mirror of
https://github.com/yuzu-mirror/yuzu
synced 2024-12-22 10:33:07 +00:00
13a8fde3ad
This implements svcMapPhysicalMemory/svcUnmapPhysicalMemory for Yuzu, which can be used to map memory at a desired address by games since 3.0.0. It also properly parses SystemResourceSize from NPDM, and makes information available via svcGetInfo. This is needed for games like Super Smash Bros. and Diablo 3 -- this PR's implementation does not run into the "ASCII reads" issue mentioned in the comments of #2626, which was caused by the following bugs in Yuzu's memory management that this PR also addresses: * Yuzu's memory coalescing does not properly merge blocks. This results in a polluted address space/svcQueryMemory results that would be impossible to replicate on hardware, which can lead to game code making the wrong assumptions about memory layout. * This implements better merging for AllocatedMemoryBlocks. * Yuzu's implementation of svcMirrorMemory unprotected the entire virtual memory range containing the range being mirrored. This could lead to games attempting to map data at that unprotected range/attempting to access that range after yuzu improperly unmapped it. * This PR fixes it by simply calling ReprotectRange instead of Reprotect.
331 lines
11 KiB
C++
331 lines
11 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <memory>
|
|
#include <random>
|
|
#include "common/alignment.h"
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "core/core.h"
|
|
#include "core/file_sys/program_metadata.h"
|
|
#include "core/hle/kernel/code_set.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/resource_limit.h"
|
|
#include "core/hle/kernel/scheduler.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/kernel/vm_manager.h"
|
|
#include "core/memory.h"
|
|
#include "core/settings.h"
|
|
|
|
namespace Kernel {
|
|
namespace {
|
|
/**
|
|
* Sets up the primary application thread
|
|
*
|
|
* @param owner_process The parent process for the main thread
|
|
* @param kernel The kernel instance to create the main thread under.
|
|
* @param priority The priority to give the main thread
|
|
*/
|
|
void SetupMainThread(Process& owner_process, KernelCore& kernel, u32 priority) {
|
|
const auto& vm_manager = owner_process.VMManager();
|
|
const VAddr entry_point = vm_manager.GetCodeRegionBaseAddress();
|
|
const VAddr stack_top = vm_manager.GetTLSIORegionEndAddress();
|
|
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0,
|
|
owner_process.GetIdealCore(), stack_top, owner_process);
|
|
|
|
SharedPtr<Thread> thread = std::move(thread_res).Unwrap();
|
|
|
|
// Register 1 must be a handle to the main thread
|
|
const Handle thread_handle = owner_process.GetHandleTable().Create(thread).Unwrap();
|
|
thread->GetContext().cpu_registers[1] = thread_handle;
|
|
|
|
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
|
|
thread->ResumeFromWait();
|
|
}
|
|
} // Anonymous namespace
|
|
|
|
// Represents a page used for thread-local storage.
|
|
//
|
|
// Each TLS page contains slots that may be used by processes and threads.
|
|
// Every process and thread is created with a slot in some arbitrary page
|
|
// (whichever page happens to have an available slot).
|
|
class TLSPage {
|
|
public:
|
|
static constexpr std::size_t num_slot_entries = Memory::PAGE_SIZE / Memory::TLS_ENTRY_SIZE;
|
|
|
|
explicit TLSPage(VAddr address) : base_address{address} {}
|
|
|
|
bool HasAvailableSlots() const {
|
|
return !is_slot_used.all();
|
|
}
|
|
|
|
VAddr GetBaseAddress() const {
|
|
return base_address;
|
|
}
|
|
|
|
std::optional<VAddr> ReserveSlot() {
|
|
for (std::size_t i = 0; i < is_slot_used.size(); i++) {
|
|
if (is_slot_used[i]) {
|
|
continue;
|
|
}
|
|
|
|
is_slot_used[i] = true;
|
|
return base_address + (i * Memory::TLS_ENTRY_SIZE);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
void ReleaseSlot(VAddr address) {
|
|
// Ensure that all given addresses are consistent with how TLS pages
|
|
// are intended to be used when releasing slots.
