bevy/crates/bevy_pbr/src/render/mesh_view_bindings.wgsl

77 lines
2.9 KiB
WebGPU Shading Language
Raw Normal View History

2022-05-31 23:23:25 +00:00
#define_import_path bevy_pbr::mesh_view_bindings
improve shader import model (#5703) # Objective operate on naga IR directly to improve handling of shader modules. - give codespan reporting into imported modules - allow glsl to be used from wgsl and vice-versa the ultimate objective is to make it possible to - provide user hooks for core shader functions (to modify light behaviour within the standard pbr pipeline, for example) - make automatic binding slot allocation possible but ... since this is already big, adds some value and (i think) is at feature parity with the existing code, i wanted to push this now. ## Solution i made a crate called naga_oil (https://github.com/robtfm/naga_oil - unpublished for now, could be part of bevy) which manages modules by - building each module independantly to naga IR - creating "header" files for each supported language, which are used to build dependent modules/shaders - make final shaders by combining the shader IR with the IR for imported modules then integrated this into bevy, replacing some of the existing shader processing stuff. also reworked examples to reflect this. ## Migration Guide shaders that don't use `#import` directives should work without changes. the most notable user-facing difference is that imported functions/variables/etc need to be qualified at point of use, and there's no "leakage" of visible stuff into your shader scope from the imports of your imports, so if you used things imported by your imports, you now need to import them directly and qualify them. the current strategy of including/'spreading' `mesh_vertex_output` directly into a struct doesn't work any more, so these need to be modified as per the examples (e.g. color_material.wgsl, or many others). mesh data is assumed to be in bindgroup 2 by default, if mesh data is bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1` needs to be added to the pipeline shader_defs.
2023-06-27 00:29:22 +00:00
#import bevy_pbr::mesh_view_types as types
update shader imports (#10180) # Objective - bump naga_oil to 0.10 - update shader imports to use rusty syntax ## Migration Guide naga_oil 0.10 reworks the import mechanism to support more syntax to make it more rusty, and test for item use before importing to determine which imports are modules and which are items, which allows: - use rust-style imports ``` #import bevy_pbr::{ pbr_functions::{alpha_discard as discard, apply_pbr_lighting}, mesh_bindings, } ``` - import partial paths: ``` #import part::of::path ... path::remainder::function(); ``` which will call to `part::of::path::remainder::function` - use fully qualified paths without importing: ``` // #import bevy_pbr::pbr_functions bevy_pbr::pbr_functions::pbr() ``` - use imported items without qualifying ``` #import bevy_pbr::pbr_functions::pbr // for backwards compatibility the old style is still supported: // #import bevy_pbr::pbr_functions pbr ... pbr() ``` - allows most imported items to end with `_` and numbers (naga_oil#30). still doesn't allow struct members to end with `_` or numbers but it's progress. - the vast majority of existing shader code will work without changes, but will emit "deprecated" warnings for old-style imports. these can be suppressed with the `allow-deprecated` feature. - partly breaks overrides (as far as i'm aware nobody uses these yet) - now overrides will only be applied if the overriding module is added as an additional import in the arguments to `Composer::make_naga_module` or `Composer::add_composable_module`. this is necessary to support determining whether imports are modules or items.
