bevy/crates/bevy_math/src/common_traits.rs

312 lines
11 KiB
Rust
Raw Normal View History

//! This module contains abstract mathematical traits shared by types used in `bevy_math`.
Make bevy_math's `libm` feature use `libm` for all `f32`methods with unspecified precision (#14693) # Objective Closes #14474 Previously, the `libm` feature of bevy_math would just pass the same feature flag down to glam. However, bevy_math itself had many uses of floating-point arithmetic with unspecified precision. For example, `f32::sin_cos` and `f32::powi` have unspecified precision, which means that the exact details of their output are not guaranteed to be stable across different systems and/or versions of Rust. This means that users of bevy_math could observe slightly different behavior on different systems if these methods were used. The goal of this PR is to make it so that the `libm` feature flag actually guarantees some degree of determinacy within bevy_math itself by switching to the libm versions of these functions when the `libm` feature is enabled. ## Solution bevy_math now has an internal module `bevy_math::ops`, which re-exports either the standard versions of the operations or the libm versions depending on whether the `libm` feature is enabled. For example, `ops::sin` compiles to `f32::sin` without the `libm` feature and to `libm::sinf` with it. This approach has a small shortfall, which is that `f32::powi` (integer powers of floating point numbers) does not have an equivalent in `libm`. On the other hand, this method is only used for squaring and cubing numbers in bevy_math. Accordingly, this deficit is covered by the introduction of a trait `ops::FloatPow`: ```rust pub(crate) trait FloatPow { fn squared(self) -> Self; fn cubed(self) -> Self; } ``` Next, each current usage of the unspecified-precision methods has been replaced by its equivalent in `ops`, so that when `libm` is enabled, the libm version is used instead. The exception, of course, is that `.powi(2)`/`.powi(3)` have been replaced with `.squared()`/`.cubed()`. Finally, the usage of the plain `f32` methods with unspecified precision is now linted out of bevy_math (and hence disallowed in CI). For example, using `f32::sin` within bevy_math produces a warning that tells the user to use the `ops::sin` version instead. ## Testing Ran existing tests. It would be nice to check some benchmarks on NURBS things once #14677 merges. I'm happy to wait until then if the rest of this PR is fine. --- ## Discussion In the future, it might make sense to actually expose `bevy_math::ops` as public if any downstream Bevy crates want to provide similar determinacy guarantees. For now, it's all just `pub(crate)`. This PR also only covers `f32`. If we find ourselves using `f64` internally in parts of bevy_math for better robustness, we could extend the module and lints to cover the `f64` versions easily enough. I don't know how feasible it is, but it would also be nice if we could standardize the bevy_math tests with the `libm` feature in CI, since their success is currently platform-dependent (e.g. 8 of them fail on my machine when run locally). --------- Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-08-12 16:13:36 +00:00
use crate::{ops, Dir2, Dir3, Dir3A, Quat, Rot2, Vec2, Vec3, Vec3A, Vec4};
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
use core::{
fmt::Debug,
ops::{Add, Div, Mul, Neg, Sub},
};
Move `Point` out of cubic splines module and expand it (#12747) # Objective Previously, the `Point` trait, which abstracts all of the operations of a real vector space, was sitting in the submodule of `bevy_math` for cubic splines. However, the trait has broader applications than merely cubic splines, and we should use it when possible to avoid code duplication when performing vector operations. ## Solution `Point` has been moved into a new submodule in `bevy_math` named `common_traits`. Furthermore, it has been renamed to `VectorSpace`, which is more descriptive, and an additional trait `NormedVectorSpace` has been introduced to expand the API to cover situations involving geometry in addition to algebra. Additionally, `VectorSpace` itself now requires a `ZERO` constant and `Neg`. It also supports