// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <map>

#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/string_util.h"
#include "common/symbols.h"

#include "core/core_timing.h"
#include "core/arm/arm_interface.h"

#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/semaphore.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/timer.h"
#include "core/hle/kernel/vm_manager.h"

#include "core/hle/function_wrappers.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"

////////////////////////////////////////////////////////////////////////////////////////////////////
// Namespace SVC

using Kernel::SharedPtr;
using Kernel::ERR_INVALID_HANDLE;

namespace SVC {

const ResultCode ERR_NOT_FOUND(ErrorDescription::NotFound, ErrorModule::Kernel,
        ErrorSummary::NotFound, ErrorLevel::Permanent); // 0xD88007FA
const ResultCode ERR_PORT_NAME_TOO_LONG(ErrorDescription(30), ErrorModule::OS,
        ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E0181E

const ResultCode ERR_MISALIGNED_ADDRESS{ // 0xE0E01BF1
        ErrorDescription::MisalignedAddress, ErrorModule::OS,
        ErrorSummary::InvalidArgument, ErrorLevel::Usage};
const ResultCode ERR_MISALIGNED_SIZE{ // 0xE0E01BF2
        ErrorDescription::MisalignedSize, ErrorModule::OS,
        ErrorSummary::InvalidArgument, ErrorLevel::Usage};
const ResultCode ERR_INVALID_COMBINATION{ // 0xE0E01BEE
        ErrorDescription::InvalidCombination, ErrorModule::OS,
        ErrorSummary::InvalidArgument, ErrorLevel::Usage};

enum ControlMemoryOperation {
    MEMOP_FREE    = 1,
    MEMOP_RESERVE = 2, // This operation seems to be unsupported in the kernel
    MEMOP_COMMIT  = 3,
    MEMOP_MAP     = 4,
    MEMOP_UNMAP   = 5,
    MEMOP_PROTECT = 6,
    MEMOP_OPERATION_MASK = 0xFF,

    MEMOP_REGION_APP    = 0x100,
    MEMOP_REGION_SYSTEM = 0x200,
    MEMOP_REGION_BASE   = 0x300,
    MEMOP_REGION_MASK   = 0xF00,

    MEMOP_LINEAR = 0x10000,
};

/// Map application or GSP heap memory
static ResultCode ControlMemory(u32* out_addr, u32 operation, u32 addr0, u32 addr1, u32 size, u32 permissions) {
    using namespace Kernel;

    LOG_DEBUG(Kernel_SVC,"called operation=0x%08X, addr0=0x%08X, addr1=0x%08X, size=0x%X, permissions=0x%08X",
        operation, addr0, addr1, size, permissions);

    if ((addr0 & Memory::PAGE_MASK) != 0 || (addr1 & Memory::PAGE_MASK) != 0) {
        return ERR_MISALIGNED_ADDRESS;
    }
    if ((size & Memory::PAGE_MASK) != 0) {
        return ERR_MISALIGNED_SIZE;
    }

    u32 region = operation & MEMOP_REGION_MASK;
    operation &= ~MEMOP_REGION_MASK;

    if (region != 0) {
        LOG_WARNING(Kernel_SVC, "ControlMemory with specified region not supported, region=%X", region);
    }

    if ((permissions & (u32)MemoryPermission::ReadWrite) != permissions) {
        return ERR_INVALID_COMBINATION;
    }
    VMAPermission vma_permissions = (VMAPermission)permissions;

    auto& process = *g_current_process;

    switch (operation & MEMOP_OPERATION_MASK) {
    case MEMOP_FREE:
    {
        // TODO(Subv): What happens if an application tries to FREE a block of memory that has a SharedMemory pointing to it?
        if (addr0 >= Memory::HEAP_VADDR && addr0 < Memory::HEAP_VADDR_END) {
            ResultCode result = process.HeapFree(addr0, size);
            if (result.IsError()) return result;
        } else if (addr0 >= process.GetLinearHeapBase() && addr0 < process.GetLinearHeapLimit()) {
            ResultCode result = process.LinearFree(addr0, size);
            if (result.IsError()) return result;
        } else {
            return ERR_INVALID_ADDRESS;
        }
        *out_addr = addr0;
        break;
    }

    case MEMOP_COMMIT:
    {
        if (operation & MEMOP_LINEAR) {
            CASCADE_RESULT(*out_addr, process.LinearAllocate(addr0, size, vma_permissions));
        } else {
            CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
        }
        break;
    }

    case MEMOP_MAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
    {
        CASCADE_RESULT(*out_addr, process.HeapAllocate(addr0, size, vma_permissions));
        break;
    }

    case MEMOP_UNMAP: // TODO: This is just a hack to avoid regressions until memory aliasing is implemented
    {
        ResultCode result = process.HeapFree(addr0, size);
        if (result.IsError()) return result;
        break;
    }

    case MEMOP_PROTECT:
    {
        ResultCode result = process.vm_manager.ReprotectRange(addr0, size, vma_permissions);
        if (result.IsError()) return result;
        break;
    }

    default:
        LOG_ERROR(Kernel_SVC, "unknown operation=0x%08X", operation);
        return ERR_INVALID_COMBINATION;
    }

    process.vm_manager.LogLayout(Log::Level::Trace);

    return RESULT_SUCCESS;
}

/// Maps a memory block to specified address
static ResultCode MapMemoryBlock(Handle handle, u32 addr, u32 permissions, u32 other_permissions) {
    using Kernel::SharedMemory;
    using Kernel::MemoryPermission;

