PKHeX/PKHeX.Core/Editing/CommonEdits.cs

448 lines
16 KiB
C#
Raw Normal View History

using System;
namespace PKHeX.Core;
/// <summary>
/// Contains extension logic for modifying <see cref="PKM"/> data.
/// </summary>
public static class CommonEdits
{
/// <summary>
/// Setting which enables/disables automatic manipulation of <see cref="PKM.MarkValue"/> when importing from a <see cref="IBattleTemplate"/>.
/// </summary>
public static bool ShowdownSetIVMarkings { get; set; } = true;
/// <summary>
/// Setting which causes the <see cref="PKM.StatNature"/> to the <see cref="PKM.Nature"/> in Gen8+ formats.
/// </summary>
public static bool ShowdownSetBehaviorNature { get; set; }
/// <summary>
/// Sets the <see cref="PKM.Nickname"/> to the provided value.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="nick"><see cref="PKM.Nickname"/> to set. If no nickname is provided, the <see cref="PKM.Nickname"/> is set to the default value for its current language and format.</param>
public static void SetNickname(this PKM pk, string nick)
{
if (nick.Length == 0)
{
pk.ClearNickname();
return;
}
pk.IsNicknamed = true;
pk.Nickname = nick;
}
/// <summary>
/// Clears the <see cref="PKM.Nickname"/> to the default value.
/// </summary>
/// <param name="pk"></param>
public static string ClearNickname(this PKM pk)
{
pk.IsNicknamed = false;
string nick = SpeciesName.GetSpeciesNameGeneration(pk.Species, pk.Language, pk.Format);
pk.Nickname = nick;
if (pk is GBPKM pk12)
pk12.SetNotNicknamed();
return nick;
}
/// <summary>
/// Sets the <see cref="PKM.Ability"/> value by sanity checking the provided <see cref="PKM.Ability"/> against the possible pool of abilities.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="abil">Desired <see cref="PKM.Ability"/> to set.</param>
public static void SetAbility(this PKM pk, int abil)
{
if (abil < 0)
return;
var index = pk.PersonalInfo.GetAbilityIndex(abil);
index = Math.Max(0, index);
pk.SetAbilityIndex(index);
}
/// <summary>
/// Sets the <see cref="PKM.Ability"/> value based on the provided ability index (0-2)
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="index">Desired <see cref="PKM.AbilityNumber"/> (shifted by 1) to set.</param>
public static void SetAbilityIndex(this PKM pk, int index)
{
if (pk is PK5 pk5 && index == 2)
pk5.HiddenAbility = true;
else if (pk.Format <= 5)
pk.PID = EntityPID.GetRandomPID(Util.Rand, pk.Species, pk.Gender, pk.Version, pk.Nature, pk.Form, (uint)(index * 0x10001));
pk.RefreshAbility(index);
}
/// <summary>
/// Sets a Random <see cref="PKM.EncryptionConstant"/> value. The <see cref="PKM.EncryptionConstant"/> is not updated if the value should match the <see cref="PKM.PID"/> instead.
/// </summary>
/// <remarks>Accounts for Wurmple evolutions.</remarks>
/// <param name="pk">Pokémon to modify.</param>
public static void SetRandomEC(this PKM pk)
{
int gen = pk.Generation;
if (gen is 3 or 4 or 5)
{
pk.EncryptionConstant = pk.PID;
return;
}
int wIndex = WurmpleUtil.GetWurmpleEvoGroup(pk.Species);
if (wIndex != -1)
{
pk.EncryptionConstant = WurmpleUtil.GetWurmpleEncryptionConstant(wIndex);
return;
}
pk.EncryptionConstant = Util.Rand32();
}
/// <summary>
/// Sets the <see cref="PKM.IsShiny"/> derived value.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="shiny">Desired <see cref="PKM.IsShiny"/> state to set.</param>
public static bool SetIsShiny(this PKM pk, bool shiny) => shiny ? SetShiny(pk) : pk.SetUnshiny();
/// <summary>
/// Makes a <see cref="PKM"/> shiny.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="type">Shiny type to force. Only use Always* or Random</param>
/// <returns>Returns true if the <see cref="PKM"/> data was modified.</returns>
public static bool SetShiny(PKM pk, Shiny type = Shiny.Random)
{
if (pk.IsShiny && type.IsValid(pk))
return false;
if (type == Shiny.Random || pk.FatefulEncounter || pk.Version == (int)GameVersion.GO || pk.Format <= 2)
{
pk.SetShiny();
