PKHeX/PKHeX.Core/Legality/Encounters/Verifiers/VerifyCurrentMoves.cs

750 lines
34 KiB
C#
Raw Normal View History

Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
using System;
using System.Collections.Generic;
using System.Linq;
using static PKHeX.Core.LegalityCheckStrings;
using static PKHeX.Core.ParseSettings;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
using static PKHeX.Core.MoveSource;
using static PKHeX.Core.Severity;
using static PKHeX.Core.CheckIdentifier;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
namespace PKHeX.Core
{
/// <summary>
/// Logic to verify the current <see cref="PKM.Moves"/>.
/// </summary>
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
public static class VerifyCurrentMoves
{
/// <summary>
/// Verifies the current moves of the <see cref="pkm"/> data based on the provided <see cref="info"/>.
/// </summary>
/// <param name="pkm">Data to check</param>
/// <param name="info">Encounter conditions and legality info</param>
/// <returns>Validity of the <see cref="PKM.Moves"/></returns>
public static void VerifyMoves(PKM pkm, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var parse = info.Moves;
Array.ForEach(parse, p => p.Reset());
var currentMoves = pkm.Moves;
ParseMovesForEncounters(pkm, parse, info, currentMoves);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Duplicate Moves Check
VerifyNoEmptyDuplicates(currentMoves, parse);
if (currentMoves[0] == 0) // Can't have an empty move slot for the first move.
parse[0].FlagIllegal(LMoveSourceEmpty, CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMovesForEncounters(PKM pkm, CheckMoveResult[] parse, LegalInfo info, int[] currentMoves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (pkm.Species == (int)Species.Smeargle) // special handling for Smeargle
{
ParseMovesForSmeargle(pkm, parse, currentMoves, info); // Smeargle can have any moves except a few
return;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// gather valid moves for encounter species
info.EncounterMoves = new ValidEncounterMoves(pkm, info.EncounterMatch, info.EvoChainsAllGens);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (info.Generation >= 6)
ParseMoves3DS(pkm, parse, currentMoves, info);
else
ParseMovesPre3DS(pkm, parse, currentMoves, info);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMovesForSmeargle(PKM pkm, CheckMoveResult[] parse, int[] currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (!pkm.IsEgg)
{
ParseMovesSketch(pkm, parse, currentMoves);
return;
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// can only know sketch as egg
var levelup = new int[info.EvoChainsAllGens.Length][];
levelup[pkm.Format] = new[] { (int)Move.Sketch };
info.EncounterMoves = new ValidEncounterMoves(levelup);
2021-08-20 20:49:20 +00:00
var source = new MoveParseSource { CurrentMoves = currentMoves };
ParseMoves(pkm, source, info, parse);
}
private static void ParseMovesWasEggPreRelearn(PKM pkm, CheckMoveResult[] parse, IReadOnlyList<int> currentMoves, LegalInfo info, EncounterEgg e)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Level up moves could not be inherited if Ditto is parent,
// that means genderless species and male only species (except Nidoran-M and Volbeat; they breed with Nidoran-F and Illumise) could not have level up moves as an egg
var pi = pkm.PersonalInfo;
var AllowLevelUp = !pi.Genderless && !(pi.OnlyMale && Breeding.MixedGenderBreeding.Contains(e.Species));
int BaseLevel = AllowLevelUp ? 100 : e.LevelMin;
var LevelUp = MoveList.GetBaseEggMoves(pkm, e.Species, e.Form, e.Version, BaseLevel);
var TradebackPreevo = pkm.Format == 2 && e.Species > 151;
2018-05-12 15:13:39 +00:00
var NonTradebackLvlMoves = TradebackPreevo
? MoveList.GetExclusivePreEvolutionMoves(pkm, e.Species, info.EvoChainsAllGens[2], 2, e.Version).Where(m => m > Legal.MaxMoveID_1).ToArray()
: Array.Empty<int>();
var Egg = MoveEgg.GetEggMoves(pkm.PersonalInfo, e.Species, e.Form, e.Version, e.Generation);
if (info.Generation < 3 && pkm.Format >= 7 && pkm.VC1)
2021-08-06 05:39:38 +00:00
Egg = Array.FindAll(Egg, m => m <= Legal.MaxMoveID_1);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var specialMoves = e.CanHaveVoltTackle ? new[] { (int)Move.VoltTackle } : Array.Empty<int>(); // Volt Tackle for bred Pichu line
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = specialMoves,
NonTradeBackLevelUpMoves = NonTradebackLvlMoves,
EggLevelUpSource = LevelUp,
EggMoveSource = Egg,
};
ParseMoves(pkm, source, info, parse);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMovesSketch(PKM pkm, CheckMoveResult[] parse, ReadOnlySpan<int> currentMoves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
for (int i = parse.Length - 1; i >= 0; i--)
{
var r = parse[i];
var move = currentMoves[i];
if (move == 0)
r.Set(None, pkm.Format, Valid, LMoveSourceEmpty, CurrentMove);
else if (Legal.IsValidSketch(move, pkm.Format))
r.Set(Sketch, pkm.Format, Valid, L_AValid, CurrentMove);
else
r.Set(Unknown, pkm.Format, Invalid, LMoveSourceInvalidSketch, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMoves3DS(PKM pkm, CheckMoveResult[] parse, IReadOnlyList<int> currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
info.EncounterMoves.Relearn = info.Generation >= 6 ? pkm.RelearnMoves : Array.Empty<int>();
if (info.EncounterMatch is IMoveset)
ParseMovesSpecialMoveset(pkm, currentMoves, info, parse);
else
ParseMovesRelearn(pkm, currentMoves, info, parse);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMovesPre3DS(PKM pkm, CheckMoveResult[] parse, int[] currentMoves, LegalInfo info)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (info.EncounterMatch is EncounterEgg e)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (pkm.IsEgg)
VerifyRelearnMoves.VerifyEggMoveset(e, parse, currentMoves, CurrentMove);
else
ParseMovesWasEggPreRelearn(pkm, parse, currentMoves, info, e);
return;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
// Not all games have a re-learner. Initial moves may not fill out all 4 slots.