    LOG_TRACE(Kernel_SVC, "called memblock=0x%08X, addr=0x%08X, mypermissions=0x%08X, otherpermission=%d",
        handle, addr, permissions, other_permissions);

    SharedPtr<SharedMemory> shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle);
    if (shared_memory == nullptr)
        return ERR_INVALID_HANDLE;

    MemoryPermission permissions_type = static_cast<MemoryPermission>(permissions);
    switch (permissions_type) {
    case MemoryPermission::Read:
    case MemoryPermission::Write:
    case MemoryPermission::ReadWrite:
    case MemoryPermission::Execute:
    case MemoryPermission::ReadExecute:
    case MemoryPermission::WriteExecute:
    case MemoryPermission::ReadWriteExecute:
    case MemoryPermission::DontCare:
        return shared_memory->Map(Kernel::g_current_process.get(), addr, permissions_type,
                static_cast<MemoryPermission>(other_permissions));
    default:
        LOG_ERROR(Kernel_SVC, "unknown permissions=0x%08X", permissions);
    }

    return ResultCode(ErrorDescription::InvalidCombination, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
}

static ResultCode UnmapMemoryBlock(Handle handle, u32 addr) {
    using Kernel::SharedMemory;

    LOG_TRACE(Kernel_SVC, "called memblock=0x%08X, addr=0x%08X", handle, addr);

    // TODO(Subv): Return E0A01BF5 if the address is not in the application's heap

    SharedPtr<SharedMemory> shared_memory = Kernel::g_handle_table.Get<SharedMemory>(handle);
    if (shared_memory == nullptr)
        return ERR_INVALID_HANDLE;

    return shared_memory->Unmap(Kernel::g_current_process.get(), addr);
}

/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToPort(Handle* out_handle, const char* port_name) {
    if (port_name == nullptr)
        return ERR_NOT_FOUND;
    if (std::strlen(port_name) > 11)
        return ERR_PORT_NAME_TOO_LONG;

    LOG_TRACE(Kernel_SVC, "called port_name=%s", port_name);

    auto it = Service::g_kernel_named_ports.find(port_name);
    if (it == Service::g_kernel_named_ports.end()) {
        LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: %s", port_name);
        return ERR_NOT_FOUND;
    }

    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(it->second));
    return RESULT_SUCCESS;
}

/// Synchronize to an OS service
static ResultCode SendSyncRequest(Handle handle) {
    SharedPtr<Kernel::Session> session = Kernel::g_handle_table.Get<Kernel::Session>(handle);
    if (session == nullptr) {
        return ERR_INVALID_HANDLE;
    }

    LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s)", handle, session->GetName().c_str());

    return session->SyncRequest().Code();
}

/// Close a handle
static ResultCode CloseHandle(Handle handle) {
    LOG_TRACE(Kernel_SVC, "Closing handle 0x%08X", handle);
    return Kernel::g_handle_table.Close(handle);
}

/// Wait for a handle to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization1(Handle handle, s64 nano_seconds) {
    auto object = Kernel::g_handle_table.GetWaitObject(handle);
    Kernel::Thread* thread = Kernel::GetCurrentThread();

    thread->waitsynch_waited = false;

    if (object == nullptr)
        return ERR_INVALID_HANDLE;

    LOG_TRACE(Kernel_SVC, "called handle=0x%08X(%s:%s), nanoseconds=%lld", handle,
            object->GetTypeName().c_str(), object->GetName().c_str(), nano_seconds);

    HLE::Reschedule(__func__);

    // Check for next thread to schedule
    if (object->ShouldWait()) {

        object->AddWaitingThread(thread);
        Kernel::WaitCurrentThread_WaitSynchronization({ object }, false, false);

        // Create an event to wake the thread up after the specified nanosecond delay has passed
        thread->WakeAfterDelay(nano_seconds);

        // NOTE: output of this SVC will be set later depending on how the thread resumes
        return HLE::RESULT_INVALID;
    }

    object->Acquire();

    return RESULT_SUCCESS;
}

/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronizationN(s32* out, Handle* handles, s32 handle_count, bool wait_all, s64 nano_seconds) {
    bool wait_thread = !wait_all;
    int handle_index = 0;
    Kernel::Thread* thread = Kernel::GetCurrentThread();
    bool was_waiting = thread->waitsynch_waited;
    thread->waitsynch_waited = false;

    // Check if 'handles' is invalid
    if (handles == nullptr)
        return ResultCode(ErrorDescription::InvalidPointer, ErrorModule::Kernel, ErrorSummary::InvalidArgument, ErrorLevel::Permanent);

    // NOTE: on real hardware, there is no nullptr check for 'out' (tested with firmware 4.4). If
    // this happens, the running application will crash.
    ASSERT_MSG(out != nullptr, "invalid output pointer specified!");

    // Check if 'handle_count' is invalid
    if (handle_count < 0)
        return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);

    // If 'handle_count' is non-zero, iterate through each handle and wait the current thread if
    // necessary
    if (handle_count != 0) {
        bool selected = false; // True once an object has been selected

        Kernel::SharedPtr<Kernel::WaitObject> wait_object;

        for (int i = 0; i < handle_count; ++i) {
            auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
            if (object == nullptr)
                return ERR_INVALID_HANDLE;

            // Check if the current thread should wait on this object...
            if (object->ShouldWait()) {

                // Check we are waiting on all objects...
                if (wait_all)
                    // Wait the thread
                    wait_thread = true;
            } else {
                // Do not wait on this object, check if this object should be selected...
                if (!wait_all && (!selected || (wait_object == object && was_waiting))) {
                    // Do not wait the thread
                    wait_thread = false;
                    handle_index = i;
                    wait_object = object;
                    selected = true;
                }
            }
        }
    } else {
        // If no handles were passed in, put the thread to sleep only when 'wait_all' is false
        // NOTE: This should deadlock the current thread if no timeout was specified
        if (!wait_all) {
            wait_thread = true;
        }
    }

    SCOPE_EXIT({HLE::Reschedule("WaitSynchronizationN");}); // Reschedule after putting the threads to sleep.

