationPlayer` has been reworked to support blending multiple
animations together through an `AnimationGraph`, and as such will no
longer function unless a `Handle<AnimationGraph>` has been added to the
entity containing the player. See [RFC 51] for more details.
* Transition functionality has moved from the `AnimationPlayer` to a new
component, `AnimationTransitions`, which works in tandem with the
`AnimationGraph`.
## Migration Guide
* `AnimationPlayer`s can no longer play animations by themselves and
need to be paired with a `Handle<AnimationGraph>`. Code that was using
`AnimationPlayer` to play animations will need to create an
`AnimationGraph` asset first, add a node for the clip (or clips) you
want to play, and then supply the index of that node to the
`AnimationPlayer`'s `play` method.
* The `AnimationPlayer::play_with_transition()` method has been removed
and replaced with the `AnimationTransitions` component. If you were
previously using `AnimationPlayer::play_with_transition()`, add all
animations that you were playing to the `AnimationGraph`, and create an
`AnimationTransitions` component to manage the blending between them.
[RFC 51]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
2024-03-07 20:22:42 +00:00
|
|
|
thiserror = "1"
|
|
|
|
thread_local = "1"
|
2024-03-07 02:30:15 +00:00
|
|
|
uuid = { version = "1.7", features = ["v4"] }
|
Rework animation to be done in two phases. (#11707)
# Objective
Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.
# Solution
Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.
To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.
# Migration guide
* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00
|
|
|
|
2023-11-18 20:58:48 +00:00
|
|
|
[lints]
|
|
|
|
workspace = true
|
2024-03-23 02:22:52 +00:00
|
|
|
|
|
|
|
[package.metadata.docs.rs]
|
2024-07-29 23:10:16 +00:00
|
|
|
rustdoc-args = ["-Zunstable-options", "--generate-link-to-definition"]
|
2024-03-23 02:22:52 +00:00
|
|
|
all-features = true
|