int gen = info.EncounterMatch.Generation;
if (gen == 1 || (gen == 2 && !AllowGen2MoveReminder(pkm)))
ParseMovesGenGB(pkm, currentMoves, info, parse);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
ParseMovesSpecialMoveset(pkm, currentMoves, info, parse);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMovesGenGB(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info, CheckMoveResult[] parse)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var enc = info.EncounterMatch;
var evos = info.EvoChainsAllGens[enc.Generation];
var level = evos.Length > 0 ? evos[^1].LevelMin : enc.LevelMin;
var InitialMoves = Array.Empty<int>();
var games = enc.Generation == 1 ? GBRestrictions.GetGen1Versions(enc) : GBRestrictions.GetGen2Versions(enc, pkm.Korean);
foreach (var ver in games)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
2021-12-05 02:37:47 +00:00
var VerInitialMoves = enc is IMoveset {Moves.Count: not 0 } x ? (int[])x.Moves : MoveLevelUp.GetEncounterMoves(enc.Species, 0, level, ver);
if (VerInitialMoves.SequenceEqual(InitialMoves))
return; // Already checked this combination, and it wasn't valid. Don't bother repeating.
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
Base = VerInitialMoves,
};
ParseMoves(pkm, source, info, parse);
// Must have a minimum count of moves, depending on the tradeback state.
if (pkm is PK1 pk1)
{
int count = GBRestrictions.GetRequiredMoveCount(pk1, source.CurrentMoves, info, source.Base);
if (count == 1)
return;
// Reverse for loop and break instead of 0..count continue -- early-breaks for the vast majority of cases.
// We already flag for empty interstitial moveslots.
for (int m = count - 1; m >= 0; m--)
{
var move = source.CurrentMoves[m];
if (move != 0)
break;
// There are ways to skip level up moves by leveling up more than once.
// https://bulbapedia.bulbagarden.net/wiki/List_of_glitches_(Generation_I)#Level-up_learnset_skipping
// Evolution canceling also leads to incorrect assumptions in the above used method, so just indicate them as fishy in that case.
// Not leveled up? Not possible to be missing the move slot.
var severity = enc.LevelMin == pkm.CurrentLevel ? Invalid : Fishy;
parse[m].Set(None, pkm.Format, severity, LMoveSourceEmpty, CurrentMove);
}
}
if (Array.TrueForAll(parse, z => z.Valid))
return;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
InitialMoves = VerInitialMoves;
}
}
private static void ParseMovesSpecialMoveset(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info, CheckMoveResult[] parse)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = GetSpecialMoves(info.EncounterMatch),
};
ParseMoves(pkm, source, info, parse);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static IReadOnlyList<int> GetSpecialMoves(IEncounterTemplate enc)
{
2021-01-11 02:15:33 +00:00
if (enc is IMoveset mg)
return mg.Moves;
return Array.Empty<int>();
}
private static void ParseMovesRelearn(PKM pkm, IReadOnlyList<int> currentMoves, LegalInfo info, CheckMoveResult[] parse)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var source = new MoveParseSource
{
CurrentMoves = currentMoves,
SpecialSource = GetSpecialMoves(info.EncounterMatch),
};
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
2017-09-04 20:48:10 +00:00
if (info.EncounterMatch is EncounterEgg e)
source.EggMoveSource = MoveEgg.GetEggMoves(pkm.PersonalInfo, e.Species, e.Form, e.Version, e.Generation);
ParseMoves(pkm, source, info, parse);
var relearn = pkm.RelearnMoves;
for (int i = parse.Length - 1; i >= 0; i--)
{
var r = parse[i];
if (!r.IsRelearn && !pkm.IsEgg)
continue;
if (relearn.Contains(currentMoves[i]))
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
r.FlagIllegal(string.Format(LMoveRelearnFMiss_0, r.Comment));
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseMoves(PKM pkm, MoveParseSource source, LegalInfo info, CheckMoveResult[] parse)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Special considerations!