    // If thread should wait, then set its state to waiting
    if (wait_thread) {

        // Actually wait the current thread on each object if we decided to wait...
        std::vector<SharedPtr<Kernel::WaitObject>> wait_objects;
        wait_objects.reserve(handle_count);

        for (int i = 0; i < handle_count; ++i) {
            auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);
            object->AddWaitingThread(Kernel::GetCurrentThread());
            wait_objects.push_back(object);
        }

        Kernel::WaitCurrentThread_WaitSynchronization(std::move(wait_objects), true, wait_all);

        // Create an event to wake the thread up after the specified nanosecond delay has passed
        Kernel::GetCurrentThread()->WakeAfterDelay(nano_seconds);

        // NOTE: output of this SVC will be set later depending on how the thread resumes
        return HLE::RESULT_INVALID;
    }

    // Acquire objects if we did not wait...
    for (int i = 0; i < handle_count; ++i) {
        auto object = Kernel::g_handle_table.GetWaitObject(handles[i]);

        // Acquire the object if it is not waiting...
        if (!object->ShouldWait()) {
            object->Acquire();

            // If this was the first non-waiting object and 'wait_all' is false, don't acquire
            // any other objects
            if (!wait_all)
                break;
        }
    }

    // TODO(bunnei): If 'wait_all' is true, this is probably wrong. However, real hardware does
    // not seem to set it to any meaningful value.
    *out = handle_count != 0 ? (wait_all ? -1 : handle_index) : 0;

    return RESULT_SUCCESS;
}

/// Create an address arbiter (to allocate access to shared resources)
static ResultCode CreateAddressArbiter(Handle* out_handle) {
    using Kernel::AddressArbiter;

    SharedPtr<AddressArbiter> arbiter = AddressArbiter::Create();
    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(arbiter)));
    LOG_TRACE(Kernel_SVC, "returned handle=0x%08X", *out_handle);
    return RESULT_SUCCESS;
}

/// Arbitrate address
static ResultCode ArbitrateAddress(Handle handle, u32 address, u32 type, u32 value, s64 nanoseconds) {
    using Kernel::AddressArbiter;

    LOG_TRACE(Kernel_SVC, "called handle=0x%08X, address=0x%08X, type=0x%08X, value=0x%08X", handle,
        address, type, value);

    SharedPtr<AddressArbiter> arbiter = Kernel::g_handle_table.Get<AddressArbiter>(handle);
    if (arbiter == nullptr)
        return ERR_INVALID_HANDLE;

    auto res = arbiter->ArbitrateAddress(static_cast<Kernel::ArbitrationType>(type),
                                         address, value, nanoseconds);

    return res;
}

static void Break(u8 break_reason) {
    LOG_CRITICAL(Debug_Emulated, "Emulated program broke execution!");
    std::string reason_str;
    switch (break_reason) {
    case 0: reason_str = "PANIC"; break;
    case 1: reason_str = "ASSERT"; break;
    case 2: reason_str = "USER"; break;
    default: reason_str = "UNKNOWN"; break;
    }
    LOG_CRITICAL(Debug_Emulated, "Break reason: %s", reason_str.c_str());
}

/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString(const char* string) {
    LOG_DEBUG(Debug_Emulated, "%s", string);
}

/// Get resource limit
static ResultCode GetResourceLimit(Handle* resource_limit, Handle process_handle) {
    LOG_TRACE(Kernel_SVC, "called process=0x%08X", process_handle);

    SharedPtr<Kernel::Process> process = Kernel::g_handle_table.Get<Kernel::Process>(process_handle);
    if (process == nullptr)
        return ERR_INVALID_HANDLE;

    CASCADE_RESULT(*resource_limit, Kernel::g_handle_table.Create(process->resource_limit));

    return RESULT_SUCCESS;
}

/// Get resource limit current values
static ResultCode GetResourceLimitCurrentValues(s64* values, Handle resource_limit_handle, u32* names,
    u32 name_count) {
    LOG_TRACE(Kernel_SVC, "called resource_limit=%08X, names=%p, name_count=%d",
        resource_limit_handle, names, name_count);

    SharedPtr<Kernel::ResourceLimit> resource_limit = Kernel::g_handle_table.Get<Kernel::ResourceLimit>(resource_limit_handle);
    if (resource_limit == nullptr)
        return ERR_INVALID_HANDLE;

    for (unsigned int i = 0; i < name_count; ++i)
        values[i] = resource_limit->GetCurrentResourceValue(names[i]);

    return RESULT_SUCCESS;
}

/// Get resource limit max values
static ResultCode GetResourceLimitLimitValues(s64* values, Handle resource_limit_handle, u32* names,
    u32 name_count) {
    LOG_TRACE(Kernel_SVC, "called resource_limit=%08X, names=%p, name_count=%d",
        resource_limit_handle, names, name_count);

