// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include <array> #include <atomic> #include <bitset> #include <functional> #include <memory> #include <thread> #include <unordered_map> #include <utility> #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/thread.h" #include "core/arm/arm_interface.h" #include "core/arm/cpu_interrupt_handler.h" #include "core/arm/exclusive_monitor.h" #include "core/core.h" #include "core/core_timing.h" #include "core/core_timing_util.h" #include "core/cpu_manager.h" #include "core/device_memory.h" #include "core/hardware_properties.h" #include "core/hle/kernel/client_port.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/memory/memory_layout.h" #include "core/hle/kernel/memory/memory_manager.h" #include "core/hle/kernel/memory/slab_heap.h" #include "core/hle/kernel/physical_core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/synchronization.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/time_manager.h" #include "core/hle/lock.h" #include "core/hle/result.h" #include "core/memory.h" MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70)); namespace Kernel { struct KernelCore::Impl { explicit Impl(Core::System& system, KernelCore& kernel) : synchronization{system}, time_manager{system}, global_handle_table{kernel}, system{ system} {} void SetMulticore(bool is_multicore) { this->is_multicore = is_multicore; } void Initialize(KernelCore& kernel) { process_list.clear(); RegisterHostThread(); global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel); InitializePhysicalCores(); InitializeSystemResourceLimit(kernel); InitializeMemoryLayout(); InitializePreemption(kernel); InitializeSchedulers(); InitializeSuspendThreads(); } void InitializeCores() { for (auto& core : cores) { core.Initialize(current_process->Is64BitProcess()); } } void Shutdown() { next_object_id = 0; next_kernel_process_id = Process::InitialKIPIDMin; next_user_process_id = Process::ProcessIDMin; next_thread_id = 1; for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { if (suspend_threads[i]) { suspend_threads[i].reset(); } } cores.clear(); current_process = nullptr; system_resource_limit = nullptr; global_handle_table.Clear(); preemption_event = nullptr; named_ports.clear(); exclusive_monitor.reset(); num_host_threads = 0; std::fill(register_host_thread_keys.begin(), register_host_thread_keys.end(), std::thread::id{}); std::fill(register_host_thread_values.begin(), register_host_thread_values.end(), 0); } void InitializePhysicalCores() { exclusive_monitor = Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES); for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { schedulers[i] = std::make_unique<Kernel::KScheduler>(system, i); cores.emplace_back(i, system, *schedulers[i], interrupts); } } void InitializeSchedulers() { for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { cores[i].Scheduler().Initialize(); } } // Creates the default system resource limit void InitializeSystemResourceLimit(KernelCore& kernel) { system_resource_limit = ResourceLimit::Create(kernel); // If setting the default system values fails, then something seriously wrong has occurred. ASSERT(system_resource_limit->SetLimitValue(ResourceType::PhysicalMemory, 0x100000000) .IsSuccess()); ASSERT(system_resource_limit->SetLimitValue(ResourceType::Threads, 800).IsSuccess()); ASSERT(system_resource_limit->SetLimitValue(ResourceType::Events, 700).IsSuccess()); ASSERT(system_resource_limit->SetLimitValue(ResourceType::TransferMemory, 200).IsSuccess()); ASSERT(system_resource_limit->SetLimitValue(ResourceType::Sessions, 900).IsSuccess()); if (!system_resource_limit->Reserve(ResourceType::PhysicalMemory, 0) || !system_resource_limit->Reserve(ResourceType::PhysicalMemory, 0x60000)) { UNREACHABLE(); } } void