return true;
}
do { pk.SetShiny(); }
while (!type.IsValid(pk));
return true;
}
/// <summary>
/// Makes a <see cref="PKM"/> not-shiny.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <returns>Returns true if the <see cref="PKM"/> data was modified.</returns>
public static bool SetUnshiny(this PKM pk)
{
if (!pk.IsShiny)
return false;
pk.SetPIDGender(pk.Gender);
return true;
}
/// <summary>
/// Sets the <see cref="PKM.Nature"/> value, with special consideration for the <see cref="PKM.Format"/> values which derive the <see cref="PKM.Nature"/> value.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="nature">Desired <see cref="PKM.Nature"/> value to set.</param>
public static void SetNature(this PKM pk, int nature)
{
var value = Math.Min((int)Nature.Quirky, Math.Max((int)Nature.Hardy, nature));
var format = pk.Format;
if (format >= 8)
pk.StatNature = value;
else if (format is 3 or 4)
pk.SetPIDNature(value);
else
pk.Nature = value;
}
/// <summary>
/// Copies <see cref="IBattleTemplate"/> details to the <see cref="PKM"/>.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="Set"><see cref="IBattleTemplate"/> details to copy from.</param>
public static void ApplySetDetails(this PKM pk, IBattleTemplate Set)
{
pk.Species = Math.Min(pk.MaxSpeciesID, Set.Species);
pk.Form = Set.Form;
if (Set.Moves[0] != 0)
pk.SetMoves(Set.Moves, true);
Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
pk.ApplyHeldItem(Set.HeldItem, Set.Context);
pk.CurrentLevel = Set.Level;
pk.CurrentFriendship = Set.Friendship;
pk.SetIVs(Set.IVs);
if (pk is GBPKM gb)
{
// In Generation 1/2 Format sets, when IVs are not specified with a Hidden Power set, we might not have the hidden power type.
// Under this scenario, just force the Hidden Power type.
if (Array.IndexOf(Set.Moves, (int)Move.HiddenPower) != -1 && pk.HPType != Set.HiddenPowerType)
{
if (Array.FindIndex(Set.IVs, static z => z >= 30) != -1)
pk.SetHiddenPower(Set.HiddenPowerType);
}
// In Generation 1/2 Format sets, when EVs are not specified at all, it implies maximum EVs instead!
// Under this scenario, just apply maximum EVs (65535).
if (Array.FindIndex(Set.EVs, static z => z != 0) == -1)
gb.MaxEVs();
else
pk.SetEVs(Set.EVs);
}
else
{
pk.SetEVs(Set.EVs);
}
// IVs have no side effects such as hidden power type in gen 8
// therefore all specified IVs are deliberate and should not be Hyper Trained for pokemon met in gen 8
if (!pk.Gen8)
pk.SetSuggestedHyperTrainingData(Set.IVs);
if (ShowdownSetIVMarkings)
pk.SetMarkings();
pk.SetNickname(Set.Nickname);
pk.SetSaneGender(Set.Gender);
if (Legal.IsPPUpAvailable(pk))
pk.SetMaximumPPUps(Set.Moves);
if (pk.Format >= 3)
{
pk.SetAbility(Set.Ability);
pk.SetNature(Set.Nature);
}
pk.SetIsShiny(Set.Shiny);
pk.SetRandomEC();
if (pk is IAwakened a)
{
a.SetSuggestedAwakenedValues(pk);
if (pk is PB7 b)
{
for (int i = 0; i < 6; i++)
b.SetEV(i, 0);
b.ResetCalculatedValues();
}
}
if (pk is IGanbaru g)
g.SetSuggestedGanbaruValues(pk);
if (pk is IGigantamax c)
c.CanGigantamax = Set.CanGigantamax;
if (pk is IDynamaxLevel d)
d.DynamaxLevel = d.GetSuggestedDynamaxLevel(pk);
if (pk is ITechRecord8 t)
{
t.ClearRecordFlags();
t.SetRecordFlags(Set.Moves);
}
if (pk is IMoveShop8Mastery s)
s.SetMoveShopFlags(Set.Moves, pk);
if (ShowdownSetBehaviorNature && pk.Format >= 8)
pk.Nature = pk.StatNature;
var legal = new LegalityAnalysis(pk);
Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
if (legal.Parsed && !MoveResult.AllValid(legal.Info.Relearn))
pk.SetRelearnMoves(legal.GetSuggestedRelearnMoves());
pk.ResetPartyStats();
pk.RefreshChecksum();
}
/// <summary>
/// Sets the <see cref="PKM.HeldItem"/> value depending on the current format and the provided item index &amp; format.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="item">Held Item to apply</param>
Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
/// <param name="context">Format required for importing</param>