    SharedPtr<Kernel::ResourceLimit> resource_limit = Kernel::g_handle_table.Get<Kernel::ResourceLimit>(resource_limit_handle);
    if (resource_limit == nullptr)
        return ERR_INVALID_HANDLE;

    for (unsigned int i = 0; i < name_count; ++i)
        values[i] = resource_limit->GetMaxResourceValue(names[i]);

    return RESULT_SUCCESS;
}

/// Creates a new thread
static ResultCode CreateThread(Handle* out_handle, s32 priority, u32 entry_point, u32 arg, u32 stack_top, s32 processor_id) {
    using Kernel::Thread;

    std::string name;
    if (Symbols::HasSymbol(entry_point)) {
        TSymbol symbol = Symbols::GetSymbol(entry_point);
        name = symbol.name;
    } else {
        name = Common::StringFromFormat("unknown-%08x", entry_point);
    }

    // TODO(bunnei): Implement resource limits to return an error code instead of the below assert.
    // The error code should be: Description::NotAuthorized, Module::OS, Summary::WrongArgument,
    // Level::Permanent
    ASSERT_MSG(priority >= THREADPRIO_USERLAND_MAX, "Unexpected thread priority!");

    if (priority > THREADPRIO_LOWEST) {
        return ResultCode(ErrorDescription::OutOfRange, ErrorModule::OS,
                          ErrorSummary::InvalidArgument, ErrorLevel::Usage);
    }

    switch (processor_id) {
    case THREADPROCESSORID_ALL:
    case THREADPROCESSORID_DEFAULT:
    case THREADPROCESSORID_0:
    case THREADPROCESSORID_1:
        break;
    default:
        // TODO(bunnei): Implement support for other processor IDs
        ASSERT_MSG(false, "Unsupported thread processor ID: %d", processor_id);
        break;
    }

    if (processor_id == THREADPROCESSORID_1 || processor_id == THREADPROCESSORID_ALL ||
        (processor_id == THREADPROCESSORID_DEFAULT && Kernel::g_current_process->ideal_processor == THREADPROCESSORID_1)) {
        LOG_WARNING(Kernel_SVC, "Newly created thread is allowed to be run in the SysCore, unimplemented.");
    }

    CASCADE_RESULT(SharedPtr<Thread> thread, Kernel::Thread::Create(
            name, entry_point, priority, arg, processor_id, stack_top));

    thread->context.fpscr = FPSCR_DEFAULT_NAN | FPSCR_FLUSH_TO_ZERO | FPSCR_ROUND_TOZERO; // 0x03C00000

    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(thread)));

    LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, "
        "threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X", entry_point,
        name.c_str(), arg, stack_top, priority, processor_id, *out_handle);

    return RESULT_SUCCESS;
}

/// Called when a thread exits
static void ExitThread() {
    LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::g_app_core->GetPC());

    Kernel::GetCurrentThread()->Stop();
}

/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(s32* priority, Handle handle) {
    const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
    if (thread == nullptr)
        return ERR_INVALID_HANDLE;

    *priority = thread->GetPriority();
    return RESULT_SUCCESS;
}

/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, s32 priority) {
    SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
    if (thread == nullptr)
        return ERR_INVALID_HANDLE;

    thread->SetPriority(priority);
    return RESULT_SUCCESS;
}

/// Create a mutex
static ResultCode CreateMutex(Handle* out_handle, u32 initial_locked) {
    using Kernel::Mutex;

    SharedPtr<Mutex> mutex = Mutex::Create(initial_locked != 0);
    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(mutex)));

    LOG_TRACE(Kernel_SVC, "called initial_locked=%s : created handle=0x%08X",
        initial_locked ? "true" : "false", *out_handle);

    return RESULT_SUCCESS;
}

/// Release a mutex
static ResultCode ReleaseMutex(Handle handle) {
    using Kernel::Mutex;

    LOG_TRACE(Kernel_SVC, "called handle=0x%08X", handle);

    SharedPtr<Mutex> mutex = Kernel::g_handle_table.Get<Mutex>(handle);
    if (mutex == nullptr)
        return ERR_INVALID_HANDLE;

    mutex->Release();

    return RESULT_SUCCESS;
}

/// Get the ID of the specified process
static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
    LOG_TRACE(Kernel_SVC, "called process=0x%08X", process_handle);

    const SharedPtr<Kernel::Process> process = Kernel::g_handle_table.Get<Kernel::Process>(process_handle);
    if (process == nullptr)
        return ERR_INVALID_HANDLE;

    *process_id = process->process_id;
    return RESULT_SUCCESS;
}

/// Get the ID of the process that owns the specified thread
static ResultCode GetProcessIdOfThread(u32* process_id, Handle thread_handle) {
    LOG_TRACE(Kernel_SVC, "called thread=0x%08X", thread_handle);

    const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(thread_handle);
    if (thread == nullptr)
        return ERR_INVALID_HANDLE;

    const SharedPtr<Kernel::Process> process = thread->owner_process;

    ASSERT_MSG(process != nullptr, "Invalid parent process for thread=0x%08X", thread_handle);

    *process_id = process->process_id;
    return RESULT_SUCCESS;
}

/// Get the ID for the specified thread.
static ResultCode GetThreadId(u32* thread_id, Handle handle) {
    LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle);

    const SharedPtr<Kernel::Thread> thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
    if (thread == nullptr)
        return ERR_INVALID_HANDLE;