a `lerp` function as an automatic trait method. Here is what that looks like: ```rust /// A type that supports the mathematical operations of a real vector space, irrespective of dimension. /// In particular, this means that the implementing type supports: /// - Scalar multiplication and division on the right by elements of `f32` /// - Negation /// - Addition and subtraction /// - Zero /// /// Within the limitations of floating point arithmetic, all the following are required to hold: /// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`. /// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`. /// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`. /// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`. /// - (Compatibility of multiplication) For all `a, b: f32`, `v: Self`, `v * (a * b) == (v * a) * b`. /// - (Multiplicative identity) For all `v: Self`, `v * 1.0 == v`. /// - (Distributivity for vector addition) For all `a: f32`, `u, v: Self`, `(u + v) * a == u * a + v * a`. /// - (Distributivity for scalar addition) For all `a, b: f32`, `v: Self`, `v * (a + b) == v * a + v * b`. /// /// Note that, because implementing types use floating point arithmetic, they are not required to actually /// implement `PartialEq` or `Eq`. pub trait VectorSpace: Mul<f32, Output = Self> + Div<f32, Output = Self> + Add<Self, Output = Self> + Sub<Self, Output = Self> + Neg + Default + Debug + Clone + Copy { /// The zero vector, which is the identity of addition for the vector space type. const ZERO: Self; /// Perform vector space linear interpolation between this element and another, based /// on the parameter `t`. When `t` is `0`, `self` is recovered. When `t` is `1`, `rhs` /// is recovered. /// /// Note that the value of `t` is not clamped by this function, so interpolating outside /// of the interval `[0,1]` is allowed. #[inline] fn lerp(&self, rhs: Self, t: f32) -> Self { *self * (1. - t) + rhs * t } } ``` ```rust /// A type that supports the operations of a normed vector space; i.e. a norm operation in addition /// to those of [`VectorSpace`]. Specifically, the implementor must guarantee that the following /// relationships hold, within the limitations of floating point arithmetic: /// - (Nonnegativity) For all `v: Self`, `v.norm() >= 0.0`. /// - (Positive definiteness) For all `v: Self`, `v.norm() == 0.0` implies `v == Self::ZERO`. /// - (Absolute homogeneity) For all `c: f32`, `v: Self`, `(v * c).norm() == v.norm() * c.abs()`. /// - (Triangle inequality) For all `v, w: Self`, `(v + w).norm() <= v.norm() + w.norm()`. /// /// Note that, because implementing types use floating point arithmetic, they are not required to actually /// implement `PartialEq` or `Eq`. pub trait NormedVectorSpace: VectorSpace { /// The size of this element. The return value should always be nonnegative. fn norm(self) -> f32; /// The squared norm of this element. Computing this is often faster than computing /// [`NormedVectorSpace::norm`]. #[inline] fn norm_squared(self) -> f32 { self.norm() * self.norm() } /// The distance between this element and another, as determined by the norm. #[inline] fn distance(self, rhs: Self) -> f32 { (rhs - self).norm() } /// The squared distance between this element and another, as determined by the norm. Note that /// this is often faster to compute in practice than [`NormedVectorSpace::distance`]. #[inline] fn distance_squared(self, rhs: Self) -> f32 { (rhs - self).norm_squared() } } ``` Furthermore, this PR also demonstrates the use of the `NormedVectorSpace` combined API to implement `ShapeSample` for `Triangle2d` and `Triangle3d` simultaneously. Such deduplication is one of the drivers for developing these APIs. --- ## Changelog - `Point` from `cubic_splines` becomes `VectorSpace`, exported as `bevy::math::VectorSpace`. - `VectorSpace` requires `Neg` and `VectorSpace::ZERO` in addition to its existing prerequisites. - Introduced public traits `bevy::math::NormedVectorSpace` for generic geometry tasks involving vectors. - Implemented `ShapeSample` for `Triangle2d` and `Triangle3d`. ## Migration Guide Since `Point` no longer exists, any projects using it must switch to `bevy::math::VectorSpace`. Additionally, third-party implementations