2023-10-21 11:51:58 +00:00
#import bevy_render::{
view::View,
globals::Globals,
}
2022-05-31 23:23:25 +00:00
@group(0) @binding(0) var<uniform> view: View;
@group(0) @binding(1) var<uniform> lights: types::Lights;
2022-05-31 23:23:25 +00:00
#ifdef NO_ARRAY_TEXTURES_SUPPORT
@group(0) @binding(2) var point_shadow_textures: texture_depth_cube;
2022-05-31 23:23:25 +00:00
#else
@group(0) @binding(2) var point_shadow_textures: texture_depth_cube_array;
2022-05-31 23:23:25 +00:00
#endif
@group(0) @binding(3) var point_shadow_textures_sampler: sampler_comparison;
2022-05-31 23:23:25 +00:00
#ifdef NO_ARRAY_TEXTURES_SUPPORT
@group(0) @binding(4) var directional_shadow_textures: texture_depth_2d;
2022-05-31 23:23:25 +00:00
#else
@group(0) @binding(4) var directional_shadow_textures: texture_depth_2d_array;
2022-05-31 23:23:25 +00:00
#endif
@group(0) @binding(5) var directional_shadow_textures_sampler: sampler_comparison;
2022-05-31 23:23:25 +00:00
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3
@group(0) @binding(6) var<storage> point_lights: types::PointLights;
@group(0) @binding(7) var<storage> cluster_light_index_lists: types::ClusterLightIndexLists;
@group(0) @binding(8) var<storage> cluster_offsets_and_counts: types::ClusterOffsetsAndCounts;
2022-05-31 23:23:25 +00:00
#else
@group(0) @binding(6) var<uniform> point_lights: types::PointLights;
@group(0) @binding(7) var<uniform> cluster_light_index_lists: types::ClusterLightIndexLists;
@group(0) @binding(8) var<uniform> cluster_offsets_and_counts: types::ClusterOffsetsAndCounts;
2022-05-31 23:23:25 +00:00
#endif
add globals to mesh view bind group (#5409) # Objective - It's often really useful to have access to the time when writing shaders. ## Solution - Add a UnifformBuffer in the mesh view bind group - This buffer contains the time, delta time and a wrapping frame count https://user-images.githubusercontent.com/8348954/180130314-97948c2a-2d11-423d-a9c4-fb5c9d1892c7.mp4 --- ## Changelog - Added a `GlobalsUniform` at position 9 of the mesh view bind group ## Notes The implementation is currently split between bevy_render and bevy_pbr because I was basing my implementation on the `ViewPlugin`. I'm not sure if that's the right way to structure it. I named this `globals` instead of just time because we could potentially add more things to it. ## References in other engines - Godot: <https://docs.godotengine.org/en/stable/tutorials/shaders/shader_reference/canvas_item_shader.html#global-built-ins> - Global time since startup, in seconds, by default resets to 0 after 3600 seconds - Doesn't seem to have anything else - Unreal: <https://docs.unrealengine.com/4.26/en-US/RenderingAndGraphics/Materials/ExpressionReference/Constant/> - Generic time value that updates every frame. Can be paused or scaled. - Frame count node, doesn't seem to be an equivalent for shaders: <https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/Utilities/GetFrameCount/> - Unity: <https://docs.unity3d.com/Manual/SL-UnityShaderVariables.html> - time since startup in seconds. No mention of time wrapping. Stored as a `vec4(t/20, t, t*2, t*3)` where `t` is the value in seconds - Also has delta time, sin time and cos time - ShaderToy: <https://www.shadertoy.com/howto> - iTime is the time since startup in seconds. - iFrameRate - iTimeDelta - iFrame frame counter Co-authored-by: Charles <IceSentry@users.noreply.github.com>
2022-09-28 04:20:27 +00:00
@group(0) @binding(9) var<uniform> globals: Globals;
@group(0) @binding(10) var<uniform> fog: types::Fog;
Add depth and normal prepass (#6284) # Objective - Add a configurable prepass - A depth prepass is useful for various shader effects and to reduce overdraw. It can be expansive depending on the scene so it's important to be able to disable it if you don't need any effects that uses it or don't suffer from excessive overdraw. - The goal is to eventually use it for things like TAA, Ambient Occlusion, SSR and various other techniques that can benefit from having a prepass. ## Solution The prepass node is inserted before the main pass. It runs for each `Camera3d` with a prepass component (`DepthPrepass`, `NormalPrepass`). The presence of one