    *thread_id = thread->GetThreadId();
    return RESULT_SUCCESS;
}

/// Creates a semaphore
static ResultCode CreateSemaphore(Handle* out_handle, s32 initial_count, s32 max_count) {
    using Kernel::Semaphore;

    CASCADE_RESULT(SharedPtr<Semaphore> semaphore, Semaphore::Create(initial_count, max_count));
    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(semaphore)));

    LOG_TRACE(Kernel_SVC, "called initial_count=%d, max_count=%d, created handle=0x%08X",
        initial_count, max_count, *out_handle);
    return RESULT_SUCCESS;
}

/// Releases a certain number of slots in a semaphore
static ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
    using Kernel::Semaphore;

    LOG_TRACE(Kernel_SVC, "called release_count=%d, handle=0x%08X", release_count, handle);

    SharedPtr<Semaphore> semaphore = Kernel::g_handle_table.Get<Semaphore>(handle);
    if (semaphore == nullptr)
        return ERR_INVALID_HANDLE;

    CASCADE_RESULT(*count, semaphore->Release(release_count));

    return RESULT_SUCCESS;
}

/// Query process memory
static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* page_info, Handle process_handle, u32 addr) {
    using Kernel::Process;
    Kernel::SharedPtr<Process> process = Kernel::g_handle_table.Get<Process>(process_handle);
    if (process == nullptr)
        return ERR_INVALID_HANDLE;

    auto vma = process->vm_manager.FindVMA(addr);

    if (vma == Kernel::g_current_process->vm_manager.vma_map.end())
        return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);

    memory_info->base_address = vma->second.base;
    memory_info->permission = static_cast<u32>(vma->second.permissions);
    memory_info->size = vma->second.size;
    memory_info->state = static_cast<u32>(vma->second.meminfo_state);

    page_info->flags = 0;
    LOG_TRACE(Kernel_SVC, "called process=0x%08X addr=0x%08X", process_handle, addr);
    return RESULT_SUCCESS;
}

/// Query memory
static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, u32 addr) {
    return QueryProcessMemory(memory_info, page_info, Kernel::CurrentProcess, addr);
}

/// Create an event
static ResultCode CreateEvent(Handle* out_handle, u32 reset_type) {
    using Kernel::Event;

    SharedPtr<Event> evt = Event::Create(static_cast<Kernel::ResetType>(reset_type));
    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(evt)));

    LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X",
            reset_type, *out_handle);
    return RESULT_SUCCESS;
}

/// Duplicates a kernel handle
static ResultCode DuplicateHandle(Handle* out, Handle handle) {
    CASCADE_RESULT(*out, Kernel::g_handle_table.Duplicate(handle));
    LOG_TRACE(Kernel_SVC, "duplicated 0x%08X to 0x%08X", handle, *out);
    return RESULT_SUCCESS;
}

/// Signals an event
static ResultCode SignalEvent(Handle handle) {
    using Kernel::Event;
    LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);

    SharedPtr<Event> evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
    if (evt == nullptr)
        return ERR_INVALID_HANDLE;

    evt->Signal();

    return RESULT_SUCCESS;
}

/// Clears an event
static ResultCode ClearEvent(Handle handle) {
    using Kernel::Event;
    LOG_TRACE(Kernel_SVC, "called event=0x%08X", handle);

    SharedPtr<Event> evt = Kernel::g_handle_table.Get<Kernel::Event>(handle);
    if (evt == nullptr)
        return ERR_INVALID_HANDLE;

    evt->Clear();
    return RESULT_SUCCESS;
}

/// Creates a timer
static ResultCode CreateTimer(Handle* out_handle, u32 reset_type) {
    using Kernel::Timer;

    SharedPtr<Timer> timer = Timer::Create(static_cast<Kernel::ResetType>(reset_type));
    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(timer)));

    LOG_TRACE(Kernel_SVC, "called reset_type=0x%08X : created handle=0x%08X",
            reset_type, *out_handle);
    return RESULT_SUCCESS;
}

/// Clears a timer
static ResultCode ClearTimer(Handle handle) {
    using Kernel::Timer;

    LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);

    SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
    if (timer == nullptr)
        return ERR_INVALID_HANDLE;

    timer->Clear();
    return RESULT_SUCCESS;
}

/// Starts a timer
static ResultCode SetTimer(Handle handle, s64 initial, s64 interval) {
    using Kernel::Timer;

    LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);

    SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
    if (timer == nullptr)
        return ERR_INVALID_HANDLE;

    timer->Set(initial, interval);

    return RESULT_SUCCESS;
}

/// Cancels a timer
static ResultCode CancelTimer(Handle handle) {
    using Kernel::Timer;

    LOG_TRACE(Kernel_SVC, "called timer=0x%08X", handle);

    SharedPtr<Timer> timer = Kernel::g_handle_table.Get<Timer>(handle);
    if (timer == nullptr)
        return ERR_INVALID_HANDLE;

    timer->Cancel();

    return RESULT_SUCCESS;
}

/// Sleep the current thread
static void SleepThread(s64 nanoseconds) {
    LOG_TRACE(Kernel_SVC, "called nanoseconds=%lld", nanoseconds);

    // Sleep current thread and check for next thread to schedule
    Kernel::WaitCurrentThread_Sleep();