2021-08-06 05:39:38 +00:00
const int NoMinGeneration = 0;
int minGeneration = NoMinGeneration;
2020-12-29 08:58:08 +00:00
if (pkm is IBattleVersion {BattleVersion: not 0} v)
{
2021-08-06 05:39:38 +00:00
minGeneration = ((GameVersion) v.BattleVersion).GetGeneration();
2020-10-04 19:08:16 +00:00
source.ResetSources();
}
// Check empty moves and relearn moves before generation specific moves
for (int m = parse.Length - 1; m >= 0; m--)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
2021-08-06 05:39:38 +00:00
var move = source.CurrentMoves[m];
var r = parse[m];
2021-08-06 05:39:38 +00:00
if (move == 0)
r.Set(None, pkm.Format, Valid, LMoveSourceEmpty, CurrentMove);
2021-08-06 05:39:38 +00:00
else if (minGeneration == NoMinGeneration && info.EncounterMoves.Relearn.Contains(move))
r.Set(Relearn, info.Generation, Valid, LMoveSourceRelearn, CurrentMove);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (Array.TrueForAll(parse, z => z.IsParsed))
return;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Encapsulate arguments to simplify method calls
PKHeX.Core Nullable cleanup (#2401) * Handle some nullable cases Refactor MysteryGift into a second abstract class (backed by a byte array, or fake data) Make some classes have explicit constructors instead of { } initialization * Handle bits more obviously without null * Make SaveFile.BAK explicitly readonly again * merge constructor methods to have readonly fields * Inline some properties * More nullable handling * Rearrange box actions define straightforward classes to not have any null properties * Make extrabyte reference array immutable * Move tooltip creation to designer * Rearrange some logic to reduce nesting * Cache generated fonts * Split mystery gift album purpose * Handle more tooltips * Disallow null setters * Don't capture RNG object, only type enum * Unify learnset objects Now have readonly properties which are never null don't new() empty learnsets (>800 Learnset objects no longer created, total of 2400 objects since we also new() a move & level array) optimize g1/2 reader for early abort case * Access rewrite Initialize blocks in a separate object, and get via that object removes a couple hundred "might be null" warnings since blocks are now readonly getters some block references have been relocated, but interfaces should expose all that's needed put HoF6 controls in a groupbox, and disable * Readonly personal data * IVs non nullable for mystery gift * Explicitly initialize forced encounter moves * Make shadow objects readonly & non-null Put murkrow fix in binary data resource, instead of on startup * Assign dex form fetch on constructor Fixes legality parsing edge cases also handle cxd parse for valid; exit before exception is thrown in FrameGenerator * Remove unnecessary null checks * Keep empty value until init SetPouch sets the value to an actual one during load, but whatever * Readonly team lock data * Readonly locks Put locked encounters at bottom (favor unlocked) * Mail readonly data / offset Rearrange some call flow and pass defaults Add fake classes for SaveDataEditor mocking Always party size, no need to check twice in stat editor use a fake save file as initial data for savedata editor, and for gamedata (wow i found a usage) constrain eventwork editor to struct variable types (uint, int, etc), thus preventing null assignment errors
2019-10-17 01:47:31 +00:00
var moveInfo = new LearnInfo(pkm, source);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Check moves going backwards, marking the move valid in the most current generation when it can be learned
int[] generations = GenerationTraversal.GetVisitedGenerationOrder(pkm, info.EncounterOriginal.Generation);
if (pkm.Format <= 2)
2021-08-06 05:39:38 +00:00
generations = Array.FindAll(generations, z => z < info.EncounterMoves.LevelUpMoves.Length);
if (minGeneration != NoMinGeneration)
generations = Array.FindAll(generations, z => z >= minGeneration);