of those components is used to determine which textures are generated in the prepass. When any prepass is enabled, the depth buffer generated will be used by the main pass to reduce overdraw. The prepass runs for each `Material` created with the `MaterialPlugin::prepass_enabled` option set to `true`. You can overload the shader used by the prepass by using `Material::prepass_vertex_shader()` and/or `Material::prepass_fragment_shader()`. It will also use the `Material::specialize()` for more advanced use cases. It is enabled by default on all materials. The prepass works on opaque materials and materials using an alpha mask. Transparent materials are ignored. The `StandardMaterial` overloads the prepass fragment shader to support alpha mask and normal maps. --- ## Changelog - Add a new `PrepassNode` that runs before the main pass - Add a `PrepassPlugin` to extract/prepare/queue the necessary data - Add a `DepthPrepass` and `NormalPrepass` component to control which textures will be created by the prepass and available in later passes. - Add a new `prepass_enabled` flag to the `MaterialPlugin` that will control if a material uses the prepass or not. - Add a new `prepass_enabled` flag to the `PbrPlugin` to control if the StandardMaterial uses the prepass. Currently defaults to false. - Add `Material::prepass_vertex_shader()` and `Material::prepass_fragment_shader()` to control the prepass from the `Material` ## Notes In bevy's sample 3d scene, the performance is actually worse when enabling the prepass, but on more complex scenes the performance is generally better. I would like more testing on this, but @DGriffin91 has reported a very noticeable improvements in some scenes. The prepass is also used by @JMS55 for TAA and GTAO discord thread: <https://discord.com/channels/691052431525675048/1011624228627419187> This PR was built on top of the work of multiple people Co-Authored-By: @superdump Co-Authored-By: @robtfm Co-Authored-By: @JMS55 Co-authored-by: Charles <IceSentry@users.noreply.github.com> Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2023-01-19 22:11:13 +00:00
@group(0) @binding(11) var screen_space_ambient_occlusion_texture: texture_2d<f32>;
Screen Space Ambient Occlusion (SSAO) MVP (#7402) ![image](https://github.com/bevyengine/bevy/assets/47158642/dbb62645-f639-4f2b-b84b-26fd915c186d) # Objective - Add Screen space ambient occlusion (SSAO). SSAO approximates small-scale, local occlusion of _indirect_ diffuse light between objects. SSAO does not apply to direct lighting, such as point or directional lights. - This darkens creases, e.g. on staircases, and gives nice contact shadows where objects meet, giving entities a more "grounded" feel. - Closes https://github.com/bevyengine/bevy/issues/3632. ## Solution - Implement the GTAO algorithm. - https://www.activision.com/cdn/research/Practical_Real_Time_Strategies_for_Accurate_Indirect_Occlusion_NEW%20VERSION_COLOR.pdf - https://blog.selfshadow.com/publications/s2016-shading-course/activision/s2016_pbs_activision_occlusion.pdf - Source code heavily based on [Intel's XeGTAO](https://github.com/GameTechDev/XeGTAO/blob/0d177ce06bfa642f64d8af4de1197ad1bcb862d4/Source/Rendering/Shaders/XeGTAO.hlsli). - Add an SSAO bevy example. ## Algorithm Overview * Run a depth and normal prepass * Create downscaled mips of the depth texture (preprocess_depths pass) * GTAO pass - for each pixel, take several random samples from the depth+normal buffers, reconstruct world position, raytrace in screen space to estimate occlusion. Rather then doing completely random samples on a hemisphere, you choose random _slices_ of the hemisphere, and then can analytically compute the full occlusion of that slice. Also compute edges based on depth differences here. * Spatial denoise pass - bilateral blur, using edge detection to not blur over edges. This is the final SSAO result. * Main pass - if SSAO exists, sample the SSAO texture, and set occlusion to be the minimum of ssao/material occlusion. This then feeds into the rest of the PBR shader as normal. --- ## Future Improvements - Maybe remove the low quality preset for now (too noisy) - WebGPU fallback (see below) - Faster