of this trait now require the `Neg` trait; the constant `VectorSpace::ZERO` must be provided as well. --- ## Discussion ### Design considerations Originally, the `NormedVectorSpace::norm` method was part of a separate trait `Normed`. However, I think that was probably too broad and, more importantly, the semantics of having it in `NormedVectorSpace` are much clearer. As it currently stands, the API exposed here is pretty minimal, and there is definitely a lot more that we could do, but there are more questions to answer along the way. As a silly example, we could implement `NormedVectorSpace::length` as an alias for `NormedVectorSpace::norm`, but this overlaps with methods in all of the glam types, so we would want to make sure that the implementations are effectively identical (for what it's worth, I think they are already). ### Future directions One example of something that could belong in the `NormedVectorSpace` API is normalization. Actually, such a thing previously existed on this branch before I decided to shelve it because of concerns with namespace collision. It looked like this: ```rust /// This element, but normalized to norm 1 if possible. Returns an error when the reciprocal of /// the element's norm is not finite. #[inline] #[must_use] fn normalize(&self) -> Result<Self, NonNormalizableError> { let reciprocal = 1.0 / self.norm(); if reciprocal.is_finite() { Ok(*self * reciprocal) } else { Err(NonNormalizableError { reciprocal }) } } /// An error indicating that an element of a [`NormedVectorSpace`] was non-normalizable due to having /// non-finite norm-reciprocal. #[derive(Debug, Error)] #[error("Element with norm reciprocal {reciprocal} cannot be normalized")] pub struct NonNormalizableError { reciprocal: f32 } ``` With this kind of thing in hand, it might be worth considering eventually making the passage from vectors to directions fully generic by employing a wrapper type. (Of course, for our concrete types, we would leave the existing names in place as aliases.) That is, something like: ```rust pub struct NormOne<T> where T: NormedVectorSpace { //... } ``` Utterly separately, the reason that I implemented `ShapeSample` for `Triangle2d`/`Triangle3d` was to prototype uniform sampling of abstract meshes, so that's also a future direction. --------- Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-03-28 13:40:26 +00:00
/// A type that supports the mathematical operations of a real vector space, irrespective of dimension.
/// In particular, this means that the implementing type supports:
/// - Scalar multiplication and division on the right by elements of `f32`
/// - Negation
/// - Addition and subtraction
/// - Zero
///
/// Within the limitations of floating point arithmetic, all the following are required to hold:
/// - (Associativity of addition) For all `u, v, w: Self`, `(u + v) + w == u + (v + w)`.
/// - (Commutativity of addition) For all `u, v: Self`, `u + v == v + u`.
/// - (Additive identity) For all `v: Self`, `v + Self::ZERO == v`.
/// - (Additive inverse) For all `v: Self`, `v - v == v + (-v) == Self::ZERO`.
/// - (Compatibility of multiplication) For all `a, b: f32`, `v: Self`, `v * (a * b) == (v * a) * b`.
/// - (Multiplicative identity) For all `v: Self`, `v * 1.0 == v`.
/// - (Distributivity for vector addition) For all `a: f32`, `u, v: Self`, `(u + v) * a == u * a + v * a`.
/// - (Distributivity for scalar addition) For all `a, b: f32`, `v: Self`, `v * (a + b) == v * a + v * b`.
///
/// Note that, because implementing types use floating point arithmetic, they are not required to actually
/// implement `PartialEq` or `Eq`.
pub trait VectorSpace:
Mul<f32, Output = Self>
+ Div<f32, Output = Self>
+ Add<Self, Output = Self>
+ Sub<Self, Output = Self>
+ Neg
+ Default
+ Debug
+ Clone
+ Copy
{
/// The zero vector, which is the identity of addition for the vector space type.
const ZERO: Self;
/// Perform vector space linear interpolation between this element and another, based
/// on the parameter `t`. When `t` is `0`, `self` is recovered. When `t` is `1`, `rhs`
/// is recovered.
///
/// Note that the value of `t` is not clamped by this function, so interpolating outside
/// of the interval `[0,1]` is allowed.