|
|
ASSERT(IsWithinPage(address));
|
|
ASSERT((address % Memory::TLS_ENTRY_SIZE) == 0);
|
|
|
|
const std::size_t index = (address - base_address) / Memory::TLS_ENTRY_SIZE;
|
|
is_slot_used[index] = false;
|
|
}
|
|
|
|
private:
|
|
bool IsWithinPage(VAddr address) const {
|
|
return base_address <= address && address < base_address + Memory::PAGE_SIZE;
|
|
}
|
|
|
|
VAddr base_address;
|
|
std::bitset<num_slot_entries> is_slot_used;
|
|
};
|
|
|
|
SharedPtr<Process> Process::Create(Core::System& system, std::string name, ProcessType type) {
|
|
auto& kernel = system.Kernel();
|
|
|
|
SharedPtr<Process> process(new Process(system));
|
|
process->name = std::move(name);
|
|
process->resource_limit = kernel.GetSystemResourceLimit();
|
|
process->status = ProcessStatus::Created;
|
|
process->program_id = 0;
|
|
process->process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
|
|
: kernel.CreateNewUserProcessID();
|
|
process->capabilities.InitializeForMetadatalessProcess();
|
|
|
|
std::mt19937 rng(Settings::values.rng_seed.value_or(0));
|
|
std::uniform_int_distribution<u64> distribution;
|
|
std::generate(process->random_entropy.begin(), process->random_entropy.end(),
|
|
[&] { return distribution(rng); });
|
|
|
|
kernel.AppendNewProcess(process);
|
|
return process;
|
|
}
|
|
|
|
SharedPtr<ResourceLimit> Process::GetResourceLimit() const {
|
|
return resource_limit;
|
|
}
|
|
|
|
u64 Process::GetTotalPhysicalMemoryAvailable() const {
|
|
return vm_manager.GetTotalPhysicalMemoryAvailable();
|
|
}
|
|
|
|
u64 Process::GetTotalPhysicalMemoryAvailableWithoutMmHeap() const {
|
|
// TODO: Subtract the personal heap size from this when the
|
|
// personal heap is implemented.
|
|
return GetTotalPhysicalMemoryAvailable();
|
|
}
|
|
|
|
u64 Process::GetTotalPhysicalMemoryUsed() const {
|
|
return vm_manager.GetCurrentHeapSize() + main_thread_stack_size + code_memory_size;
|
|
}
|
|
|
|
u64 Process::GetTotalPhysicalMemoryUsedWithoutMmHeap() const {
|
|
// TODO: Subtract the personal heap size from this when the
|
|
// personal heap is implemented.
|
|
return GetTotalPhysicalMemoryUsed();
|
|
}
|
|
|
|
void Process::RegisterThread(const Thread* thread) {
|
|
thread_list.push_back(thread);
|
|
}
|
|
|
|
void Process::UnregisterThread(const Thread* thread) {
|
|
thread_list.remove(thread);
|
|
}
|
|
|
|
ResultCode Process::ClearSignalState() {
|
|
if (status == ProcessStatus::Exited) {
|
|
LOG_ERROR(Kernel, "called on a terminated process instance.");
|
|
return ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (!is_signaled) {
|
|
LOG_ERROR(Kernel, "called on a process instance that isn't signaled.");
|
|
return ERR_INVALID_STATE;
|
|
}
|
|
|
|
is_signaled = false;
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) {
|
|
program_id = metadata.GetTitleID();
|
|
ideal_core = metadata.GetMainThreadCore();
|
|
is_64bit_process = metadata.Is64BitProgram();
|
|
system_resource_size = metadata.GetSystemResourceSize();
|
|
|
|
vm_manager.Reset(metadata.GetAddressSpaceType());
|
|
|
|
const auto& caps = metadata.GetKernelCapabilities();
|
|
const auto capability_init_result =
|
|
capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager);
|
|
if (capability_init_result.IsError()) {
|
|
return capability_init_result;
|
|
}
|
|
|
|
return handle_table.SetSize(capabilities.GetHandleTableSize());
|
|
}
|
|
|
|
void Process::Run(s32 main_thread_priority, u64 stack_size) {
|
|
// The kernel always ensures that the given stack size is page aligned.
|
|
main_thread_stack_size = Common::AlignUp(stack_size, Memory::PAGE_SIZE);
|
|
|
|
// Allocate and map the main thread stack
|
|
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
|
|
// of the user address space.
|
|
const VAddr mapping_address = vm_manager.GetTLSIORegionEndAddress() - main_thread_stack_size;
|
|
vm_manager
|
|
.MapMemoryBlock(mapping_address, std::make_shared<std::vector<u8>>(main_thread_stack_size),
|
|
0, main_thread_stack_size, MemoryState::Stack)
|
|
.Unwrap();
|
|
|
|
vm_manager.LogLayout();
|
|
ChangeStatus(ProcessStatus::Running);
|
|
|
|
SetupMainThread(*this, kernel, main_thread_priority);
|
|
}
|
|
|
|
void Process::PrepareForTermination() {
|
|
ChangeStatus(ProcessStatus::Exiting);
|
|
|
|
const auto stop_threads = [this](const std::vector<SharedPtr<Thread>>& thread_list) {
|
|
for (auto& thread : thread_list) {
|
|
if (thread->GetOwnerProcess() != this)
|
|
continue;
|
|
|
|
if (thread == system.CurrentScheduler().GetCurrentThread())
|
|
continue;
|
|
|
|
// TODO(Subv): When are the other running/ready threads terminated?