depth->world position (see reverted code) - Bent normals - Try interleaved gradient noise or spatiotemporal blue noise - Replace the spatial denoiser with a combined spatial+temporal denoiser - Render at half resolution and use a bilateral upsample - Better multibounce approximation (https://drive.google.com/file/d/1SyagcEVplIm2KkRD3WQYSO9O0Iyi1hfy/view) ## Far-Future Performance Improvements - F16 math (missing naga-wgsl support https://github.com/gfx-rs/naga/issues/1884) - Faster coordinate space conversion for normals - Faster depth mipchain creation (https://github.com/GPUOpen-Effects/FidelityFX-SPD) (wgpu/naga does not currently support subgroup ops) - Deinterleaved SSAO for better cache efficiency (https://developer.nvidia.com/sites/default/files/akamai/gameworks/samples/DeinterleavedTexturing.pdf) ## Other Interesting Papers - Visibility bitmask (https://link.springer.com/article/10.1007/s00371-022-02703-y, https://cdrinmatane.github.io/posts/cgspotlight-slides/) - Screen space diffuse lighting (https://github.com/Patapom/GodComplex/blob/master/Tests/TestHBIL/2018%20Mayaux%20-%20Horizon-Based%20Indirect%20Lighting%20(HBIL).pdf) ## Platform Support * SSAO currently does not work on DirectX12 due to issues with wgpu and naga: * https://github.com/gfx-rs/wgpu/pull/3798 * https://github.com/gfx-rs/naga/pull/2353 * SSAO currently does not work on WebGPU because r16float is not a valid storage texture format https://gpuweb.github.io/gpuweb/wgsl/#storage-texel-formats. We can fix this with a fallback to r32float. --- ## Changelog - Added ScreenSpaceAmbientOcclusionSettings, ScreenSpaceAmbientOcclusionQualityLevel, and ScreenSpaceAmbientOcclusionBundle --------- Co-authored-by: IceSentry <c.giguere42@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> Co-authored-by: Daniel Chia <danstryder@gmail.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com> Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Brandon Dyer <brandondyer64@gmail.com> Co-authored-by: Edgar Geier <geieredgar@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-18 21:05:55 +00:00
@group(0) @binding(12) var environment_map_diffuse: texture_cube<f32>;
@group(0) @binding(13) var environment_map_specular: texture_cube<f32>;
@group(0) @binding(14) var environment_map_sampler: sampler;
EnvironmentMapLight, BRDF Improvements (#7051) (Before) ![image](https://user-images.githubusercontent.com/47158642/213946111-15ec758f-1f1d-443c-b196-1fdcd4ae49da.png) (After) ![image](https://user-images.githubusercontent.com/47158642/217051179-67381e73-dd44-461b-a2c7-87b0440ef8de.png) ![image](https://user-images.githubusercontent.com/47158642/212492404-524e4ad3-7837-4ed4-8b20-2abc276aa8e8.png) # Objective - Improve lighting; especially reflections. - Closes https://github.com/bevyengine/bevy/issues/4581. ## Solution - Implement environment maps, providing better ambient light. - Add microfacet multibounce approximation for specular highlights from Filament. - Occlusion is no longer incorrectly applied to direct lighting. It now only applies to diffuse indirect light. Unsure if it's also supposed to apply to specular indirect light - the glTF specification just says "indirect light". In the case of ambient occlusion, for instance, that's usually only calculated as diffuse though. For now, I'm choosing to apply this just to indirect diffuse light, and not specular. - Modified the PBR example to use an environment map, and have labels. - Added `FallbackImageCubemap`. ## Implementation - IBL technique references can be found in environment_map.wgsl. - It's more accurate to use a LUT for the scale/bias. Filament has a good reference on generating this LUT. For now, I just used an analytic approximation. - For now, environment maps must first be prefiltered outside of bevy using a 3rd party tool. See the `EnvironmentMap` documentation. - Eventually, we should have our own prefiltering code, so that we can have dynamically changing environment maps, as well as let users drop in an HDR image and use asset preprocessing to create the needed textures using only bevy. --- ## Changelog - Added an `EnvironmentMapLight` camera component that adds additional ambient light to a scene. - StandardMaterials will now appear brighter and more saturated at high roughness, due to internal material changes. This is more physically correct. - Fixed StandardMaterial occlusion being incorrectly applied to direct lighting. - Added `FallbackImageCubemap`. Co-authored-by: IceSentry <c.giguere42@gmail.com> Co-authored-by: James Liu <contact@jamessliu.com> Co-authored-by: Rob Parrett <robparrett@gmail.com>