#[inline]
fn lerp(&self, rhs: Self, t: f32) -> Self {
*self * (1. - t) + rhs * t
}
}
impl VectorSpace for Vec4 {
const ZERO: Self = Vec4::ZERO;
}
impl VectorSpace for Vec3 {
const ZERO: Self = Vec3::ZERO;
}
impl VectorSpace for Vec3A {
const ZERO: Self = Vec3A::ZERO;
}
impl VectorSpace for Vec2 {
const ZERO: Self = Vec2::ZERO;
}
impl VectorSpace for f32 {
const ZERO: Self = 0.0;
}
/// A type that supports the operations of a normed vector space; i.e. a norm operation in addition
/// to those of [`VectorSpace`]. Specifically, the implementor must guarantee that the following
/// relationships hold, within the limitations of floating point arithmetic:
/// - (Nonnegativity) For all `v: Self`, `v.norm() >= 0.0`.
/// - (Positive definiteness) For all `v: Self`, `v.norm() == 0.0` implies `v == Self::ZERO`.
/// - (Absolute homogeneity) For all `c: f32`, `v: Self`, `(v * c).norm() == v.norm() * c.abs()`.
/// - (Triangle inequality) For all `v, w: Self`, `(v + w).norm() <= v.norm() + w.norm()`.
///
/// Note that, because implementing types use floating point arithmetic, they are not required to actually
/// implement `PartialEq` or `Eq`.
pub trait NormedVectorSpace: VectorSpace {
/// The size of this element. The return value should always be nonnegative.
fn norm(self) -> f32;
/// The squared norm of this element. Computing this is often faster than computing
/// [`NormedVectorSpace::norm`].
#[inline]
fn norm_squared(self) -> f32 {
self.norm() * self.norm()
}
/// The distance between this element and another, as determined by the norm.
#[inline]
fn distance(self, rhs: Self) -> f32 {
(rhs - self).norm()
}
/// The squared distance between this element and another, as determined by the norm. Note that
/// this is often faster to compute in practice than [`NormedVectorSpace::distance`].
#[inline]
fn distance_squared(self, rhs: Self) -> f32 {
(rhs - self).norm_squared()
}
}
impl NormedVectorSpace for Vec4 {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for Vec3 {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for Vec3A {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for Vec2 {
#[inline]
fn norm(self) -> f32 {
self.length()
}
#[inline]
fn norm_squared(self) -> f32 {
self.length_squared()
}
}
impl NormedVectorSpace for f32 {
#[inline]
fn norm(self) -> f32 {
self.abs()
}
#[inline]
fn norm_squared(self) -> f32 {
self * self
}
}
Stable interpolation and smooth following (#13741) # Objective Partially address #13408 Rework of #13613 Unify the very nice forms of interpolation specifically present in `bevy_math` under a shared trait upon which further behavior can be based. The ideas in this PR were prompted by [Lerp smoothing is broken by Freya Holmer](https://www.youtube.com/watch?v=LSNQuFEDOyQ). ## Solution There is a new trait `StableInterpolate` in `bevy_math::common_traits` which enshrines a quite-specific notion of interpolation with a lot of guarantees: ```rust /// A type with a natural interpolation that provides strong subdivision guarantees. /// /// Although the only required method is `interpolate_stable`, many things are expected of it: /// /// 1. The notion of interpolation should follow naturally from the semantics of the type, so /// that inferring the interpolation mode from the type alone is sensible. /// /// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0` /// and likewise with the ending value at `t = 1.0`. /// /// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve /// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the /// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original /// interpolation curve restricted to the interval `[t0, t1]`. /// /// The last of these conditions is very strong and indicates something like constant speed. It /// is called "subdivision stability" because it guarantees that breaking up the interpolation /// into segments and joining them back together has no effect. /// /// Here is a diagram depicting it: /// ```text /// top curve = u.interpolate_stable(v, t) /// /// t0 => p t1 => q /// |-------------|---------|-------------| /// 0 => u / \ 1 => v /// / \ /// / \ /// / linear \ /// / reparametrization \ /// / t = t0 * (1 - s) + t1 * s \ /// / \ /// |-------------------------------------| /// 0 => p 1 => q /// /// bottom curve = p.interpolate_stable(q, s) /// ``` /// /// Note that some common forms of interpolation do not satisfy this criterion. For example, /// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable. /// /// Furthermore, this is not to be used as a general trait for abstract interpolation. /// Consumers rely on the strong guarantees in order for behavior based on this trait to be /// well-behaved. /// /// [`Quat::lerp`]: crate::Quat::lerp /// [`Rot2::nlerp`]: crate::Rot2::nlerp pub trait