mirror of
https://github.com/yuzu-mirror/yuzu
synced 2025-01-04 15:48:45 +00:00
f80bc712ea
This makes the naming more closely match its meaning. It's just a preferred core, not a required default core. This also makes the usages of this term consistent across the thread and process implementations.
473 lines
14 KiB
C++
473 lines
14 KiB
C++
// Copyright 2014 Citra Emulator Project / PPSSPP Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#pragma once
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "common/common_types.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/hle/kernel/object.h"
|
|
#include "core/hle/kernel/wait_object.h"
|
|
#include "core/hle/result.h"
|
|
|
|
namespace Kernel {
|
|
|
|
class KernelCore;
|
|
class Process;
|
|
class Scheduler;
|
|
|
|
enum ThreadPriority : u32 {
|
|
THREADPRIO_HIGHEST = 0, ///< Highest thread priority
|
|
THREADPRIO_USERLAND_MAX = 24, ///< Highest thread priority for userland apps
|
|
THREADPRIO_DEFAULT = 44, ///< Default thread priority for userland apps
|
|
THREADPRIO_LOWEST = 63, ///< Lowest thread priority
|
|
THREADPRIO_COUNT = 64, ///< Total number of possible thread priorities.
|
|
};
|
|
|
|
enum ThreadProcessorId : s32 {
|
|
THREADPROCESSORID_IDEAL = -2, ///< Run thread on the ideal core specified by the process.
|
|
THREADPROCESSORID_0 = 0, ///< Run thread on core 0
|
|
THREADPROCESSORID_1 = 1, ///< Run thread on core 1
|
|
THREADPROCESSORID_2 = 2, ///< Run thread on core 2
|
|
THREADPROCESSORID_3 = 3, ///< Run thread on core 3
|
|
THREADPROCESSORID_MAX = 4, ///< Processor ID must be less than this
|
|
|
|
/// Allowed CPU mask
|
|
THREADPROCESSORID_DEFAULT_MASK = (1 << THREADPROCESSORID_0) | (1 << THREADPROCESSORID_1) |
|
|
(1 << THREADPROCESSORID_2) | (1 << THREADPROCESSORID_3)
|
|
};
|
|
|
|
enum class ThreadStatus {
|
|
Running, ///< Currently running
|
|
Ready, ///< Ready to run
|
|
Paused, ///< Paused by SetThreadActivity or debug
|
|
WaitHLEEvent, ///< Waiting for hle event to finish
|
|
WaitSleep, ///< Waiting due to a SleepThread SVC
|
|
WaitIPC, ///< Waiting for the reply from an IPC request
|
|
WaitSynchAny, ///< Waiting due to WaitSynch1 or WaitSynchN with wait_all = false
|
|
WaitSynchAll, ///< Waiting due to WaitSynchronizationN with wait_all = true
|
|
WaitMutex, ///< Waiting due to an ArbitrateLock/WaitProcessWideKey svc
|
|
WaitArb, ///< Waiting due to a SignalToAddress/WaitForAddress svc
|
|
Dormant, ///< Created but not yet made ready
|
|
Dead ///< Run to completion, or forcefully terminated
|
|
};
|
|
|
|
enum class ThreadWakeupReason {
|
|
Signal, // The thread was woken up by WakeupAllWaitingThreads due to an object signal.
|
|
Timeout // The thread was woken up due to a wait timeout.
|
|
};
|
|
|
|
enum class ThreadActivity : u32 {
|
|
Normal = 0,
|
|
Paused = 1,
|
|
};
|
|
|
|
class Thread final : public WaitObject {
|
|
public:
|
|
using TLSMemory = std::vector<u8>;
|
|
using TLSMemoryPtr = std::shared_ptr<TLSMemory>;
|
|
|
|
using MutexWaitingThreads = std::vector<SharedPtr<Thread>>;
|
|
|
|
using ThreadContext = Core::ARM_Interface::ThreadContext;
|
|
|
|
using ThreadWaitObjects = std::vector<SharedPtr<WaitObject>>;
|
|
|
|
using WakeupCallback = std::function<bool(ThreadWakeupReason reason, SharedPtr<Thread> thread,
|
|
SharedPtr<WaitObject> object, std::size_t index)>;
|
|
|
|
/**
|
|
* Creates and returns a new thread. The new thread is immediately scheduled
|
|
* @param kernel The kernel instance this thread will be created under.