2021-08-06 05:39:38 +00:00
if (generations.Length != 0)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
2021-08-06 05:39:38 +00:00
int lastgen = generations[^1];
foreach (var gen in generations)
{
ParseMovesByGeneration(pkm, parse, gen, info, moveInfo, lastgen);
if (Array.TrueForAll(parse, z => z.IsParsed))
return;
2021-08-06 05:39:38 +00:00
}
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (pkm.Species == (int)Species.Shedinja && info.Generation <= 4)
ParseShedinjaEvolveMoves(pkm, parse, source.CurrentMoves, info.EvoChainsAllGens);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
foreach (var r in parse)
{
if (!r.IsParsed)
r.Set(Unknown, info.Generation, Invalid, LMoveSourceInvalid, CurrentMove);
}
}
private static void ParseMovesByGeneration(PKM pkm, CheckMoveResult[] parse, int gen, LegalInfo info, LearnInfo learnInfo, int last)
{
Span<bool> HMLearned = stackalloc bool[parse.Length];
bool KnowDefogWhirlpool = GetHMCompatibility(pkm, parse, gen, learnInfo.Source.CurrentMoves, HMLearned);
ParseMovesByGeneration(pkm, parse, gen, info, learnInfo);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (gen == last)
ParseMovesByGenerationLast(parse, learnInfo, info.EncounterMatch);
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
switch (gen)
{
case 1 or 2:
ParseMovesByGeneration12(pkm, parse, learnInfo.Source.CurrentMoves, gen, info, learnInfo);
break;
case 3 or 4:
if (pkm.Format > gen)
FlagIncompatibleTransferHMs45(parse, learnInfo.Source.CurrentMoves, gen, HMLearned, KnowDefogWhirlpool);
break;
}
}
private static void ParseMovesByGeneration(PKM pkm, CheckMoveResult[] parse, int gen, LegalInfo info, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
bool native = gen == pkm.Format;
for (int m = parse.Length - 1; m >= 0; m--)
{
var r = parse[m];
if (IsCheckValid(r)) // already validated with another generation
continue;
int move = moves[m];
if (move == 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (gen <= 2)
{
if (gen == 2 && !native && move > Legal.MaxMoveID_1 && pkm.VC1)
{
r.Set(Unknown, gen, Invalid, LMoveSourceInvalid, CurrentMove);
continue;
}
if (gen == 2 && learnInfo.Source.EggMoveSource.Contains(move))
r.Set(EggMove, gen, Valid, LMoveSourceEgg, CurrentMove);
else if (learnInfo.Source.Base.Contains(move))
r.Set(Initial, gen, Valid, native ? LMoveSourceDefault : string.Format(LMoveFDefault_0, gen), CurrentMove);
}
if (info.EncounterMoves.LevelUpMoves[gen].Contains(move))
r.Set(LevelUp, gen, Valid, native ? LMoveSourceLevelUp : string.Format(LMoveFLevelUp_0, gen), CurrentMove);
else if (info.EncounterMoves.TMHMMoves[gen].Contains(move))
r.Set(TMHM, gen, Valid, native ? LMoveSourceTMHM : string.Format(LMoveFTMHM_0, gen), CurrentMove);
else if (info.EncounterMoves.TutorMoves[gen].Contains(move))
r.Set(Tutor, gen, Valid, native ? LMoveSourceTutor : string.Format(LMoveFTutor_0, gen), CurrentMove);
else if (gen == info.Generation && learnInfo.Source.SpecialSource.Contains(move))
r.Set(Special, gen, Valid, LMoveSourceSpecial, CurrentMove);
else if (gen >= 8 && MoveEgg.GetIsSharedEggMove(pkm, gen, move))
r.Set(Shared, gen, Valid, native ? LMoveSourceShared : string.Format(LMoveSourceSharedF, gen), CurrentMove);
if (gen >= 3 || !IsCheckValid(r))
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
// Gen1/Gen2 only below
if (gen == 2 && learnInfo.Source.NonTradeBackLevelUpMoves.Contains(m))
{
learnInfo.Gen2PreevoMoves.Add(m);
}
else if (gen == 1)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
learnInfo.Gen1Moves.Add(m);
if (learnInfo.Gen2PreevoMoves.Count != 0)
learnInfo.MixedGen12NonTradeback = true;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
}
private static void ParseMovesByGeneration12(PKM pkm, CheckMoveResult[] parse, IReadOnlyList<int> currentMoves, int gen, LegalInfo info, LearnInfo learnInfo)
{
// Mark the gen 1 exclusive moves as illegal because the pokemon also have Non tradeback egg moves.
