wttr.in/lib/spark.py

551 lines
15 KiB
Python
Raw Normal View History

# vim: fileencoding=utf-8
# vim: foldmethod=marker foldenable:
"""
[X] emoji
[ ] wego icon
[ ] v2.wttr.in
[X] astronomical (sunset)
[X] time
[X] frames
[X] colorize rain data
[ ] date + locales
[X] wind color
[ ] highlight current date
[ ] bind to real site
[ ] max values: temperature
[X] max value: rain
[ ] comment github
[ ] commit
"""
import sys
import re
import math
import json
import datetime
2020-04-03 19:49:40 +00:00
import io
import requests
import diagram
import pyjq
import pytz
import numpy as np
2020-04-03 19:49:40 +00:00
from astral import LocationInfo
from astral import moon
from astral.sun import sun
from scipy.interpolate import interp1d
from babel.dates import format_datetime
from globals import WWO_KEY
import constants
import translations
import wttr_line
2019-12-29 16:19:58 +00:00
if not sys.version_info >= (3, 0):
2019-12-29 16:50:14 +00:00
reload(sys) # noqa: F821
2019-12-29 16:10:58 +00:00
sys.setdefaultencoding("utf-8")
# data processing {{{
def get_data(config):
"""
Fetch data for `query_string`
"""
url = (
'http://'
'localhost:5001/premium/v1/weather.ashx'
'?key=%s'
'&q=%s&format=json&num_of_days=3&tp=3&lang=None'
) % (WWO_KEY, config["location"])
text = requests.get(url).text
parsed_data = json.loads(text)
return parsed_data
def interpolate_data(input_data, max_width):
"""
Resample `input_data` to number of `max_width` counts
"""
2020-04-03 19:49:51 +00:00
input_data = list(input_data)
input_data_len = len(input_data)
x = list(range(input_data_len))
y = input_data
2020-04-03 19:49:51 +00:00
xvals = np.linspace(0, input_data_len-1, max_width)
yinterp = interp1d(x, y, kind='cubic')
return yinterp(xvals)
def jq_query(query, data_parsed):
"""
Apply `query` to structued data `data_parsed`
"""
pyjq_data = pyjq.all(query, data_parsed)
2020-04-03 19:49:51 +00:00
data = list(map(float, pyjq_data))
return data
# }}}
# utils {{{
def colorize(string, color_code):
return "\033[%sm%s\033[0m" % (color_code, string)
# }}}
# draw_spark {{{
def draw_spark(data, height, width, color_data):
"""
Spark-style visualize `data` in a region `height` x `width`
"""
_BARS = u' _▁▂▃▄▅▇█'
def _box(height, row, value, max_value):
row_height = 1.0 * max_value / height
if row_height * row >= value:
return _BARS[0]
if row_height * (row+1) <= value:
return _BARS[-1]
return _BARS[int(1.0*(value - row_height*row)/(row_height*1.0)*len(_BARS))]
max_value = max(data)
output = ""
color_code = 20
for i in range(height):
for j in range(width):
character = _box(height, height-i-1, data[j], max_value)
if data[j] != 0:
chance_of_rain = color_data[j]/100.0 * 2
if chance_of_rain > 1:
chance_of_rain = 1
color_index = int(5*chance_of_rain)
color_code = 16 + color_index # int(math.floor((20-16) * 1.0 * (height-1-i)/height*(max_value/data[j])))
output += "\033[38;5;%sm%s\033[0m" % (color_code, character)
output += "\n"
# labeling max value
if max_value == 0:
max_line = " "*width
else:
max_line = ""
for j in range(width):
if data[j] == max_value:
max_line = "%3.2fmm|%s%%" % (max_value, int(color_data[j]))
orig_max_line = max_line
# aligning it
2020-04-03 19:49:51 +00:00
if len(max_line)//2 < j and len(max_line)//2 + j < width:
spaces = " "*(j - len(max_line)//2)
max_line = spaces + max_line # + spaces
max_line = max_line + " "*(width - len(max_line))
2020-04-03 19:49:51 +00:00
elif len(max_line)//2 + j >= width:
max_line = " "*(width - len(max_line)) + max_line
max_line = max_line.replace(orig_max_line, colorize(orig_max_line, "38;5;33"))
break
if max_line:
output = "\n" + max_line + "\n" + output + "\n"