2023-02-09 16:46:32 +00:00
@group(0) @binding(15) var dt_lut_texture: texture_3d<f32>;
@group(0) @binding(16) var dt_lut_sampler: sampler;
#ifdef MULTISAMPLED
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#ifdef DEPTH_PREPASS
@group(0) @binding(17) var depth_prepass_texture: texture_depth_multisampled_2d;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // DEPTH_PREPASS
#ifdef NORMAL_PREPASS
@group(0) @binding(18) var normal_prepass_texture: texture_multisampled_2d<f32>;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // NORMAL_PREPASS
#ifdef MOTION_VECTOR_PREPASS
@group(0) @binding(19) var motion_vector_prepass_texture: texture_multisampled_2d<f32>;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // MOTION_VECTOR_PREPASS
#else // MULTISAMPLED
#ifdef DEPTH_PREPASS
@group(0) @binding(17) var depth_prepass_texture: texture_depth_2d;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // DEPTH_PREPASS
#ifdef NORMAL_PREPASS
@group(0) @binding(18) var normal_prepass_texture: texture_2d<f32>;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // NORMAL_PREPASS
#ifdef MOTION_VECTOR_PREPASS
@group(0) @binding(19) var motion_vector_prepass_texture: texture_2d<f32>;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // MOTION_VECTOR_PREPASS
#endif // MULTISAMPLED
#ifdef DEFERRED_PREPASS
Deferred Renderer (#9258) # Objective - Add a [Deferred Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy. - This allows subsequent passes to access per pixel material information before/during shading. - Accessing this per pixel material information is needed for some features, like GI. It also makes other features (ex. Decals) simpler to implement and/or improves their capability. There are multiple approaches to accomplishing this. The deferred shading approach works well given the limitations of WebGPU and WebGL2. Motivation: [I'm working on a GI solution for Bevy](https://youtu.be/eH1AkL-mwhI) # Solution - The deferred renderer is implemented with a prepass and a deferred lighting pass. - The prepass renders opaque objects into the Gbuffer attachment (`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same way as the forward implementation and then [packs it into the Gbuffer](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/render/pbr.wgsl#L168). - The deferred lighting pass unpacks the `PbrInput` and [feeds it into the pbr() function](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl#L65), then outputs the shaded color data. - There is now a resource [DefaultOpaqueRendererMethod](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/material.rs#L599) that can be used to set the default render method for opaque materials. If materials return `None` from [opaque_render_method()](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/material.rs#L131) the `DefaultOpaqueRendererMethod` will be used. Otherwise, custom materials can also explicitly choose to only support Deferred or Forward by returning the respective [OpaqueRendererMethod](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/material.rs#L603) - Deferred materials can be used seamlessly along with both opaque and transparent forward rendered materials in the same scene. The [deferred rendering example](https://github.com/DGriffin91/bevy/blob/deferred/examples/3d/deferred_rendering.rs) does this. - The deferred renderer does not support MSAA. If any deferred materials are used, MSAA must be disabled. Both TAA and FXAA are supported. - Deferred rendering supports WebGL2/WebGPU. ## Custom deferred materials - Custom materials can support both deferred and forward at the same time. The [StandardMaterial](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/render/pbr.wgsl#L166) does this. So