InitializePreemption(KernelCore& kernel) { preemption_event = Core::Timing::CreateEvent( "PreemptionCallback", [this, &kernel](std::uintptr_t, std::chrono::nanoseconds) { { KScopedSchedulerLock lock(kernel); global_scheduler_context->PreemptThreads(); } const auto time_interval = std::chrono::nanoseconds{ Core::Timing::msToCycles(std::chrono::milliseconds(10))}; system.CoreTiming().ScheduleEvent(time_interval, preemption_event); }); const auto time_interval = std::chrono::nanoseconds{Core::Timing::msToCycles(std::chrono::milliseconds(10))}; system.CoreTiming().ScheduleEvent(time_interval, preemption_event); } void InitializeSuspendThreads() { for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { std::string name = "Suspend Thread Id:" + std::to_string(i); std::function<void(void*)> init_func = Core::CpuManager::GetSuspendThreadStartFunc(); void* init_func_parameter = system.GetCpuManager().GetStartFuncParamater(); const auto type = static_cast<ThreadType>(THREADTYPE_KERNEL | THREADTYPE_HLE | THREADTYPE_SUSPEND); auto thread_res = Thread::Create(system, type, std::move(name), 0, 0, 0, static_cast<u32>(i), 0, nullptr, std::move(init_func), init_func_parameter); suspend_threads[i] = std::move(thread_res).Unwrap(); } } void MakeCurrentProcess(Process* process) { current_process = process; if (process == nullptr) { return; } const u32 core_id = GetCurrentHostThreadID(); if (core_id < Core::Hardware::NUM_CPU_CORES) { system.Memory().SetCurrentPageTable(*process, core_id); } } void RegisterCoreThread(std::size_t core_id) { const std::thread::id this_id = std::this_thread::get_id(); if (!is_multicore) { single_core_thread_id = this_id; } const auto end = register_host_thread_keys.begin() + static_cast<ptrdiff_t>(num_host_threads); const auto it = std::find(register_host_thread_keys.begin(), end, this_id); ASSERT(core_id < Core::Hardware::NUM_CPU_CORES); ASSERT(it == end); InsertHostThread(static_cast<u32>(core_id)); } void RegisterHostThread() { const std::thread::id this_id = std::this_thread::get_id(); const auto end = register_host_thread_keys.begin() + static_cast<ptrdiff_t>(num_host_threads); const auto it = std::find(register_host_thread_keys.begin(), end, this_id); if (it == end) { InsertHostThread(registered_thread_ids++); } } void InsertHostThread(u32 value) { const size_t index = num_host_threads++; ASSERT_MSG(index < NUM_REGISTRABLE_HOST_THREADS, "Too many host threads"); register_host_thread_values[index] = value; register_host_thread_keys[index] = std::this_thread::get_id(); } [[nodiscard]] u32 GetCurrentHostThreadID() const { const std::thread::id this_id = std::this_thread::get_id(); if (!is_multicore && single_core_thread_id == this_id) { return static_cast<u32>(system.GetCpuManager().CurrentCore()); } const auto end = register_host_thread_keys.begin() + static_cast<ptrdiff_t>(num_host_threads); const auto it = std::find(register_host_thread_keys.begin(), end, this_id); if (it == end) { return Core::INVALID_HOST_THREAD_ID; } return register_host_thread_values[static_cast<size_t>( std::distance(register_host_thread_keys.begin(), it))]; } Core::EmuThreadHandle GetCurrentEmuThreadID() const { Core::EmuThreadHandle result = Core::EmuThreadHandle::InvalidHandle(); result.host_handle = GetCurrentHostThreadID(); if (result.host_handle >= Core::Hardware::NUM_CPU_CORES) { return result; } const Kernel::KScheduler& sched = cores[result.host_handle].Scheduler(); const Kernel::Thread* current = sched.GetCurrentThread(); if (current != nullptr && !current->IsPhantomMode()) { result.guest_handle = current->GetGlobalHandle(); } else { result.guest_handle = InvalidHandle; } return result; } void InitializeMemoryLayout() { // Initialize memory layout constexpr Memory::MemoryLayout layout{Memory::MemoryLayout::GetDefaultLayout()}; constexpr std::size_t