StableInterpolate: Clone { /// Interpolate between this value and the `other` given value using the parameter `t`. /// Note that the parameter `t` is not necessarily clamped to lie between `0` and `1`. /// When `t = 0.0`, `self` is recovered, while `other` is recovered at `t = 1.0`, /// with intermediate values lying between the two. fn interpolate_stable(&self, other: &Self, t: f32) -> Self; } ``` This trait has a blanket implementation over `NormedVectorSpace`, where `lerp` is used, along with implementations for `Rot2`, `Quat`, and the direction types using variants of `slerp`. Other areas may choose to implement this trait in order to hook into its functionality, but the stringent requirements must actually be met. This trait bears no direct relationship with `bevy_animation`'s `Animatable` trait, although they may choose to use `interpolate_stable` in their trait implementations if they wish, as both traits involve type-inferred interpolations of the same kind. `StableInterpolate` is not a supertrait of `Animatable` for a couple reasons: 1. Notions of interpolation in animation are generally going to be much more general than those allowed under these constraints. 2. Laying out these generalized interpolation notions is the domain of `bevy_animation` rather than of `bevy_math`. (Consider also that inferring interpolation from types is not universally desirable.) Similarly, this is not implemented on `bevy_color`'s color types, although their current mixing behavior does meet the conditions of the trait. As an aside, the subdivision-stability condition is of interest specifically for the [Curve RFC](https://github.com/bevyengine/rfcs/pull/80), where it also ensures a kind of stability for subsampling. Importantly, this trait ensures that the "smooth following" behavior defined in this PR behaves predictably: ```rust /// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate` /// parameter controls how fast the distance between `self` and `target` decays relative to /// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed, /// while `delta` is something like `delta_time` from an updating system. This produces a /// smooth following of the target that is independent of framerate. /// /// More specifically, when this is called repeatedly, the result is that the distance between /// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential /// decay given by `decay_rate`. /// /// For example, at `decay_rate = 0.0`, this has no effect. /// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`. /// In general, higher rates mean that `self` moves more quickly towards `target`. /// /// # Example /// ``` /// # use bevy_math::{Vec3, StableInterpolate}; /// # let delta_time: f32 = 1.0 / 60.0; /// let mut object_position: Vec3 = Vec3::ZERO; /// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0); /// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th /// let decay_rate = f32::ln(10.0); /// // Calling this repeatedly will move `object_position` towards `target_position`: /// object_position.smooth_nudge(&target_position, decay_rate, delta_time); /// ``` fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) { self.interpolate_stable_assign(target, 1.0 - f32::exp(-decay_rate * delta)); } ``` As the documentation indicates, the intention is for this to be called in game update systems, and `delta` would be something like `Time::delta_seconds` in Bevy, allowing positions, orientations, and so on to smoothly follow a target. A new example, `smooth_follow`, demonstrates a basic implementation of this, with a sphere smoothly following a sharply moving target: https://github.com/bevyengine/bevy/assets/2975848/7124b28b-6361-47e3-acf7-d1578ebd0347 ## Testing Tested by running the example with various parameters.
2024-06-10 12:50:59 +00:00
/// A type with a natural interpolation that provides strong subdivision guarantees.
///
/// Although the only required method is `interpolate_stable`, many things are expected of it:
///
/// 1. The notion of interpolation should follow naturally from the semantics of the type, so
/// that inferring the interpolation mode from the type alone is sensible.
///
/// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0`
/// and likewise with the ending value at `t = 1.0`. They do not have to be data-identical, but
/// they should be semantically identical. For example, [`Quat::slerp`] doesn't always yield its
/// second rotation input exactly at `t = 1.0`, but it always returns an equivalent rotation.
///
/// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve
/// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the
/// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original
/// interpolation curve restricted to the interval `[t0, t1]`.