if (learnInfo.MixedGen12NonTradeback)
{
foreach (int m in learnInfo.Gen1Moves)
parse[m].FlagIllegal(LG1MoveExclusive, CurrentMove);
foreach (int m in learnInfo.Gen2PreevoMoves)
parse[m].FlagIllegal(LG1TradebackPreEvoMove, CurrentMove);
}
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
if (gen == 1 && pkm.Format == 1 && !AllowGen1Tradeback)
{
ParseRedYellowIncompatibleMoves(pkm, parse, currentMoves);
ParseEvolutionsIncompatibleMoves(pkm, parse, currentMoves, info.EncounterMoves.TMHMMoves[1]);
}
}
private static void ParseMovesByGenerationLast(CheckMoveResult[] parse, LearnInfo learnInfo, IEncounterTemplate enc)
{
int gen = enc.Generation;
ParseEggMovesInherited(parse, gen, learnInfo);
ParseEggMoves(parse, gen, learnInfo);
ParseEggMovesRemaining(parse, learnInfo, enc);
}
private static void ParseEggMovesInherited(CheckMoveResult[] parse, int gen, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
// Check higher-level moves after all the moves but just before egg moves to differentiate it from normal level up moves
// Also check if the base egg moves is a non tradeback move
for (int m = parse.Length - 1; m >= 0; m--)
{
var r = parse[m];
if (IsCheckValid(r)) // already validated
{
if (gen == 2 && r.Generation != 1)
continue;
}
int move = moves[m];
if (move == 0)
continue;
if (!learnInfo.Source.EggLevelUpSource.Contains(move)) // Check if contains level-up egg moves from parents
continue;
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Count != 0 && move > Legal.MaxMoveID_1)
{
r.Set(InheritLevelUp, gen, Invalid, LG1MoveTradeback, CurrentMove);
learnInfo.MixedGen12NonTradeback = true;
New legallity checks (#1196) * Add move source to the check result for current moves, it will be used for analysis of evolution with move to determine how many egg moves had the pokemon and determine if the evolution move could be a egg move that was forgotten * Verify evolution for species that evolved leveling up with an specific move learned, the evolution must be at least one level after the pokemon could legally learn the move or one level after transfer to the first generation where it can evolve * Check to detect traded unevolved Kadabra based in catch rate and moves exclusive from yellow or red/blue If pokemon have data exclusive from one version but is in another version that means it should be evolved * Check no tradeback moves for preevolutions, like Pichu exclusive non tradeback moves for a Pikachu, that Pikachu could not have at the same time Pichu gen 2 moves and gen 1 moves because move reminder do not allow to relearn Pichu moves and gen 2 moves must be forgotten to trade into generation 1 games * Legallity strings for non tradeback checks * https://bulbapedia.bulbagarden.net/wiki/Pok%C3%A9mon_breeding#Passing_moves_down Eggs only inherit a level up move if both parents know the move, that means genderless and male only moves could not have any level up move as an egg except the base egg moves because Ditto is one parent Nidoran male and Volbeat excluded because they can breed with Nidoran female and Illusime * Small check to not search for egg moves in genderless pokemon, generation 2 data include egg moves for Starmie * Fix female only species * Stomp is not a possible egg moves of Stanee * Fix Steenee evolution move, it cant be inherited as an egg
2017-06-07 03:10:05 +00:00
}
else
{
r.Set(InheritLevelUp, gen, Valid, LMoveEggLevelUp, CurrentMove);
}
learnInfo.LevelUpEggMoves.Add(m);
if (gen == 2 && learnInfo.Gen1Moves.Contains(m))
learnInfo.Gen1Moves.Remove(m);
}
}
private static void ParseEggMoves(CheckMoveResult[] parse, int gen, LearnInfo learnInfo)
{
var moves = learnInfo.Source.CurrentMoves;
// Check egg moves after all the generations and all the moves, every move that can't be learned in another source should have preference
// the moves that can only be learned from egg moves should in the future check if the move combinations can be breed in gens 2 to 5
for (int m = parse.Length - 1; m >= 0; m--)
{
var r = parse[m];
if (IsCheckValid(r))
continue;
int move = moves[m];
if (move == 0)
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
bool wasEggMove = learnInfo.Source.EggMoveSource.Contains(move);
if (wasEggMove)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// To learn exclusive generation 1 moves the pokemon was tradeback, but it can't be trade to generation 1
// without removing moves above MaxMoveID_1, egg moves above MaxMoveID_1 and gen 1 moves are incompatible
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Count != 0 && move > Legal.MaxMoveID_1)
{
r.Set(EggMove, gen, Invalid, LG1MoveTradeback, CurrentMove);
learnInfo.MixedGen12NonTradeback = true;
}
else
{
r.Set(EggMove, gen, Valid, LMoveSourceEgg, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