    // Create an event to wake the thread up after the specified nanosecond delay has passed
    Kernel::GetCurrentThread()->WakeAfterDelay(nanoseconds);
}

/// This returns the total CPU ticks elapsed since the CPU was powered-on
static s64 GetSystemTick() {
    s64 result = CoreTiming::GetTicks();
    // Advance time to defeat dumb games (like Cubic Ninja) that busy-wait for the frame to end.
    Core::g_app_core->AddTicks(150); // Measured time between two calls on a 9.2 o3DS with Ninjhax 1.1b
    return result;
}

/// Creates a memory block at the specified address with the specified permissions and size
static ResultCode CreateMemoryBlock(Handle* out_handle, u32 addr, u32 size, u32 my_permission,
        u32 other_permission) {
    using Kernel::SharedMemory;

    if (size % Memory::PAGE_SIZE != 0)
        return ResultCode(ErrorDescription::MisalignedSize, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);

    SharedPtr<SharedMemory> shared_memory = nullptr;

    using Kernel::MemoryPermission;
    auto VerifyPermissions = [](MemoryPermission permission) {
        // SharedMemory blocks can not be created with Execute permissions
        switch (permission) {
        case MemoryPermission::None:
        case MemoryPermission::Read:
        case MemoryPermission::Write:
        case MemoryPermission::ReadWrite:
        case MemoryPermission::DontCare:
            return true;
        default:
            return false;
        }
    };

    if (!VerifyPermissions(static_cast<MemoryPermission>(my_permission)) ||
        !VerifyPermissions(static_cast<MemoryPermission>(other_permission)))
        return ResultCode(ErrorDescription::InvalidCombination, ErrorModule::OS,
                          ErrorSummary::InvalidArgument, ErrorLevel::Usage);

    if (addr < Memory::PROCESS_IMAGE_VADDR || addr + size > Memory::SHARED_MEMORY_VADDR_END) {
        return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::OS, ErrorSummary::InvalidArgument, ErrorLevel::Usage);
    }

    // When trying to create a memory block with address = 0,
    // if the process has the Shared Device Memory flag in the exheader,
    // then we have to allocate from the same region as the caller process instead of the BASE region.
    Kernel::MemoryRegion region = Kernel::MemoryRegion::BASE;
    if (addr == 0 && Kernel::g_current_process->flags.shared_device_mem)
        region = Kernel::g_current_process->flags.memory_region;

    shared_memory = SharedMemory::Create(Kernel::g_current_process, size,
                                static_cast<MemoryPermission>(my_permission), static_cast<MemoryPermission>(other_permission), addr, region);
    CASCADE_RESULT(*out_handle, Kernel::g_handle_table.Create(std::move(shared_memory)));

    LOG_WARNING(Kernel_SVC, "called addr=0x%08X", addr);
    return RESULT_SUCCESS;
}

static ResultCode GetSystemInfo(s64* out, u32 type, s32 param) {
    using Kernel::MemoryRegion;

    LOG_TRACE(Kernel_SVC, "called type=%u param=%d", type, param);

    switch ((SystemInfoType)type) {
    case SystemInfoType::REGION_MEMORY_USAGE:
        switch ((SystemInfoMemUsageRegion)param) {
        case SystemInfoMemUsageRegion::ALL:
            *out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::APPLICATION)->used
                 + Kernel::GetMemoryRegion(Kernel::MemoryRegion::SYSTEM)->used
                 + Kernel::GetMemoryRegion(Kernel::MemoryRegion::BASE)->used;
            break;
        case SystemInfoMemUsageRegion::APPLICATION:
            *out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::APPLICATION)->used;
            break;
        case SystemInfoMemUsageRegion::SYSTEM:
            *out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::SYSTEM)->used;
            break;
        case SystemInfoMemUsageRegion::BASE:
            *out = Kernel::GetMemoryRegion(Kernel::MemoryRegion::BASE)->used;
            break;
        default:
            LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type=0 region: param=%d", param);
            *out = 0;
            break;
        }
        break;
    case SystemInfoType::KERNEL_ALLOCATED_PAGES:
        LOG_ERROR(Kernel_SVC, "unimplemented GetSystemInfo type=2 param=%d", param);
        *out = 0;
        break;
    case SystemInfoType::KERNEL_SPAWNED_PIDS:
        *out = 5;
        break;
    default:
        LOG_ERROR(Kernel_SVC, "unknown GetSystemInfo type=%u param=%d", type, param);
        *out = 0;
        break;
    }

    // This function never returns an error, even if invalid parameters were passed.
    return RESULT_SUCCESS;
}

static ResultCode GetProcessInfo(s64* out, Handle process_handle, u32 type) {
    LOG_TRACE(Kernel_SVC, "called process=0x%08X type=%u", process_handle, type);

    using Kernel::Process;
    Kernel::SharedPtr<Process> process = Kernel::g_handle_table.Get<Process>(process_handle);
    if (process == nullptr)
        return ERR_INVALID_HANDLE;

    switch (type) {
    case 0:
    case 2:
        // TODO(yuriks): Type 0 returns a slightly higher number than type 2, but I'm not sure
        // what's the difference between them.
        *out = process->heap_used + process->linear_heap_used + process->misc_memory_used;
        if(*out % Memory::PAGE_SIZE != 0) {
            LOG_ERROR(Kernel_SVC, "called, memory size not page-aligned");
            return ERR_MISALIGNED_SIZE;
        }
        break;
    case 1:
    case 3:
    case 4:
    case 5:
    case 6:
    case 7:
    case 8:
        // These are valid, but not implemented yet
        LOG_ERROR(Kernel_SVC, "unimplemented GetProcessInfo type=%u", type);
        break;
    case 20:
        *out = Memory::FCRAM_PADDR - process->GetLinearHeapBase();
        break;
    default:
        LOG_ERROR(Kernel_SVC, "unknown GetProcessInfo type=%u", type);