///
/// The last of these conditions is very strong and indicates something like constant speed. It
/// is called "subdivision stability" because it guarantees that breaking up the interpolation
/// into segments and joining them back together has no effect.
///
/// Here is a diagram depicting it:
/// ```text
/// top curve = u.interpolate_stable(v, t)
///
/// t0 => p t1 => q
/// |-------------|---------|-------------|
/// 0 => u / \ 1 => v
/// / \
/// / \
/// / linear \
/// / reparametrization \
/// / t = t0 * (1 - s) + t1 * s \
/// / \
/// |-------------------------------------|
/// 0 => p 1 => q
///
/// bottom curve = p.interpolate_stable(q, s)
/// ```
///
/// Note that some common forms of interpolation do not satisfy this criterion. For example,
/// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable.
///
/// Furthermore, this is not to be used as a general trait for abstract interpolation.
/// Consumers rely on the strong guarantees in order for behavior based on this trait to be
/// well-behaved.
///
/// [`Quat::slerp`]: crate::Quat::slerp
/// [`Quat::lerp`]: crate::Quat::lerp
/// [`Rot2::nlerp`]: crate::Rot2::nlerp
pub trait StableInterpolate: Clone {
/// Interpolate between this value and the `other` given value using the parameter `t`. At
/// `t = 0.0`, a value equivalent to `self` is recovered, while `t = 1.0` recovers a value
/// equivalent to `other`, with intermediate values interpolating between the two.
/// See the [trait-level documentation] for details.
///
/// [trait-level documentation]: StableInterpolate
fn interpolate_stable(&self, other: &Self, t: f32) -> Self;
/// A version of [`interpolate_stable`] that assigns the result to `self` for convenience.
///
/// [`interpolate_stable`]: StableInterpolate::interpolate_stable
fn interpolate_stable_assign(&mut self, other: &Self, t: f32) {
*self = self.interpolate_stable(other, t);
}
/// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate`
/// parameter controls how fast the distance between `self` and `target` decays relative to
/// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed,
/// while `delta` is something like `delta_time` from an updating system. This produces a
/// smooth following of the target that is independent of framerate.
///
/// More specifically, when this is called repeatedly, the result is that the distance between
/// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential
/// decay given by `decay_rate`.
///
/// For example, at `decay_rate = 0.0`, this has no effect.
/// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`.
/// In general, higher rates mean that `self` moves more quickly towards `target`.
///
/// # Example
/// ```
/// # use bevy_math::{Vec3, StableInterpolate};
/// # let delta_time: f32 = 1.0 / 60.0;
/// let mut object_position: Vec3 = Vec3::ZERO;
/// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0);
/// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th
/// let decay_rate = f32::ln(10.0);
/// // Calling this repeatedly will move `object_position` towards `target_position`:
/// object_position.smooth_nudge(&target_position, decay_rate, delta_time);
/// ```
fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) {
Make bevy_math's `libm` feature use `libm` for all `f32`methods with unspecified precision (#14693) # Objective Closes #14474 Previously, the `libm` feature of bevy_math would just pass the same feature flag down to glam. However, bevy_math itself had many uses of floating-point arithmetic with unspecified precision. For example, `f32::sin_cos` and `f32::powi` have unspecified precision, which means that the exact details of their output are not guaranteed to be stable across different systems and/or versions of Rust. This means that users of bevy_math could observe slightly different behavior on different systems if these methods were used. The goal of this PR is to make it so that the `libm` feature flag actually guarantees some degree of determinacy within bevy_math itself by switching to the libm versions of these functions when the `libm` feature is enabled. ## Solution bevy_math now has an internal module `bevy_math::ops`, which re-exports either the standard versions of the operations or the libm versions depending on whether the `libm` feature is enabled. For example, `ops::sin` compiles to `f32::sin` without the `libm` feature and to `libm::sinf` with it. This approach has a small shortfall, which is that `f32::powi` (integer powers of floating point numbers) does not have an equivalent in `libm`. On