|
|
* @param name The friendly name desired for the thread
|
|
* @param entry_point The address at which the thread should start execution
|
|
* @param priority The thread's priority
|
|
* @param arg User data to pass to the thread
|
|
* @param processor_id The ID(s) of the processors on which the thread is desired to be run
|
|
* @param stack_top The address of the thread's stack top
|
|
* @param owner_process The parent process for the thread
|
|
* @return A shared pointer to the newly created thread
|
|
*/
|
|
static ResultVal<SharedPtr<Thread>> Create(KernelCore& kernel, std::string name,
|
|
VAddr entry_point, u32 priority, u64 arg,
|
|
s32 processor_id, VAddr stack_top,
|
|
Process& owner_process);
|
|
|
|
std::string GetName() const override {
|
|
return name;
|
|
}
|
|
std::string GetTypeName() const override {
|
|
return "Thread";
|
|
}
|
|
|
|
static const HandleType HANDLE_TYPE = HandleType::Thread;
|
|
HandleType GetHandleType() const override {
|
|
return HANDLE_TYPE;
|
|
}
|
|
|
|
bool ShouldWait(Thread* thread) const override;
|
|
void Acquire(Thread* thread) override;
|
|
|
|
/**
|
|
* Gets the thread's current priority
|
|
* @return The current thread's priority
|
|
*/
|
|
u32 GetPriority() const {
|
|
return current_priority;
|
|
}
|
|
|
|
/**
|
|
* Gets the thread's nominal priority.
|
|
* @return The current thread's nominal priority.
|
|
*/
|
|
u32 GetNominalPriority() const {
|
|
return nominal_priority;
|
|
}
|
|
|
|
/**
|
|
* Sets the thread's current priority
|
|
* @param priority The new priority
|
|
*/
|
|
void SetPriority(u32 priority);
|
|
|
|
/**
|
|
* Temporarily boosts the thread's priority until the next time it is scheduled
|
|
* @param priority The new priority
|
|
*/
|
|
void BoostPriority(u32 priority);
|
|
|
|
/// Adds a thread to the list of threads that are waiting for a lock held by this thread.
|
|
void AddMutexWaiter(SharedPtr<Thread> thread);
|
|
|
|
/// Removes a thread from the list of threads that are waiting for a lock held by this thread.
|
|
void RemoveMutexWaiter(SharedPtr<Thread> thread);
|
|
|
|
/// Recalculates the current priority taking into account priority inheritance.
|
|
void UpdatePriority();
|
|
|
|
/// Changes the core that the thread is running or scheduled to run on.
|
|
void ChangeCore(u32 core, u64 mask);
|
|
|
|
/**
|
|
* Gets the thread's thread ID
|
|
* @return The thread's ID
|
|
*/
|
|
u64 GetThreadID() const {
|
|
return thread_id;
|
|
}
|
|
|
|
TLSMemoryPtr& GetTLSMemory() {
|
|
return tls_memory;
|
|
}
|
|
|
|
const TLSMemoryPtr& GetTLSMemory() const {
|
|
return tls_memory;
|
|
}
|
|
|
|
/**
|
|
* Resumes a thread from waiting
|
|
*/
|
|
void ResumeFromWait();
|
|
|
|
/**
|
|
* Schedules an event to wake up the specified thread after the specified delay
|
|
* @param nanoseconds The time this thread will be allowed to sleep for
|
|
*/
|
|
void WakeAfterDelay(s64 nanoseconds);
|
|
|
|
/// Cancel any outstanding wakeup events for this thread
|
|
void CancelWakeupTimer();
|
|
|
|
/**
|
|
* Sets the result after the thread awakens (from either WaitSynchronization SVC)
|
|
* @param result Value to set to the returned result
|
|
*/
|
|
void SetWaitSynchronizationResult(ResultCode result);
|
|
|
|
/**
|
|
* Sets the output parameter value after the thread awakens (from WaitSynchronizationN SVC only)
|
|
* @param output Value to set to the output parameter
|
|
*/
|
|
void SetWaitSynchronizationOutput(s32 output);
|
|
|
|
/**
|
|
* Retrieves the index that this particular object occupies in the list of objects
|
|
* that the thread passed to WaitSynchronizationN, starting the search from the last element.
|
|
* It is used to set the output value of WaitSynchronizationN when the thread is awakened.
|
|
* When a thread wakes up due to an object signal, the kernel will use the index of the last
|
|
* matching object in the wait objects list in case of having multiple instances of the same
|
|
* object in the list.
|
|
* @param object Object to query the index of.