|
|
ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynch,
|
|
"Exiting processes with non-waiting threads is currently unimplemented");
|
|
|
|
thread->Stop();
|
|
}
|
|
};
|
|
|
|
stop_threads(system.Scheduler(0).GetThreadList());
|
|
stop_threads(system.Scheduler(1).GetThreadList());
|
|
stop_threads(system.Scheduler(2).GetThreadList());
|
|
stop_threads(system.Scheduler(3).GetThreadList());
|
|
|
|
ChangeStatus(ProcessStatus::Exited);
|
|
}
|
|
|
|
/**
|
|
* Attempts to find a TLS page that contains a free slot for
|
|
* use by a thread.
|
|
*
|
|
* @returns If a page with an available slot is found, then an iterator
|
|
* pointing to the page is returned. Otherwise the end iterator
|
|
* is returned instead.
|
|
*/
|
|
static auto FindTLSPageWithAvailableSlots(std::vector<TLSPage>& tls_pages) {
|
|
return std::find_if(tls_pages.begin(), tls_pages.end(),
|
|
[](const auto& page) { return page.HasAvailableSlots(); });
|
|
}
|
|
|
|
VAddr Process::CreateTLSRegion() {
|
|
auto tls_page_iter = FindTLSPageWithAvailableSlots(tls_pages);
|
|
|
|
if (tls_page_iter == tls_pages.cend()) {
|
|
const auto region_address =
|
|
vm_manager.FindFreeRegion(vm_manager.GetTLSIORegionBaseAddress(),
|
|
vm_manager.GetTLSIORegionEndAddress(), Memory::PAGE_SIZE);
|
|
ASSERT(region_address.Succeeded());
|
|
|
|
const auto map_result = vm_manager.MapMemoryBlock(
|
|
*region_address, std::make_shared<std::vector<u8>>(Memory::PAGE_SIZE), 0,
|
|
Memory::PAGE_SIZE, MemoryState::ThreadLocal);
|
|
ASSERT(map_result.Succeeded());
|
|
|
|
tls_pages.emplace_back(*region_address);
|
|
|
|
const auto reserve_result = tls_pages.back().ReserveSlot();
|
|
ASSERT(reserve_result.has_value());
|
|
|
|
return *reserve_result;
|
|
}
|
|
|
|
return *tls_page_iter->ReserveSlot();
|
|
}
|
|
|
|
void Process::FreeTLSRegion(VAddr tls_address) {
|
|
const VAddr aligned_address = Common::AlignDown(tls_address, Memory::PAGE_SIZE);
|
|
auto iter =
|
|
std::find_if(tls_pages.begin(), tls_pages.end(), [aligned_address](const auto& page) {
|
|
return page.GetBaseAddress() == aligned_address;
|
|
});
|
|
|
|
// Something has gone very wrong if we're freeing a region
|
|
// with no actual page available.
|
|
ASSERT(iter != tls_pages.cend());
|
|
|
|
iter->ReleaseSlot(tls_address);
|
|
}
|
|
|
|
void Process::LoadModule(CodeSet module_, VAddr base_addr) {
|
|
const auto memory = std::make_shared<std::vector<u8>>(std::move(module_.memory));
|
|
|
|
const auto MapSegment = [&](const CodeSet::Segment& segment, VMAPermission permissions,
|
|
MemoryState memory_state) {
|
|
const auto vma = vm_manager
|
|
.MapMemoryBlock(segment.addr + base_addr, memory, segment.offset,
|
|
segment.size, memory_state)
|
|
.Unwrap();
|
|
vm_manager.Reprotect(vma, permissions);
|
|
};
|
|
|
|
// Map CodeSet segments
|
|
MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::Code);
|
|
MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeData);
|
|
MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeData);
|
|
|
|
code_memory_size += module_.memory.size();
|
|
}
|
|
|
|
Process::Process(Core::System& system)
|
|
: WaitObject{system.Kernel()}, vm_manager{system},
|
|
address_arbiter{system}, mutex{system}, system{system} {}
|
|
|
|
Process::~Process() = default;
|
|
|
|
void Process::Acquire(Thread* thread) {
|
|
ASSERT_MSG(!ShouldWait(thread), "Object unavailable!");
|
|
}
|
|
|
|
bool Process::ShouldWait(const Thread* thread) const {
|
|
return !is_signaled;
|
|
}
|
|
|
|
void Process::ChangeStatus(ProcessStatus new_status) {
|
|
if (status == new_status) {
|
|
return;
|
|
}
|
|
|
|
status = new_status;
|
|
is_signaled = true;
|
|
WakeupAllWaitingThreads();
|
|
}
|
|
|
|
} // namespace Kernel
|