does [this example](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56). - Custom deferred materials that require PBR lighting can create a `PbrInput`, write it to the deferred GBuffer and let it be rendered by the `PBRDeferredLightingPlugin`. - Custom deferred materials that require custom lighting have two options: 1. Use the base_color channel of the `PbrInput` combined with the `STANDARD_MATERIAL_FLAGS_UNLIT_BIT` flag. [Example.](https://github.com/DGriffin91/bevy_glowy_orb_tutorial/blob/deferred/assets/shaders/glowy.wgsl#L56) (If the unlit bit is set, the base_color is stored as RGB9E5 for extra precision) 2. A Custom Deferred Lighting pass can be created, either overriding the default, or running in addition. The a depth buffer is used to limit rendering to only the required fragments for each deferred lighting pass. Materials can set their respective depth id via the [deferred_lighting_pass_id](https://github.com/DGriffin91/bevy/blob/b79182d2a32cac28c4213c2457a53ac2cc885332/crates/bevy_pbr/src/prepass/prepass_io.wgsl#L95) attachment. The custom deferred lighting pass plugin can then set [its corresponding depth](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/deferred/deferred_lighting.wgsl#L37). Then with the lighting pass using [CompareFunction::Equal](https://github.com/DGriffin91/bevy/blob/ec1465559f2c82001830e908fc02ff1d7c2efe51/crates/bevy_pbr/src/deferred/mod.rs#L335), only the fragments with a depth that equal the corresponding depth written in the material will be rendered. Custom deferred lighting plugins can also be created to render the StandardMaterial. The default deferred lighting plugin can be bypassed with `DefaultPlugins.set(PBRDeferredLightingPlugin { bypass: true })` --------- Co-authored-by: nickrart <nickolas.g.russell@gmail.com>
2023-10-12 22:10:38 +00:00
@group(0) @binding(20) var deferred_prepass_texture: texture_2d<u32>;
Variable `MeshPipeline` View Bind Group Layout (#10156) # Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods.
2023-10-21 11:19:44 +00:00
#endif // DEFERRED_PREPASS
`StandardMaterial` Light Transmission (#8015) # Objective <img width="1920" alt="Screenshot 2023-04-26 at 01 07 34" src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png"> This PR adds both diffuse and specular light transmission capabilities to the `StandardMaterial`, with support for screen space refractions. This enables realistically representing a wide range of real-world materials, such as: - Glass; (Including frosted glass) - Transparent and translucent plastics; - Various liquids and gels; - Gemstones; - Marble; - Wax; - Paper; - Leaves; - Porcelain. Unlike existing support for transparency, light transmission does not rely on fixed function alpha blending, and therefore works with both `AlphaMode::Opaque` and `AlphaMode::Mask` materials. ## Solution - Introduces a number of transmission related fields in the `StandardMaterial`; - For specular transmission: - Adds logic to take a view main texture snapshot after the opaque phase; (in order to perform screen space refractions) - Introduces a new `Transmissive3d` phase to the renderer, to which all meshes with `transmission > 0.0` materials are sent. - Calculates a light exit point (of the approximate mesh volume) using `ior` and `thickness` properties - Samples the snapshot texture with an adaptive number of taps across a `roughness`-controlled radius enabling “blurry” refractions - For diffuse transmission: - Approximates transmitted diffuse light by using a second, flipped + displaced, diffuse-only Lambertian lobe for each light source. ## To Do - [x] Figure out where `fresnel_mix()` is taking place, if at all, and where `dielectric_specular` is being calculated, if at all, and update them to use the `ior` value (Not a blocker, just a nice-to-have for more correct BSDF) - To the _best of my knowledge, this is now taking place, after 964340cdd. The fresnel mix is actually "split" into two parts in our implementation, one `(1 - fresnel(...))