|
|
*/
|
|
s32 GetWaitObjectIndex(WaitObject* object) const;
|
|
|
|
/**
|
|
* Stops a thread, invalidating it from further use
|
|
*/
|
|
void Stop();
|
|
|
|
/*
|
|
* Returns the Thread Local Storage address of the current thread
|
|
* @returns VAddr of the thread's TLS
|
|
*/
|
|
VAddr GetTLSAddress() const {
|
|
return tls_address;
|
|
}
|
|
|
|
/*
|
|
* Returns the value of the TPIDR_EL0 Read/Write system register for this thread.
|
|
* @returns The value of the TPIDR_EL0 register.
|
|
*/
|
|
u64 GetTPIDR_EL0() const {
|
|
return tpidr_el0;
|
|
}
|
|
|
|
/// Sets the value of the TPIDR_EL0 Read/Write system register for this thread.
|
|
void SetTPIDR_EL0(u64 value) {
|
|
tpidr_el0 = value;
|
|
}
|
|
|
|
/*
|
|
* Returns the address of the current thread's command buffer, located in the TLS.
|
|
* @returns VAddr of the thread's command buffer.
|
|
*/
|
|
VAddr GetCommandBufferAddress() const;
|
|
|
|
/**
|
|
* Returns whether this thread is waiting for all the objects in
|
|
* its wait list to become ready, as a result of a WaitSynchronizationN call
|
|
* with wait_all = true.
|
|
*/
|
|
bool IsSleepingOnWaitAll() const {
|
|
return status == ThreadStatus::WaitSynchAll;
|
|
}
|
|
|
|
ThreadContext& GetContext() {
|
|
return context;
|
|
}
|
|
|
|
const ThreadContext& GetContext() const {
|
|
return context;
|
|
}
|
|
|
|
ThreadStatus GetStatus() const {
|
|
return status;
|
|
}
|
|
|
|
void SetStatus(ThreadStatus new_status);
|
|
|
|
u64 GetLastRunningTicks() const {
|
|
return last_running_ticks;
|
|
}
|
|
|
|
u64 GetTotalCPUTimeTicks() const {
|
|
return total_cpu_time_ticks;
|
|
}
|
|
|
|
void UpdateCPUTimeTicks(u64 ticks) {
|
|
total_cpu_time_ticks += ticks;
|
|
}
|
|
|
|
s32 GetProcessorID() const {
|
|
return processor_id;
|
|
}
|
|
|
|
Process* GetOwnerProcess() {
|
|
return owner_process;
|
|
}
|
|
|
|
const Process* GetOwnerProcess() const {
|
|
return owner_process;
|
|
}
|
|
|
|
const ThreadWaitObjects& GetWaitObjects() const {
|
|
return wait_objects;
|
|
}
|
|
|
|
void SetWaitObjects(ThreadWaitObjects objects) {
|
|
wait_objects = std::move(objects);
|
|
}
|
|
|
|
void ClearWaitObjects() {
|
|
wait_objects.clear();
|
|
}
|
|
|
|
/// Determines whether all the objects this thread is waiting on are ready.
|
|
bool AllWaitObjectsReady();
|
|
|
|
const MutexWaitingThreads& GetMutexWaitingThreads() const {
|
|
return wait_mutex_threads;
|
|
}
|
|
|
|
Thread* GetLockOwner() const {
|
|
return lock_owner.get();
|
|
}
|
|
|
|
void SetLockOwner(SharedPtr<Thread> owner) {
|
|
lock_owner = std::move(owner);
|
|
}
|
|
|
|
VAddr GetCondVarWaitAddress() const {
|
|
return condvar_wait_address;
|
|
}
|
|
|
|
void SetCondVarWaitAddress(VAddr address) {
|
|
condvar_wait_address = address;
|
|
}
|
|
|
|
VAddr GetMutexWaitAddress() const {
|
|
return mutex_wait_address;
|
|
}
|
|
|
|
void SetMutexWaitAddress(VAddr address) {
|
|
mutex_wait_address = address;
|
|
}
|
|
|
|
Handle GetWaitHandle() const {
|
|
return wait_handle;
|
|
}
|
|
|
|
void SetWaitHandle(Handle handle) {
|
|
wait_handle = handle;
|
|
}
|
|
|
|
VAddr GetArbiterWaitAddress() const {
|
|
return arb_wait_address;
|
|
}
|
|
|
|
void SetArbiterWaitAddress(VAddr address) {
|
|
arb_wait_address = address;
|
|
}
|
|
|
|
void SetGuestHandle(Handle handle) {
|
|
guest_handle = handle;
|
|
}
|
|
|
|
bool HasWakeupCallback() const {
|
|
return wakeup_callback != nullptr;
|
|
}
|
|
|
|
void SetWakeupCallback(WakeupCallback callback) {
|
|
wakeup_callback = std::move(callback);
|
|
}
|
|
|
|
void InvalidateWakeupCallback() {
|
|
SetWakeupCallback(nullptr);
|
|
}
|
|
|
|
/**
|
|
* Invokes the thread's wakeup callback.