the other hand, this method is only used for squaring and cubing numbers in bevy_math. Accordingly, this deficit is covered by the introduction of a trait `ops::FloatPow`: ```rust pub(crate) trait FloatPow { fn squared(self) -> Self; fn cubed(self) -> Self; } ``` Next, each current usage of the unspecified-precision methods has been replaced by its equivalent in `ops`, so that when `libm` is enabled, the libm version is used instead. The exception, of course, is that `.powi(2)`/`.powi(3)` have been replaced with `.squared()`/`.cubed()`. Finally, the usage of the plain `f32` methods with unspecified precision is now linted out of bevy_math (and hence disallowed in CI). For example, using `f32::sin` within bevy_math produces a warning that tells the user to use the `ops::sin` version instead. ## Testing Ran existing tests. It would be nice to check some benchmarks on NURBS things once #14677 merges. I'm happy to wait until then if the rest of this PR is fine. --- ## Discussion In the future, it might make sense to actually expose `bevy_math::ops` as public if any downstream Bevy crates want to provide similar determinacy guarantees. For now, it's all just `pub(crate)`. This PR also only covers `f32`. If we find ourselves using `f64` internally in parts of bevy_math for better robustness, we could extend the module and lints to cover the `f64` versions easily enough. I don't know how feasible it is, but it would also be nice if we could standardize the bevy_math tests with the `libm` feature in CI, since their success is currently platform-dependent (e.g. 8 of them fail on my machine when run locally). --------- Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-08-12 16:13:36 +00:00
self.interpolate_stable_assign(target, 1.0 - ops::exp(-decay_rate * delta));
Stable interpolation and smooth following (#13741) # Objective Partially address #13408 Rework of #13613 Unify the very nice forms of interpolation specifically present in `bevy_math` under a shared trait upon which further behavior can be based. The ideas in this PR were prompted by [Lerp smoothing is broken by Freya Holmer](https://www.youtube.com/watch?v=LSNQuFEDOyQ). ## Solution There is a new trait `StableInterpolate` in `bevy_math::common_traits` which enshrines a quite-specific notion of interpolation with a lot of guarantees: ```rust /// A type with a natural interpolation that provides strong subdivision guarantees. /// /// Although the only required method is `interpolate_stable`, many things are expected of it: /// /// 1. The notion of interpolation should follow naturally from the semantics of the type, so /// that inferring the interpolation mode from the type alone is sensible. /// /// 2. The interpolation recovers something equivalent to the starting value at `t = 0.0` /// and likewise with the ending value at `t = 1.0`. /// /// 3. Importantly, the interpolation must be *subdivision-stable*: for any interpolation curve /// between two (unnamed) values and any parameter-value pairs `(t0, p)` and `(t1, q)`, the /// interpolation curve between `p` and `q` must be the *linear* reparametrization of the original /// interpolation curve restricted to the interval `[t0, t1]`. /// /// The last of these conditions is very strong and indicates something like constant speed. It /// is called "subdivision stability" because it guarantees that breaking up the interpolation /// into segments and joining them back together has no effect. /// /// Here is a diagram depicting it: /// ```text /// top curve = u.interpolate_stable(v, t) /// /// t0 => p t1 => q /// |-------------|---------|-------------| /// 0 => u / \ 1 => v /// / \ /// / \ /// / linear \ /// / reparametrization \ /// / t = t0 * (1 - s) + t1 * s \ /// / \ /// |-------------------------------------| /// 0 => p 1 => q /// /// bottom curve = p.interpolate_stable(q, s) /// ``` /// /// Note that some common forms of interpolation do not satisfy this criterion. For example, /// [`Quat::lerp`] and [`Rot2::nlerp`] are not subdivision-stable. /// /// Furthermore, this is not to be used as a general trait for abstract interpolation. /// Consumers rely on the strong guarantees in order for behavior based on this trait to be /// well-behaved. /// /// [`Quat::lerp`]: crate::Quat::lerp /// [`Rot2::nlerp`]: crate::Rot2::nlerp pub trait StableInterpolate: Clone { /// Interpolate between this value and the `other` given value using the parameter `t`. /// Note that the parameter `t` is not necessarily clamped to lie between `0` and `1`. /// When `t = 0.0`, `self` is recovered, while `other` is recovered at `t = 1.0`, /// with intermediate values lying between the two. fn interpolate_stable(&self, other: &Self, t: f32) -> Self; } ``` This trait has a blanket implementation over `NormedVectorSpace`, where `lerp` is used, along with implementations for `Rot2`, `Quat`, and the direction types using variants of `slerp`. Other areas may choose to implement this trait in order to hook into its functionality, but the stringent requirements must actually be met. This trait bears no direct relationship with `bevy_animation`'s `Animatable` trait, although they may choose to use `interpolate_stable` in their trait implementations if they wish, as both traits involve type-inferred interpolations of the same kind. `StableInterpolate` is not a supertrait of `Animatable` for a couple reasons: 1. Notions of interpolation in animation are generally going to be much more general than those allowed under these constraints. 2. Laying out these generalized interpolation notions is the domain of `bevy_animation` rather than of `bevy_math`. (Consider also that inferring interpolation from types is not universally desirable.) Similarly, this is not implemented on `bevy_color`'s color types, although their current mixing behavior does meet the conditions of the trait. As an aside, the subdivision-stability condition is of interest specifically for the [Curve RFC](https://github.com/bevyengine/rfcs/pull/80), where it also ensures a kind of stability for subsampling. Importantly, this trait ensures that the "smooth following" behavior defined in this PR behaves predictably: ```rust /// Smoothly nudge this value towards the `target` at a given decay rate. The `decay_rate` /// parameter controls how fast the distance between `self` and `target` decays relative to /// the units of `delta`; the intended usage is for `decay_rate` to generally remain fixed, /// while `delta` is something like `delta_time` from an updating system. This produces a /// smooth following of the target that is independent of framerate. /// /// More specifically, when this is called repeatedly, the result is that the distance between /// `self` and a fixed `target` attenuates exponentially, with the rate of this exponential /// decay given by `decay_rate`. /// /// For example, at `decay_rate = 0.0`, this has no effect. /// At `decay_rate = f32::INFINITY`, `self` immediately snaps to `target`. /// In general, higher rates mean that `self` moves more quickly towards `target`. /// /// # Example /// ``` /// # use bevy_math::{Vec3, StableInterpolate}; /// # let delta_time: f32 = 1.0 / 60.0; /// let mut object_position: Vec3 = Vec3::ZERO; /// let target_position: Vec3 = Vec3::new(2.0, 3.0, 5.0); /// // Decay rate of ln(10) => after 1 second, remaining distance is 1/10th /// let decay_rate = f32::ln(10.0); /// // Calling this repeatedly will move `object_position` towards `target_position`: /// object_position.smooth_nudge(&target_position, decay_rate, delta_time); /// ``` fn smooth_nudge(&mut self, target: &Self, decay_rate: f32, delta: f32) { self.interpolate_stable_assign(target, 1.0 - f32::exp(-decay_rate * delta)); } ``` As the documentation indicates, the intention is for this to be called in game update systems, and `delta` would be something like `Time::delta_seconds` in Bevy, allowing positions, orientations, and so on to smoothly follow a target. A new example, `smooth_follow`, demonstrates a basic implementation of this, with a sphere smoothly following a sharply moving target: https://github.com/bevyengine/bevy/assets/2975848/7124b28b-6361-47e3-acf7-d1578ebd0347 ## Testing Tested by running the example with various parameters.
2024-06-10 12:50:59 +00:00
}
}
// Conservatively, we presently only apply this for normed vector spaces, where the notion
// of being constant-speed is literally true. The technical axioms are satisfied for any
// VectorSpace type, but the "natural from the semantics" part is less clear in general.
impl<V> StableInterpolate for V
where
V: NormedVectorSpace,
{
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.lerp(*other, t)
}
}
impl StableInterpolate for Rot2 {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Quat {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Dir2 {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Dir3 {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}
impl StableInterpolate for Dir3A {
#[inline]
fn interpolate_stable(&self, other: &Self, t: f32) -> Self {
self.slerp(*other, t)
}
}