        if (type >= 21 && type <= 23) {
            return ResultCode( // 0xE0E01BF4
                    ErrorDescription::NotImplemented, ErrorModule::OS,
                    ErrorSummary::InvalidArgument, ErrorLevel::Usage);
        } else {
            return ResultCode( // 0xD8E007ED
                    ErrorDescription::InvalidEnumValue, ErrorModule::Kernel,
                    ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
        }
        break;
    }

    return RESULT_SUCCESS;
}

namespace {
    struct FunctionDef {
        using Func = void();

        u32         id;
        Func*       func;
        const char* name;
    };
}

static const FunctionDef SVC_Table[] = {
    {0x00, nullptr,                         "Unknown"},
    {0x01, HLE::Wrap<ControlMemory>,        "ControlMemory"},
    {0x02, HLE::Wrap<QueryMemory>,          "QueryMemory"},
    {0x03, nullptr,                         "ExitProcess"},
    {0x04, nullptr,                         "GetProcessAffinityMask"},
    {0x05, nullptr,                         "SetProcessAffinityMask"},
    {0x06, nullptr,                         "GetProcessIdealProcessor"},
    {0x07, nullptr,                         "SetProcessIdealProcessor"},
    {0x08, HLE::Wrap<CreateThread>,         "CreateThread"},
    {0x09, ExitThread,                      "ExitThread"},
    {0x0A, HLE::Wrap<SleepThread>,          "SleepThread"},
    {0x0B, HLE::Wrap<GetThreadPriority>,    "GetThreadPriority"},
    {0x0C, HLE::Wrap<SetThreadPriority>,    "SetThreadPriority"},
    {0x0D, nullptr,                         "GetThreadAffinityMask"},
    {0x0E, nullptr,                         "SetThreadAffinityMask"},
    {0x0F, nullptr,                         "GetThreadIdealProcessor"},
    {0x10, nullptr,                         "SetThreadIdealProcessor"},
    {0x11, nullptr,                         "GetCurrentProcessorNumber"},
    {0x12, nullptr,                         "Run"},
    {0x13, HLE::Wrap<CreateMutex>,          "CreateMutex"},
    {0x14, HLE::Wrap<ReleaseMutex>,         "ReleaseMutex"},
    {0x15, HLE::Wrap<CreateSemaphore>,      "CreateSemaphore"},
    {0x16, HLE::Wrap<ReleaseSemaphore>,     "ReleaseSemaphore"},
    {0x17, HLE::Wrap<CreateEvent>,          "CreateEvent"},
    {0x18, HLE::Wrap<SignalEvent>,          "SignalEvent"},
    {0x19, HLE::Wrap<ClearEvent>,           "ClearEvent"},
    {0x1A, HLE::Wrap<CreateTimer>,          "CreateTimer"},
    {0x1B, HLE::Wrap<SetTimer>,             "SetTimer"},
    {0x1C, HLE::Wrap<CancelTimer>,          "CancelTimer"},
    {0x1D, HLE::Wrap<ClearTimer>,           "ClearTimer"},
    {0x1E, HLE::Wrap<CreateMemoryBlock>,    "CreateMemoryBlock"},
    {0x1F, HLE::Wrap<MapMemoryBlock>,       "MapMemoryBlock"},
    {0x20, HLE::Wrap<UnmapMemoryBlock>,     "UnmapMemoryBlock"},
    {0x21, HLE::Wrap<CreateAddressArbiter>, "CreateAddressArbiter"},
    {0x22, HLE::Wrap<ArbitrateAddress>,     "ArbitrateAddress"},
    {0x23, HLE::Wrap<CloseHandle>,          "CloseHandle"},
    {0x24, HLE::Wrap<WaitSynchronization1>, "WaitSynchronization1"},
    {0x25, HLE::Wrap<WaitSynchronizationN>, "WaitSynchronizationN"},
    {0x26, nullptr,                         "SignalAndWait"},
    {0x27, HLE::Wrap<DuplicateHandle>,      "DuplicateHandle"},
    {0x28, HLE::Wrap<GetSystemTick>,        "GetSystemTick"},
    {0x29, nullptr,                         "GetHandleInfo"},
    {0x2A, HLE::Wrap<GetSystemInfo>,        "GetSystemInfo"},
    {0x2B, HLE::Wrap<GetProcessInfo>,       "GetProcessInfo"},
    {0x2C, nullptr,                         "GetThreadInfo"},
    {0x2D, HLE::Wrap<ConnectToPort>,        "ConnectToPort"},
    {0x2E, nullptr,                         "SendSyncRequest1"},
    {0x2F, nullptr,                         "SendSyncRequest2"},
    {0x30, nullptr,                         "SendSyncRequest3"},
    {0x31, nullptr,                         "SendSyncRequest4"},
    {0x32, HLE::Wrap<SendSyncRequest>,      "SendSyncRequest"},
    {0x33, nullptr,                         "OpenProcess"},
    {0x34, nullptr,                         "OpenThread"},
    {0x35, HLE::Wrap<GetProcessId>,         "GetProcessId"},
    {0x36, HLE::Wrap<GetProcessIdOfThread>, "GetProcessIdOfThread"},
    {0x37, HLE::Wrap<GetThreadId>,          "GetThreadId"},
    {0x38, HLE::Wrap<GetResourceLimit>,     "GetResourceLimit"},
    {0x39, HLE::Wrap<GetResourceLimitLimitValues>, "GetResourceLimitLimitValues"},
    {0x3A, HLE::Wrap<GetResourceLimitCurrentValues>, "GetResourceLimitCurrentValues"},
    {0x3B, nullptr,                         "GetThreadContext"},
    {0x3C, HLE::Wrap<Break>,                "Break"},
    {0x3D, HLE::Wrap<OutputDebugString>,    "OutputDebugString"},
