mirror of
https://github.com/getzola/zola
synced 2025-01-22 16:45:12 +00:00
7000f787b3
* search: Add support for a JSON index * docs: Document JSON index for search * docs: Use lazy-loaded JSON index * Add elasticlunr prefix to search engine format configuration This will be useful if support for more search libraries are added in the future
199 lines
5.3 KiB
JavaScript
199 lines
5.3 KiB
JavaScript
function debounce(func, wait) {
|
|
var timeout;
|
|
|
|
return function () {
|
|
var context = this;
|
|
var args = arguments;
|
|
clearTimeout(timeout);
|
|
|
|
timeout = setTimeout(function () {
|
|
timeout = null;
|
|
func.apply(context, args);
|
|
}, wait);
|
|
};
|
|
}
|
|
|
|
// Taken from mdbook
|
|
// The strategy is as follows:
|
|
// First, assign a value to each word in the document:
|
|
// Words that correspond to search terms (stemmer aware): 40
|
|
// Normal words: 2
|
|
// First word in a sentence: 8
|
|
// Then use a sliding window with a constant number of words and count the
|
|
// sum of the values of the words within the window. Then use the window that got the
|
|
// maximum sum. If there are multiple maximas, then get the last one.
|
|
// Enclose the terms in <b>.
|
|
function makeTeaser(body, terms) {
|
|
var TERM_WEIGHT = 40;
|
|
var NORMAL_WORD_WEIGHT = 2;
|
|
var FIRST_WORD_WEIGHT = 8;
|
|
var TEASER_MAX_WORDS = 30;
|
|
|
|
var stemmedTerms = terms.map(function (w) {
|
|
return elasticlunr.stemmer(w.toLowerCase());
|
|
});
|
|
var termFound = false;
|
|
var index = 0;
|
|
var weighted = []; // contains elements of ["word", weight, index_in_document]
|
|
|
|
// split in sentences, then words
|
|
var sentences = body.toLowerCase().split(". ");
|
|
|
|
for (var i in sentences) {
|
|
var words = sentences[i].split(" ");
|
|
var value = FIRST_WORD_WEIGHT;
|
|
|
|
for (var j in words) {
|
|
var word = words[j];
|
|
|
|
if (word.length > 0) {
|
|
for (var k in stemmedTerms) {
|
|
if (elasticlunr.stemmer(word).startsWith(stemmedTerms[k])) {
|
|
value = TERM_WEIGHT;
|
|
termFound = true;
|
|
}
|
|
}
|
|
weighted.push([word, value, index]);
|
|
value = NORMAL_WORD_WEIGHT;
|
|
}
|
|
|
|
index += word.length;
|
|
index += 1; // ' ' or '.' if last word in sentence
|
|
}
|
|
|
|
index += 1; // because we split at a two-char boundary '. '
|
|
}
|
|
|
|
if (weighted.length === 0) {
|
|
return body;
|
|
}
|
|
|
|
var windowWeights = [];
|
|
var windowSize = Math.min(weighted.length, TEASER_MAX_WORDS);
|
|
// We add a window with all the weights first
|
|
var curSum = 0;
|
|
for (var i = 0; i < windowSize; i++) {
|
|
curSum += weighted[i][1];
|
|
}
|
|
windowWeights.push(curSum);
|
|
|
|
for (var i = 0; i < weighted.length - windowSize; i++) {
|
|
curSum -= weighted[i][1];
|
|
curSum += weighted[i + windowSize][1];
|
|
windowWeights.push(curSum);
|
|
}
|
|
|
|
// If we didn't find the term, just pick the first window
|
|
var maxSumIndex = 0;
|
|
if (termFound) {
|
|
var maxFound = 0;
|
|
// backwards
|
|
for (var i = windowWeights.length - 1; i >= 0; i--) {
|
|
if (windowWeights[i] > maxFound) {
|
|
maxFound = windowWeights[i];
|
|
maxSumIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
var teaser = [];
|
|
var startIndex = weighted[maxSumIndex][2];
|
|
for (var i = maxSumIndex; i < maxSumIndex + windowSize; i++) {
|
|
var word = weighted[i];
|
|
if (startIndex < word[2]) {
|
|
// missing text from index to start of `word`
|
|
teaser.push(body.substring(startIndex, word[2]));
|
|
startIndex = word[2];
|
|
}
|
|
|
|
// add <em/> around search terms
|
|
if (word[1] === TERM_WEIGHT) {
|
|
teaser.push("<b>");
|
|
}
|
|
startIndex = word[2] + word[0].length;
|
|
teaser.push(body.substring(word[2], startIndex));
|
|
|
|
if (word[1] === TERM_WEIGHT) {
|
|
teaser.push("</b>");
|
|
}
|
|
}
|
|
teaser.push("…");
|
|
return teaser.join("");
|
|
}
|
|
|
|
function formatSearchResultItem(item, terms) {
|
|
return '<div class="search-results__item">'
|
|
+ `<a href="${item.ref}">${item.doc.title}</a>`
|
|
+ `<div>${makeTeaser(item.doc.body, terms)}</div>`
|
|
+ '</div>';
|
|
}
|
|
|
|
function initSearch() {
|
|
var $searchInput = document.getElementById("search");
|
|
var $searchResults = document.querySelector(".search-results");
|
|
var $searchResultsItems = document.querySelector(".search-results__items");
|
|
var MAX_ITEMS = 10;
|
|
|
|
var options = {
|
|
bool: "AND",
|
|
fields: {
|
|
title: {boost: 2},
|
|
body: {boost: 1},
|
|
}
|
|
};
|
|
var currentTerm = "";
|
|
var index;
|
|
|
|
var initIndex = async function () {
|
|
if (index === undefined) {
|
|
index = fetch("/search_index.en.json")
|
|
.then(
|
|
async function(response) {
|
|
return await elasticlunr.Index.load(await response.json());
|
|
}
|
|
);
|
|
}
|
|
let res = await index;
|
|
return res;
|
|
}
|
|
|
|
$searchInput.addEventListener("keyup", debounce(async function() {
|
|
var term = $searchInput.value.trim();
|
|
if (term === currentTerm) {
|
|
return;
|
|
}
|
|
$searchResults.style.display = term === "" ? "none" : "block";
|
|
$searchResultsItems.innerHTML = "";
|
|
currentTerm = term;
|
|
if (term === "") {
|
|
return;
|
|
}
|
|
|
|
var results = (await initIndex()).search(term, options);
|
|
if (results.length === 0) {
|
|
$searchResults.style.display = "none";
|
|
return;
|
|
}
|
|
|
|
for (var i = 0; i < Math.min(results.length, MAX_ITEMS); i++) {
|
|
var item = document.createElement("li");
|
|
item.innerHTML = formatSearchResultItem(results[i], term.split(" "));
|
|
$searchResultsItems.appendChild(item);
|
|
}
|
|
}, 150));
|
|
|
|
window.addEventListener('click', function(e) {
|
|
if ($searchResults.style.display == "block" && !$searchResults.contains(e.target)) {
|
|
$searchResults.style.display = "none";
|
|
}
|
|
});
|
|
}
|
|
|
|
|
|
if (document.readyState === "complete" ||
|
|
(document.readyState !== "loading" && !document.documentElement.doScroll)
|
|
) {
|
|
initSearch();
|
|
} else {
|
|
document.addEventListener("DOMContentLoaded", initSearch);
|
|
}
|