hid_size{0x40000}; constexpr std::size_t font_size{0x1100000}; constexpr std::size_t irs_size{0x8000}; constexpr std::size_t time_size{0x1000}; constexpr PAddr hid_addr{layout.System().StartAddress()}; constexpr PAddr font_pa{layout.System().StartAddress() + hid_size}; constexpr PAddr irs_addr{layout.System().StartAddress() + hid_size + font_size}; constexpr PAddr time_addr{layout.System().StartAddress() + hid_size + font_size + irs_size}; // Initialize memory manager memory_manager = std::make_unique<Memory::MemoryManager>(); memory_manager->InitializeManager(Memory::MemoryManager::Pool::Application, layout.Application().StartAddress(), layout.Application().EndAddress()); memory_manager->InitializeManager(Memory::MemoryManager::Pool::Applet, layout.Applet().StartAddress(), layout.Applet().EndAddress()); memory_manager->InitializeManager(Memory::MemoryManager::Pool::System, layout.System().StartAddress(), layout.System().EndAddress()); hid_shared_mem = Kernel::SharedMemory::Create( system.Kernel(), system.DeviceMemory(), nullptr, {hid_addr, hid_size / Memory::PageSize}, Memory::MemoryPermission::None, Memory::MemoryPermission::Read, hid_addr, hid_size, "HID:SharedMemory"); font_shared_mem = Kernel::SharedMemory::Create( system.Kernel(), system.DeviceMemory(), nullptr, {font_pa, font_size / Memory::PageSize}, Memory::MemoryPermission::None, Memory::MemoryPermission::Read, font_pa, font_size, "Font:SharedMemory"); irs_shared_mem = Kernel::SharedMemory::Create( system.Kernel(), system.DeviceMemory(), nullptr, {irs_addr, irs_size / Memory::PageSize}, Memory::MemoryPermission::None, Memory::MemoryPermission::Read, irs_addr, irs_size, "IRS:SharedMemory"); time_shared_mem = Kernel::SharedMemory::Create( system.Kernel(), system.DeviceMemory(), nullptr, {time_addr, time_size / Memory::PageSize}, Memory::MemoryPermission::None, Memory::MemoryPermission::Read, time_addr, time_size, "Time:SharedMemory"); // Allocate slab heaps user_slab_heap_pages = std::make_unique<Memory::SlabHeap<Memory::Page>>(); // Initialize slab heaps constexpr u64 user_slab_heap_size{0x3de000}; user_slab_heap_pages->Initialize( system.DeviceMemory().GetPointer(Core::DramMemoryMap::SlabHeapBase), user_slab_heap_size); } std::atomic<u32> next_object_id{0}; std::atomic<u64> next_kernel_process_id{Process::InitialKIPIDMin}; std::atomic<u64> next_user_process_id{Process::ProcessIDMin}; std::atomic<u64> next_thread_id{1}; // Lists all processes that exist in the current session. std::vector<std::shared_ptr<Process>> process_list; Process* current_process = nullptr; std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context; Kernel::Synchronization synchronization; Kernel::TimeManager time_manager; std::shared_ptr<ResourceLimit> system_resource_limit; std::shared_ptr<Core::Timing::EventType> preemption_event; // This is the kernel's handle table or supervisor handle table which // stores all the objects in place. HandleTable global_handle_table; /// Map of named ports managed by the kernel, which can be retrieved using /// the ConnectToPort SVC. NamedPortTable named_ports; std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor; std::vector<Kernel::PhysicalCore> cores; // 0-3 IDs represent core threads, >3 represent others std::atomic<u32> registered_thread_ids{Core::Hardware::NUM_CPU_CORES}; // Number of host threads is a relatively high number to avoid overflowing static constexpr size_t NUM_REGISTRABLE_HOST_THREADS = 1024; std::atomic<size_t> num_host_threads{0}; std::array<std::atomic<std::thread::id>, NUM_REGISTRABLE_HOST_THREADS> register_host_thread_keys{}; std::array<std::atomic<u32>, NUM_REGISTRABLE_HOST_THREADS> register_host_thread_values{}; // Kernel memory management std::unique_ptr<Memory::MemoryManager> memory_manager; std::unique_ptr<Memory::SlabHeap<Memory::Page>> user_slab_heap_pages; // Shared