    {0x3E, nullptr,                         "ControlPerformanceCounter"},
    {0x3F, nullptr,                         "Unknown"},
    {0x40, nullptr,                         "Unknown"},
    {0x41, nullptr,                         "Unknown"},
    {0x42, nullptr,                         "Unknown"},
    {0x43, nullptr,                         "Unknown"},
    {0x44, nullptr,                         "Unknown"},
    {0x45, nullptr,                         "Unknown"},
    {0x46, nullptr,                         "Unknown"},
    {0x47, nullptr,                         "CreatePort"},
    {0x48, nullptr,                         "CreateSessionToPort"},
    {0x49, nullptr,                         "CreateSession"},
    {0x4A, nullptr,                         "AcceptSession"},
    {0x4B, nullptr,                         "ReplyAndReceive1"},
    {0x4C, nullptr,                         "ReplyAndReceive2"},
    {0x4D, nullptr,                         "ReplyAndReceive3"},
    {0x4E, nullptr,                         "ReplyAndReceive4"},
    {0x4F, nullptr,                         "ReplyAndReceive"},
    {0x50, nullptr,                         "BindInterrupt"},
    {0x51, nullptr,                         "UnbindInterrupt"},
    {0x52, nullptr,                         "InvalidateProcessDataCache"},
    {0x53, nullptr,                         "StoreProcessDataCache"},
    {0x54, nullptr,                         "FlushProcessDataCache"},
    {0x55, nullptr,                         "StartInterProcessDma"},
    {0x56, nullptr,                         "StopDma"},
    {0x57, nullptr,                         "GetDmaState"},
    {0x58, nullptr,                         "RestartDma"},
    {0x59, nullptr,                         "Unknown"},
    {0x5A, nullptr,                         "Unknown"},
    {0x5B, nullptr,                         "Unknown"},
    {0x5C, nullptr,                         "Unknown"},
    {0x5D, nullptr,                         "Unknown"},
    {0x5E, nullptr,                         "Unknown"},
    {0x5F, nullptr,                         "Unknown"},
    {0x60, nullptr,                         "DebugActiveProcess"},
    {0x61, nullptr,                         "BreakDebugProcess"},
    {0x62, nullptr,                         "TerminateDebugProcess"},
    {0x63, nullptr,                         "GetProcessDebugEvent"},
    {0x64, nullptr,                         "ContinueDebugEvent"},
    {0x65, nullptr,                         "GetProcessList"},
    {0x66, nullptr,                         "GetThreadList"},
    {0x67, nullptr,                         "GetDebugThreadContext"},
    {0x68, nullptr,                         "SetDebugThreadContext"},
    {0x69, nullptr,                         "QueryDebugProcessMemory"},
    {0x6A, nullptr,                         "ReadProcessMemory"},
    {0x6B, nullptr,                         "WriteProcessMemory"},
    {0x6C, nullptr,                         "SetHardwareBreakPoint"},
    {0x6D, nullptr,                         "GetDebugThreadParam"},
    {0x6E, nullptr,                         "Unknown"},
    {0x6F, nullptr,                         "Unknown"},
    {0x70, nullptr,                         "ControlProcessMemory"},
    {0x71, nullptr,                         "MapProcessMemory"},
    {0x72, nullptr,                         "UnmapProcessMemory"},
    {0x73, nullptr,                         "CreateCodeSet"},
    {0x74, nullptr,                         "RandomStub"},
    {0x75, nullptr,                         "CreateProcess"},
    {0x76, nullptr,                         "TerminateProcess"},
    {0x77, nullptr,                         "SetProcessResourceLimits"},
    {0x78, nullptr,                         "CreateResourceLimit"},
    {0x79, nullptr,                         "SetResourceLimitValues"},
    {0x7A, nullptr,                         "AddCodeSegment"},
    {0x7B, nullptr,                         "Backdoor"},
    {0x7C, nullptr,                         "KernelSetState"},
    {0x7D, HLE::Wrap<QueryProcessMemory>,   "QueryProcessMemory"},
};

static const FunctionDef* GetSVCInfo(u32 func_num) {
    if (func_num >= ARRAY_SIZE(SVC_Table)) {
        LOG_ERROR(Kernel_SVC, "unknown svc=0x%02X", func_num);
        return nullptr;
    }
    return &SVC_Table[func_num];
}

MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));

void CallSVC(u32 immediate) {
    MICROPROFILE_SCOPE(Kernel_SVC);

    const FunctionDef* info = GetSVCInfo(immediate);
    if (info) {
        if (info->func) {
            info->func();
        } else {
            LOG_ERROR(Kernel_SVC, "unimplemented SVC function %s(..)", info->name);
        }
    }
}

} // namespace