public static void ApplyHeldItem(this PKM pk, int item, EntityContext context)
{
Refactoring: Move Source (Legality) (#3560) Rewrites a good amount of legality APIs pertaining to: * Legal moves that can be learned * Evolution chains & cross-generation paths * Memory validation with forgotten moves In generation 8, there are 3 separate contexts an entity can exist in: SW/SH, BD/SP, and LA. Not every entity can cross between them, and not every entity from generation 7 can exist in generation 8 (Gogoat, etc). By creating class models representing the restrictions to cross each boundary, we are able to better track and validate data. The old implementation of validating moves was greedy: it would iterate for all generations and evolutions, and build a full list of every move that can be learned, storing it on the heap. Now, we check one game group at a time to see if the entity can learn a move that hasn't yet been validated. End result is an algorithm that requires 0 allocation, and a smaller/quicker search space. The old implementation of storing move parses was inefficient; for each move that was parsed, a new object is created and adjusted depending on the parse. Now, move parse results are `struct` and store the move parse contiguously in memory. End result is faster parsing and 0 memory allocation. * `PersonalTable` objects have been improved with new API methods to check if a species+form can exist in the game. * `IEncounterTemplate` objects have been improved to indicate the `EntityContext` they originate in (similar to `Generation`). * Some APIs have been extended to accept `Span<T>` instead of Array/IEnumerable
2022-08-03 23:15:27 +00:00
item = ItemConverter.GetItemForFormat(item, context, pk.Context);
pk.HeldItem = ((uint)item > pk.MaxItemID) ? 0 : item;
}
/// <summary>
/// Sets one of the <see cref="EffortValues"/> based on its index within the array.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="index">Index to set to</param>
/// <param name="value">Value to set</param>
public static int SetEV(this PKM pk, int index, int value) => index switch
{
0 => pk.EV_HP = value,
1 => pk.EV_ATK = value,
2 => pk.EV_DEF = value,
3 => pk.EV_SPE = value,
4 => pk.EV_SPA = value,
5 => pk.EV_SPD = value,
_ => throw new ArgumentOutOfRangeException(nameof(index)),
};
/// <summary>
/// Sets one of the <see cref="PKM.IVs"/> based on its index within the array.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="index">Index to set to</param>
/// <param name="value">Value to set</param>
public static int SetIV(this PKM pk, int index, int value) => index switch
{
0 => pk.IV_HP = value,
1 => pk.IV_ATK = value,
2 => pk.IV_DEF = value,
3 => pk.IV_SPE = value,
4 => pk.IV_SPA = value,
5 => pk.IV_SPD = value,
_ => throw new ArgumentOutOfRangeException(nameof(index)),
};
/// <summary>
/// Fetches the highest value the provided <see cref="EffortValues"/> index can be while considering others.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="index">Index to fetch for</param>
/// <returns>Highest value the value can be.</returns>
public static int GetMaximumEV(this PKM pk, int index)
{
if (pk.Format < 3)
return ushort.MaxValue;
var sum = pk.EVTotal - pk.GetEV(index);
int remaining = 510 - sum;
return Math.Min(Math.Max(remaining, 0), 252);
}
/// <summary>
/// Fetches the highest value the provided <see cref="PKM.IVs"/>.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="index">Index to fetch for</param>
/// <param name="allow30">Causes the returned value to be dropped down -1 if the value is already at a maximum.</param>
/// <returns>Highest value the value can be.</returns>
public static int GetMaximumIV(this PKM pk, int index, bool allow30 = false)
{
if (pk.GetIV(index) == pk.MaxIV && allow30)
return pk.MaxIV - 1;
return pk.MaxIV;
}
/// <summary>
/// Force hatches a PKM by applying the current species name and a valid Met Location from the origin game.