learnInfo.EggMovesLearned.Add(m);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
if (!learnInfo.Source.EggEventSource.Contains(move))
continue;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (!wasEggMove)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (learnInfo.IsGen2Pkm && learnInfo.Gen1Moves.Count != 0 && move > Legal.MaxMoveID_1)
{
r.Set(SpecialEgg, gen, Invalid, LG1MoveTradeback, CurrentMove);
learnInfo.MixedGen12NonTradeback = true;
}
else
{
r.Set(SpecialEgg, gen, Valid, LMoveSourceEggEvent, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
learnInfo.EventEggMoves.Add(m);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseEggMovesRemaining(CheckMoveResult[] parse, LearnInfo learnInfo, IEncounterTemplate enc)
{
// A pokemon could have normal egg moves and regular egg moves
// Only if all regular egg moves are event egg moves or all event egg moves are regular egg moves
2021-08-06 05:39:38 +00:00
var RegularEggMovesLearned = learnInfo.EggMovesLearned.FindAll(learnInfo.LevelUpEggMoves.Contains);
if (RegularEggMovesLearned.Count != 0 && learnInfo.EventEggMoves.Count != 0)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Moves that are egg moves or event egg moves but not both
2021-04-19 01:18:09 +00:00
var IncompatibleEggMoves = RegularEggMovesLearned.Except(learnInfo.EventEggMoves).Union(learnInfo.EventEggMoves.Except(RegularEggMovesLearned));
foreach (int m in IncompatibleEggMoves)
{
2021-04-19 01:18:09 +00:00
bool isEvent = learnInfo.EventEggMoves.Contains(m);
if (isEvent)
{
if (!learnInfo.EggMovesLearned.Contains(m))
parse[m].FlagIllegal(LMoveEggIncompatibleEvent, CurrentMove);
2021-04-19 01:18:09 +00:00
}
else
{
if (learnInfo.EggMovesLearned.Contains(m))
parse[m].FlagIllegal(LMoveEggIncompatible, CurrentMove);
2021-04-19 01:18:09 +00:00
else if (learnInfo.LevelUpEggMoves.Contains(m))
parse[m].FlagIllegal(LMoveEventEggLevelUp, CurrentMove);
2021-04-19 01:18:09 +00:00
}
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
2020-12-29 08:58:08 +00:00
else if (enc is not EncounterEgg)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Event eggs cannot inherit moves from parents; they are not bred.
Track a PKM's Box,Slot,StorageFlags,Identifier metadata separately (#3222) * Track a PKM's Box,Slot,StorageFlags,Identifier metadata separately Don't store within the object, track the slot origin data separately. Batch editing now pre-filters if using Box/Slot/Identifier logic; split up mods/filters as they're starting to get pretty hefty. - Requesting a Box Data report now shows all slots in the save file (party, misc) - Can now exclude backup saves from database search via toggle (separate from settings preventing load entirely) - Replace some linq usages with direct code * Remove WasLink virtual in PKM Inline any logic, since we now have encounter objects to indicate matching, rather than the proto-legality logic checking properties of a PKM. * Use Fateful to directly check gen5 mysterygift origins No other encounter types in gen5 apply Fateful * Simplify double ball comparison Used to be separate for deferral cases, now no longer needed to be separate. * Grab move/relearn reference and update locally Fix relearn move identifier * Inline defog HM transfer preference check HasMove is faster than getting moves & checking contains. Skips allocation by setting values directly. * Extract more met location metadata checks: WasBredEgg * Replace Console.Write* with Debug.Write* There's no console output UI, so don't include them in release builds. * Inline WasGiftEgg, WasEvent, and WasEventEgg logic Adios legality tags that aren't entirely correct for the specific format. Just put the computations in EncounterFinder.
2021-06-23 03:23:48 +00:00
var gift = enc is EncounterStatic {Gift: true}; // otherwise, EncounterInvalid
foreach (int m in RegularEggMovesLearned)
{
if (learnInfo.EggMovesLearned.Contains(m))
parse[m].FlagIllegal(gift ? LMoveEggMoveGift : LMoveEggInvalidEvent, CurrentMove);
else if (learnInfo.LevelUpEggMoves.Contains(m))
parse[m].FlagIllegal(gift ? LMoveEggInvalidEventLevelUpGift : LMoveEggInvalidEventLevelUp, CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
private static void ParseRedYellowIncompatibleMoves(PKM pkm, CheckMoveResult[] parse, IReadOnlyList<int> currentMoves)
{
var incompatible = GetIncompatibleRBYMoves(pkm, currentMoves);
if (incompatible.Count == 0)
return;
for (int m = parse.Length - 1; m >= 0; m--)
{
if (incompatible.Contains(currentMoves[m]))
parse[m].FlagIllegal(LG1MoveLearnSameLevel, CurrentMove);
}
}
private static IList<int> GetIncompatibleRBYMoves(PKM pkm, IReadOnlyList<int> currentMoves)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Check moves that are learned at the same level in Red/Blue and Yellow, these are illegal because there is no Move Reminder in Gen1.