` in the transmission, and `fresnel()` in the light implementations. A surface with more reflectance now will produce slightly dimmer transmission towards the grazing angle, as more of the light gets reflected. - [x] Add `transmission_texture` - [x] Add `diffuse_transmission_texture` - [x] Add `thickness_texture` - [x] Add `attenuation_distance` and `attenuation_color` - [x] Connect values to glTF loader - [x] `transmission` and `transmission_texture` - [x] `thickness` and `thickness_texture` - [x] `ior` - [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs upstream support in `gltf` crate, not a blocker) - [x] Add support for multiple screen space refraction “steps” - [x] Conditionally create no transmission snapshot texture at all if `steps == 0` - [x] Conditionally enable/disable screen space refraction transmission snapshots - [x] Read from depth pre-pass to prevent refracting pixels in front of the light exit point - [x] Use `interleaved_gradient_noise()` function for sampling blur in a way that benefits from TAA - [x] Drill down a TAA `#define`, tweak some aspects of the effect conditionally based on it - [x] Remove const array that's crashing under HLSL (unless a new `naga` release with https://github.com/gfx-rs/naga/pull/2496 comes out before we merge this) - [ ] Look into alternatives to the `switch` hack for dynamically indexing the const array (might not be needed, compilers seem to be decent at expanding it) - [ ] Add pipeline keys for gating transmission (do we really want/need this?) - [x] Tweak some material field/function names? ## A Note on Texture Packing _This was originally added as a comment to the `specular_transmission_texture`, `thickness_texture` and `diffuse_transmission_texture` documentation, I removed it since it was more confusing than helpful, and will likely be made redundant/will need to be updated once we have a better infrastructure for preprocessing assets_ Due to how channels are mapped, you can more efficiently use a single shared texture image for configuring the following: - R - `specular_transmission_texture` - G - `thickness_texture` - B - _unused_ - A - `diffuse_transmission_texture` The `KHR_materials_diffuse_transmission` glTF extension also defines a `diffuseTransmissionColorTexture`, that _we don't currently support_. One might choose to pack the intensity and color textures together, using RGB for the color and A for the intensity, in which case this packing advice doesn't really apply. --- ## Changelog - Added a new `Transmissive3d` render phase for rendering specular transmissive materials with screen space refractions - Added rendering support for transmitted environment map light on the `StandardMaterial` as a fallback for screen space refractions - Added `diffuse_transmission`, `specular_transmission`, `thickness`, `ior`, `attenuation_distance` and `attenuation_color` to the `StandardMaterial` - Added `diffuse_transmission_texture`, `specular_transmission_texture`, `thickness_texture` to the `StandardMaterial`, gated behind a new `pbr_transmission_textures` cargo feature (off by default, for maximum hardware compatibility) - Added `Camera3d::screen_space_specular_transmission_steps` for controlling the number of “layers of transparency” rendered for transmissive objects - Added a `TransmittedShadowReceiver` component for enabling shadows in (diffusely) transmitted light. (disabled by default, as it requires carefully setting up the `thickness` to avoid self-shadow artifacts) - Added support for the `KHR_materials_transmission`, `KHR_materials_ior` and `KHR_materials_volume` glTF extensions - Renamed items related to temporal jitter for greater consistency ## Migration Guide - `SsaoPipelineKey::temporal_noise` has been renamed to `SsaoPipelineKey::temporal_jitter` - The `TAA` shader def (controlled by the presence of the `TemporalAntiAliasSettings` component in the camera) has been replaced with the `TEMPORAL_JITTER` shader def (controlled by the presence of the `TemporalJitter` component in the camera) - `MeshPipelineKey::TAA` has been replaced by `MeshPipelineKey::TEMPORAL_JITTER` - The `TEMPORAL_NOISE` shader def has been consolidated with `TEMPORAL_JITTER`
2023-10-31 20:59:02 +00:00
@group(0) @binding(21) var view_transmission_texture: texture_2d<f32>;
@group(0) @binding(22) var view_transmission_sampler: sampler;