/// </summary>
/// <param name="pk">PKM to apply hatch details to</param>
/// <param name="reHatch">Re-hatch already hatched <see cref="PKM"/> inputs</param>
public static void ForceHatchPKM(this PKM pk, bool reHatch = false)
{
if (!pk.IsEgg && !reHatch)
return;
pk.IsEgg = false;
pk.ClearNickname();
pk.CurrentFriendship = pk.PersonalInfo.BaseFriendship;
if (pk.IsTradedEgg)
pk.Egg_Location = pk.Met_Location;
var loc = EncounterSuggestion.GetSuggestedEggMetLocation(pk);
if (loc >= 0)
pk.Met_Location = loc;
pk.MetDate = DateTime.Today;
if (pk.Gen6)
pk.SetHatchMemory6();
}
/// <summary>
/// Force hatches a PKM by applying the current species name and a valid Met Location from the origin game.
/// </summary>
/// <param name="pk">PKM to apply hatch details to</param>
/// <param name="origin">Game the egg originated from</param>
/// <param name="dest">Game the egg is currently present on</param>
public static void SetEggMetData(this PKM pk, GameVersion origin, GameVersion dest)
{
bool traded = origin != dest;
var today = pk.MetDate = DateTime.Today;
pk.Egg_Location = EncounterSuggestion.GetSuggestedEncounterEggLocationEgg(pk.Generation, origin, traded);
pk.EggMetDate = today;
}
/// <summary>
/// Maximizes the <see cref="PKM.CurrentFriendship"/>. If the <see cref="PKM.IsEgg"/>, the hatch counter is set to 1.
/// </summary>
/// <param name="pk">PKM to apply hatch details to</param>
public static void MaximizeFriendship(this PKM pk)
{
if (pk.IsEgg)
pk.OT_Friendship = 1;
else
pk.CurrentFriendship = byte.MaxValue;
if (pk is ICombatPower pb)
pb.ResetCP();
}
/// <summary>
/// Maximizes the <see cref="PKM.CurrentLevel"/>. If the <see cref="PKM.IsEgg"/>, the <see cref="PKM"/> is ignored.
/// </summary>
/// <param name="pk">PKM to apply hatch details to</param>
public static void MaximizeLevel(this PKM pk)
{
if (pk.IsEgg)
return;
pk.CurrentLevel = 100;
if (pk is ICombatPower pb)
pb.ResetCP();
}
/// <summary>
/// Sets the <see cref="PKM.Nickname"/> to its default value.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
/// <param name="la">Precomputed optional</param>
public static void SetDefaultNickname(this PKM pk, LegalityAnalysis la)
{
if (la.Parsed && la.EncounterOriginal is EncounterTrade {HasNickname: true} t)
pk.SetNickname(t.GetNickname(pk.Language));
else
pk.ClearNickname();
}
/// <summary>
/// Sets the <see cref="PKM.Nickname"/> to its default value.
/// </summary>
/// <param name="pk">Pokémon to modify.</param>
public static void SetDefaultNickname(this PKM pk) => pk.SetDefaultNickname(new LegalityAnalysis(pk));
private static readonly string[] PotentialUnicode = { "★☆☆☆", "★★☆☆", "★★★☆", "★★★★" };
private static readonly string[] PotentialNoUnicode = { "+", "++", "+++", "++++" };
/// <summary>
/// Gets the Potential evaluation of the input <see cref="pk"/>.
/// </summary>
/// <param name="pk">Pokémon to analyze.</param>
/// <param name="unicode">Returned value is unicode or not</param>
/// <returns>Potential string</returns>
public static string GetPotentialString(this PKM pk, bool unicode = true)
{
var arr = unicode ? PotentialUnicode : PotentialNoUnicode;
return arr[pk.PotentialRating];
}
// Extensions
/// <summary>
/// Gets the Location Name for the <see cref="PKM"/>
/// </summary>
/// <param name="pk">PKM to fetch data for</param>
/// <param name="eggmet">Location requested is the egg obtained location, not met location.</param>
/// <returns>Location string</returns>
public static string GetLocationString(this PKM pk, bool eggmet)
{
if (pk.Format < 2)
return string.Empty;
int location = eggmet ? pk.Egg_Location : pk.Met_Location;
return GameInfo.GetLocationName(eggmet, location, pk.Format, pk.Generation, (GameVersion)pk.Version);
}
}