// There are only two incompatibilities for Gen1; there are no illegal combination in Gen2.
switch (pkm.Species)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
// Vaporeon in Yellow learns Mist and Haze at level 42, Mist can only be learned if it leveled up in the daycare
// Vaporeon in Red/Blue learns Acid Armor at level 42 and level 47 in Yellow
case (int)Species.Vaporeon when pkm.CurrentLevel < 47 && currentMoves.Contains((int)Move.AcidArmor):
{
var incompatible = new List<int>(3);
if (currentMoves.Contains((int)Move.Mist)) incompatible.Add((int)Move.Mist);
if (currentMoves.Contains((int)Move.Haze)) incompatible.Add((int)Move.Haze);
if (incompatible.Count != 0)
incompatible.Add((int)Move.AcidArmor);
else
return Array.Empty<int>();
return incompatible;
}
// Flareon in Yellow learns Smog at level 42
// Flareon in Red Blue learns Leer at level 42 and level 47 in Yellow
case (int)Species.Flareon when pkm.CurrentLevel < 47 && currentMoves.Contains((int)Move.Leer) && currentMoves.Contains((int)Move.Smog):
return new[] { (int)Move.Leer, (int)Move.Smog };
default: return Array.Empty<int>();
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static void ParseEvolutionsIncompatibleMoves(PKM pkm, CheckMoveResult[] parse, IReadOnlyList<int> moves, IReadOnlyList<int> tmhm)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
GBRestrictions.GetIncompatibleEvolutionMoves(pkm, moves, tmhm,
out var prevSpeciesID,
out var incompatPrev,
out var incompatCurr);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
if (prevSpeciesID == 0)
return;
var prev = SpeciesStrings[prevSpeciesID];
var curr = SpeciesStrings[pkm.Species];
for (int m = parse.Length - 1; m >= 0; m--)
{
if (incompatCurr.Contains(moves[m]))
parse[m].FlagIllegal(string.Format(LMoveEvoFLower, curr, prev), CurrentMove);
if (incompatPrev.Contains(moves[m]))
parse[m].FlagIllegal(string.Format(LMoveEvoFHigher, curr, prev), CurrentMove);
}
}
private static void ParseShedinjaEvolveMoves(PKM pkm, CheckMoveResult[] parse, IReadOnlyList<int> currentMoves, EvoCriteria[][] evos)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
int shedinjaEvoMoveIndex = 0;
var format = pkm.Format;
for (int gen = Math.Min(format, 4); gen >= 3; gen--)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
if (evos[gen].Length != 2)
continue; // Was not evolved in this generation
if (gen == 4 && pkm.Ball != 4 && !(pkm.Ball == (int)Ball.Sport && pkm.HGSS))
continue; // Was definitively evolved in Gen3
var maxLevel = pkm.CurrentLevel;
var ninjaskMoves = MoveList.GetShedinjaEvolveMoves(pkm, gen, maxLevel);
bool native = gen == format;
for (int m = parse.Length - 1; m >= 0; m--)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var r = parse[m];
if (IsCheckValid(r)) // already validated
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
continue;
if (!ninjaskMoves.Contains(currentMoves[m]))
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
continue;
// Can't have more than one Ninjask exclusive move on Shedinja
if (shedinjaEvoMoveIndex != 0)
{
r.FlagIllegal(LMoveNincada, CurrentMove);
continue;
}
var msg = native ? LMoveNincadaEvo : string.Format(LMoveNincadaEvoF_0, gen);
r.Set(ShedinjaEvo, gen, Valid, msg, CurrentMove);
shedinjaEvoMoveIndex = m;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
if (shedinjaEvoMoveIndex == 0)
return;
// Double check that the Ninjask move level isn't less than any Nincada move level
{
var r = parse[shedinjaEvoMoveIndex];
if (r.Source != LevelUp)
return;
var move = currentMoves[shedinjaEvoMoveIndex];
int levelS = MoveList.GetShedinjaMoveLevel((int)Species.Shedinja, move, r.Generation);
if (levelS > 0)
return;
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
int levelN = MoveList.GetShedinjaMoveLevel((int)Species.Nincada, move, r.Generation);
int levelJ = MoveList.GetShedinjaMoveLevel((int)Species.Ninjask, move, r.Generation);
if (levelN > levelJ)
r.FlagIllegal(string.Format(LMoveEvoFHigher, SpeciesStrings[(int)Species.Nincada], SpeciesStrings[(int)Species.Ninjask]), CurrentMove);
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
private static bool GetHMCompatibility(PKM pkm, IReadOnlyList<CheckMoveResult> parse, int gen, IReadOnlyList<int> moves, Span<bool> HMLearned)
{
// Check if pokemon knows HM moves from generation 3 and 4 but are not valid yet, that means it cant learn the HMs in future generations
if (gen == 4 && pkm.Format > 4)
{
FlagIsHMSource(HMLearned, Legal.HM_4_RemovePokeTransfer);
return moves.Where((m, i) => IsDefogWhirl(m) && IsCheckInvalid(parse[i])).Count() == 2;
}
if (gen == 3 && pkm.Format > 3)
FlagIsHMSource(HMLearned, Legal.HM_3);
return false;
void FlagIsHMSource(Span<bool> flags, ICollection<int> source)