memory for services std::shared_ptr<Kernel::SharedMemory> hid_shared_mem; std::shared_ptr<Kernel::SharedMemory> font_shared_mem; std::shared_ptr<Kernel::SharedMemory> irs_shared_mem; std::shared_ptr<Kernel::SharedMemory> time_shared_mem; std::array<std::shared_ptr<Thread>, Core::Hardware::NUM_CPU_CORES> suspend_threads{}; std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{}; std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{}; bool is_multicore{}; std::thread::id single_core_thread_id{}; std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{}; // System context Core::System& system; }; KernelCore::KernelCore(Core::System& system) : impl{std::make_unique<Impl>(system, *this)} {} KernelCore::~KernelCore() { Shutdown(); } void KernelCore::SetMulticore(bool is_multicore) { impl->SetMulticore(is_multicore); } void KernelCore::Initialize() { impl->Initialize(*this); } void KernelCore::InitializeCores() { impl->InitializeCores(); } void KernelCore::Shutdown() { impl->Shutdown(); } std::shared_ptr<ResourceLimit> KernelCore::GetSystemResourceLimit() const { return impl->system_resource_limit; } std::shared_ptr<Thread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const { return impl->global_handle_table.Get<Thread>(handle); } void KernelCore::AppendNewProcess(std::shared_ptr<Process> process) { impl->process_list.push_back(std::move(process)); } void KernelCore::MakeCurrentProcess(Process* process) { impl->MakeCurrentProcess(process); } Process* KernelCore::CurrentProcess() { return impl->current_process; } const Process* KernelCore::CurrentProcess() const { return impl->current_process; } const std::vector<std::shared_ptr<Process>>& KernelCore::GetProcessList() const { return impl->process_list; } Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() { return *impl->global_scheduler_context; } const Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() const { return *impl->global_scheduler_context; } Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) { return *impl->schedulers[id]; } const Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) const { return *impl->schedulers[id]; } Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) { return impl->cores[id]; } const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const { return impl->cores[id]; } Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() { u32 core_id = impl->GetCurrentHostThreadID(); ASSERT(core_id < Core::Hardware::NUM_CPU_CORES); return impl->cores[core_id]; } const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const { u32 core_id = impl->GetCurrentHostThreadID(); ASSERT(core_id < Core::Hardware::NUM_CPU_CORES); return impl->cores[core_id]; } Kernel::KScheduler* KernelCore::CurrentScheduler() { u32 core_id = impl->GetCurrentHostThreadID(); if (core_id >= Core::Hardware::NUM_CPU_CORES) { // This is expected when called from not a guest thread return {}; } return impl->schedulers[core_id].get(); } std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts() { return impl->interrupts; } const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts() const { return impl->interrupts; } Kernel::Synchronization& KernelCore::Synchronization() { return impl->synchronization; } const Kernel::Synchronization& KernelCore::Synchronization() const { return impl->synchronization; } Kernel::TimeManager& KernelCore::TimeManager() { return impl->time_manager; } const Kernel::TimeManager& KernelCore::TimeManager() const { return impl->time_manager; } Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() { return *impl->exclusive_monitor; } const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const { return *impl->exclusive_monitor; } void KernelCore::InvalidateAllInstructionCaches() { for (auto& physical_core : impl->cores) { physical_core.ArmInterface().ClearInstructionCache(); } } void KernelCore::InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size) { for (auto& physical_core : impl->cores) { if (!physical_core.IsInitialized()) { continue; } physical_core.ArmInterface().InvalidateCacheRange(addr, size); } } void KernelCore::PrepareReschedule(std::size_t id) { // TODO: Reimplement, this } void KernelCore::AddNamedPort(std::string name, std::shared_ptr<ClientPort> port) { impl->named_ports.emplace(std::move(name), std::move(port)); } KernelCore::NamedPortTable::iterator KernelCore::FindNamedPort(const std::string& name) { return impl->named_ports.find(name); } KernelCore::NamedPortTable::const_iterator KernelCore::FindNamedPort( const std::string& name) const { return impl->named_ports.find(name); } bool KernelCore::IsValidNamedPort(NamedPortTable::const_iterator port) const { return port != impl->named_ports.cend(); } u32 KernelCore::CreateNewObjectID() { return impl->next_object_id++; } u64 KernelCore::CreateNewThreadID() { return impl->next_thread_id++; } u64 KernelCore::CreateNewKernelProcessID() { return impl->next_kernel_process_id++; } u64 KernelCore::CreateNewUserProcessID() { return impl->next_user_process_id++; } Kernel::HandleTable& KernelCore::GlobalHandleTable() { return impl->global_handle_table; } const Kernel::HandleTable& KernelCore::GlobalHandleTable() const { return impl->global_handle_table; } void KernelCore::RegisterCoreThread(std::size_t core_id) { impl->RegisterCoreThread(core_id); } void KernelCore::RegisterHostThread() { impl->RegisterHostThread(); } u32 KernelCore::GetCurrentHostThreadID() const { return impl->GetCurrentHostThreadID(); } Core::EmuThreadHandle KernelCore::GetCurrentEmuThreadID() const { return impl->GetCurrentEmuThreadID(); } Memory::MemoryManager& KernelCore::MemoryManager() { return *impl->memory_manager; } const Memory::MemoryManager& KernelCore::MemoryManager() const { return *impl->memory_manager; } Memory::SlabHeap<Memory::Page>& KernelCore::GetUserSlabHeapPages() { return *impl->user_slab_heap_pages; } const Memory::SlabHeap<Memory::Page>& KernelCore::GetUserSlabHeapPages() const { return *impl->user_slab_heap_pages; } Kernel::SharedMemory& KernelCore::GetHidSharedMem() { return *impl->hid_shared_mem; } const Kernel::SharedMemory& KernelCore::GetHidSharedMem() const { return *impl->hid_shared_mem; } Kernel::SharedMemory& KernelCore::GetFontSharedMem() { return *impl->font_shared_mem; } const Kernel::SharedMemory& KernelCore::GetFontSharedMem() const { return *impl->font_shared_mem; } Kernel::SharedMemory& KernelCore::GetIrsSharedMem() { return *impl->irs_shared_mem; } const Kernel::SharedMemory& KernelCore::GetIrsSharedMem() const { return *impl->irs_shared_mem; } Kernel::SharedMemory& KernelCore::GetTimeSharedMem() { return *impl->time_shared_mem; } const Kernel::SharedMemory& KernelCore::GetTimeSharedMem() const { return *impl->time_shared_mem; } void KernelCore::Suspend(bool in_suspention) { const bool should_suspend = exception_exited || in_suspention; { KScopedSchedulerLock lock(*this); ThreadStatus status = should_suspend ? ThreadStatus::Ready : ThreadStatus::WaitSleep; for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) { impl->suspend_threads[i]->SetStatus(status); } } } bool KernelCore::IsMulticore() const { return impl->is_multicore; } void KernelCore::ExceptionalExit() { exception_exited = true; Suspend(true); } void KernelCore::EnterSVCProfile() { std::size_t core = impl->GetCurrentHostThreadID(); impl->svc_ticks[core] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC)); } void KernelCore::ExitSVCProfile() { std::size_t core = impl->GetCurrentHostThreadID(); MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[core]); } } // namespace Kernel