|
|
*
|
|
* @pre A valid wakeup callback has been set. Violating this precondition
|
|
* will cause an assertion to trigger.
|
|
*/
|
|
bool InvokeWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
|
|
SharedPtr<WaitObject> object, std::size_t index);
|
|
|
|
u32 GetIdealCore() const {
|
|
return ideal_core;
|
|
}
|
|
|
|
u64 GetAffinityMask() const {
|
|
return affinity_mask;
|
|
}
|
|
|
|
ThreadActivity GetActivity() const {
|
|
return activity;
|
|
}
|
|
|
|
void SetActivity(ThreadActivity value);
|
|
|
|
private:
|
|
explicit Thread(KernelCore& kernel);
|
|
~Thread() override;
|
|
|
|
void ChangeScheduler();
|
|
|
|
Core::ARM_Interface::ThreadContext context{};
|
|
|
|
u64 thread_id = 0;
|
|
|
|
ThreadStatus status = ThreadStatus::Dormant;
|
|
|
|
VAddr entry_point = 0;
|
|
VAddr stack_top = 0;
|
|
|
|
u32 nominal_priority = 0; ///< Nominal thread priority, as set by the emulated application
|
|
u32 current_priority = 0; ///< Current thread priority, can be temporarily changed
|
|
|
|
u64 total_cpu_time_ticks = 0; ///< Total CPU running ticks.
|
|
u64 last_running_ticks = 0; ///< CPU tick when thread was last running
|
|
|
|
s32 processor_id = 0;
|
|
|
|
VAddr tls_address = 0; ///< Virtual address of the Thread Local Storage of the thread
|
|
u64 tpidr_el0 = 0; ///< TPIDR_EL0 read/write system register.
|
|
|
|
/// Process that owns this thread
|
|
Process* owner_process;
|
|
|
|
/// Objects that the thread is waiting on, in the same order as they were
|
|
/// passed to WaitSynchronization1/N.
|
|
ThreadWaitObjects wait_objects;
|
|
|
|
/// List of threads that are waiting for a mutex that is held by this thread.
|
|
MutexWaitingThreads wait_mutex_threads;
|
|
|
|
/// Thread that owns the lock that this thread is waiting for.
|
|
SharedPtr<Thread> lock_owner;
|
|
|
|
/// If waiting on a ConditionVariable, this is the ConditionVariable address
|
|
VAddr condvar_wait_address = 0;
|
|
/// If waiting on a Mutex, this is the mutex address
|
|
VAddr mutex_wait_address = 0;
|
|
/// The handle used to wait for the mutex.
|
|
Handle wait_handle = 0;
|
|
|
|
/// If waiting for an AddressArbiter, this is the address being waited on.
|
|
VAddr arb_wait_address{0};
|
|
|
|
/// Handle used by guest emulated application to access this thread
|
|
Handle guest_handle = 0;
|
|
|
|
/// Handle used as userdata to reference this object when inserting into the CoreTiming queue.
|
|
Handle callback_handle = 0;
|
|
|
|
/// Callback that will be invoked when the thread is resumed from a waiting state. If the thread
|
|
/// was waiting via WaitSynchronizationN then the object will be the last object that became
|
|
/// available. In case of a timeout, the object will be nullptr.
|
|
WakeupCallback wakeup_callback;
|
|
|
|
Scheduler* scheduler = nullptr;
|
|
|
|
u32 ideal_core{0xFFFFFFFF};
|
|
u64 affinity_mask{0x1};
|
|
|
|
TLSMemoryPtr tls_memory = std::make_shared<TLSMemory>();
|
|
|
|
std::string name;
|
|
|
|
ThreadActivity activity = ThreadActivity::Normal;
|
|
};
|
|
|
|
/**
|
|
* Gets the current thread
|
|
*/
|
|
Thread* GetCurrentThread();
|
|
|
|
/**
|
|
* Waits the current thread on a sleep
|
|
*/
|
|
void WaitCurrentThread_Sleep();
|
|
|
|
/**
|
|
* Stops the current thread and removes it from the thread_list
|
|
*/
|
|
void ExitCurrentThread();
|
|
|
|
} // namespace Kernel
|