{
for (int i = parse.Count - 1; i >= 0; i--)
flags[i] = IsCheckInvalid(parse[i]) && source.Contains(moves[i]);
}
}
2021-01-26 04:58:56 +00:00
private static bool IsDefogWhirl(int move) => move is (int)Move.Defog or (int)Move.Whirlpool;
private static int GetDefogWhirlCount(IReadOnlyList<CheckMoveResult> parse, IReadOnlyList<int> moves)
{
int ctr = 0;
for (int i = moves.Count - 1; i >= 0; i--)
{
if (!IsDefogWhirl(moves[i]))
continue;
var r = parse[i];
if (!r.Valid || r.Generation >= 5)
continue;
ctr++;
}
return ctr;
}
private static bool IsCheckInvalid(CheckMoveResult chk) => chk.IsParsed && !chk.Valid;
private static bool IsCheckValid(CheckMoveResult chk) => chk.IsParsed && chk.Valid;
private static void FlagIncompatibleTransferHMs45(IReadOnlyList<CheckMoveResult> parse, IReadOnlyList<int> currentMoves, int gen, ReadOnlySpan<bool> HMLearned, bool KnowDefogWhirlpool)
{
// After all the moves from the generations 3 and 4,
// including egg moves if is the origin generation because some hidden moves are also special egg moves in gen 3
// Check if the marked hidden moves that were invalid at the start are now marked as valid, that means
// the hidden move was learned in gen 3 or 4 but was not removed when transfer to 4 or 5
if (KnowDefogWhirlpool)
{
int invalidCount = GetDefogWhirlCount(parse, currentMoves);
if (invalidCount == 2) // can't know both at the same time
{
for (int i = parse.Count - 1; i >= 0; i--) // flag both moves
{
if (IsDefogWhirl(currentMoves[i]))
parse[i].FlagIllegal(LTransferMoveG4HM, CurrentMove);
}
}
}
// Flag moves that are only legal when learned from a past-gen HM source
for (int i = HMLearned.Length - 1; i >= 0; i--)
{
if (HMLearned[i] && IsCheckValid(parse[i]))
parse[i].FlagIllegal(string.Format(LTransferMoveHM, gen, gen + 1), CurrentMove);
}
}
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
private static void VerifyNoEmptyDuplicates(ReadOnlySpan<int> moves, ReadOnlySpan<CheckMoveResult> parse)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
bool emptySlot = false;
for (int i = 0; i < parse.Length; i++)
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
{
var move = moves[i];
if (move == 0)
{
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
emptySlot = true;
continue;
}
// If an empty slot was noted for a prior move, flag the empty slots.
if (emptySlot)
{
FlagEmptySlotsBeforeIndex(moves, parse, i);
emptySlot = false;
continue;
}
// Check for same move in next move slots
FlagDuplicateMovesAfterIndex(moves, parse, i, move);
}
}
private static void FlagDuplicateMovesAfterIndex(ReadOnlySpan<int> moves, ReadOnlySpan<CheckMoveResult> parse, int index, int move)
{
for (int i = parse.Length - 1; i > index; i--)
{
if (moves[i] != move)
continue;
parse[index].FlagIllegal(LMoveSourceEmpty);
return;
}
}
private static void FlagEmptySlotsBeforeIndex(ReadOnlySpan<int> moves, ReadOnlySpan<CheckMoveResult> parse, int index)
{
for (int i = index - 1; i >= 0; i--)
{
if (moves[i] != 0)
return;
parse[i].FlagIllegal(LMoveSourceEmpty);
Refactor encounter matching exercise in deferred execution/state machine, only calculate possible matches until a sufficiently valid match is obtained. Previous setup would try to calculate the 'best match' and had band-aid workarounds in cases where a subsequent check may determine it to be a false match. There's still more ways to improve speed: - precalculate relationships for Encounter Slots rather than iterating over every area - yielding individual slots instead of an entire area - group non-egg wondercards by ID in a dict/hashtable for faster retrieval reworked some internals: - EncounterMatch is always an IEncounterable instead of an object, for easy pattern matching. - Splitbreed checking is done per encounter and is stored in the EncounterEgg result - Encounter validation uses Encounter/Move/RelearnMove/Evolution to whittle to the final encounter. As a part of the encounter matching, a lazy peek is used to check if an invalid encounter should be retained instead of discarded; if another encounter has not been checked, it'll stop the invalid checks and move on. If it is the last encounter, no other valid encounters exist so it will keep the parse for the invalid encounter. If no encounters are yielded, then there is no encountermatch. An EncounterInvalid is created to store basic details, and the parse is carried out. Breaks some legality checking features for flagging invalid moves in more detail, but those can be re-added in a separate check (if splitbreed & any move invalid -> check for other split moves). Should now be easier to follow the flow & maintain :smile:
2017-05-28 04:17:53 +00:00
}
}
}
}