return output
# }}}
# draw_diagram {{{
def draw_diagram(data, height, width):
option = diagram.DOption()
option.size = diagram.Point([width, height])
option.mode = 'g'
2020-04-03 19:49:51 +00:00
stream = io.BytesIO()
gram = diagram.DGWrapper(
data=[list(data), range(len(data))],
dg_option=option,
ostream=stream)
gram.show()
2020-04-03 19:49:51 +00:00
return stream.getvalue().decode("utf-8")
# }}}
# draw_date {{{
def draw_date(config, geo_data):
"""
"""
tzinfo = pytz.timezone(geo_data["timezone"])
locale = config.get("locale", "en_US")
datetime_day_start = datetime.datetime.utcnow()
answer = ""
for day in range(3):
datetime_ = datetime_day_start + datetime.timedelta(hours=24*day)
date = format_datetime(datetime_, "EEE dd MMM", locale=locale, tzinfo=tzinfo)
2020-04-03 19:49:51 +00:00
spaces = ((24-len(date))//2)*" "
date = spaces + date + spaces
date = " "*(24-len(date)) + date
answer += date
answer += "\n"
for _ in range(3):
answer += " "*23 + u""
return answer[:-1] + " "
# }}}
# draw_time {{{
def draw_time(geo_data):
"""
"""
tzinfo = pytz.timezone(geo_data["timezone"])
line = ["", ""]
for _ in range(3):
part = u""*5 + u"" + u""*5
line[0] += part + u"" + part + u""
line[0] += "\n"
for _ in range(3):
line[1] += " 6 12 18 "
line[1] += "\n"
# highlight current time
hour_number = \
(datetime.datetime.now(tzinfo)
- datetime.datetime.now(tzinfo).replace(hour=0, minute=0, second=0, microsecond=0)
).seconds//3600
for line_number, _ in enumerate(line):
line[line_number] = \
line[line_number][:hour_number] \
+ colorize(line[line_number][hour_number], "46") \
+ line[line_number][hour_number+1:]
return "".join(line)
# }}}
# draw_astronomical {{{
def draw_astronomical(city_name, geo_data):
datetime_day_start = datetime.datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)
2020-04-03 19:49:40 +00:00
city = LocationInfo()
city.latitude = geo_data["latitude"]
city.longitude = geo_data["longitude"]
city.timezone = geo_data["timezone"]
answer = ""
moon_line = ""
for time_interval in range(72):
current_date = (
datetime_day_start
+ datetime.timedelta(hours=1*time_interval)).replace(tzinfo=pytz.timezone(geo_data["timezone"]))
2020-04-03 19:49:40 +00:00
current_sun = sun(city.observer, date=current_date)
2020-04-03 19:49:40 +00:00
dawn = current_sun['dawn'] # .replace(tzinfo=None)
dusk = current_sun['dusk'] # .replace(tzinfo=None)
sunrise = current_sun['sunrise'] # .replace(tzinfo=None)
sunset = current_sun['sunset'] # .replace(tzinfo=None)
if current_date < dawn:
char = " "
elif current_date > dusk:
char = " "
elif dawn < current_date and current_date < sunrise:
char = u""
elif sunset < current_date and current_date < dusk:
char = u""
elif sunrise < current_date and current_date < sunset:
char = u""
answer += char
# moon
if time_interval % 3 == 0:
2020-04-03 19:49:40 +00:00
moon_phase = moon.phase(
date=datetime_day_start + datetime.timedelta(hours=time_interval))
2019-08-28 11:55:17 +00:00
moon_phase_emoji = constants.MOON_PHASES[int(math.floor(moon_phase*1.0/28.0*8+0.5)) % len(constants.MOON_PHASES)]
if time_interval in [0, 24, 48, 69]:
moon_line += moon_phase_emoji + " "
else:
moon_line += " "
answer = moon_line + "\n" + answer + "\n"
answer += "\n"
return answer
# }}}
# draw_emoji {{{
def draw_emoji(data):
answer = ""
for i in data:
emoji = constants.WEATHER_SYMBOL.get(
constants.WWO_CODE.get(
str(int(i)), "Unknown"))
space = " "*(3-constants.WEATHER_SYMBOL_WIDTH_VTE.get(emoji))
answer += emoji + space
answer += "\n"
return answer
# }}}
# draw_wind {{{
def draw_wind(data, color_data):
def _color_code_for_wind_speed(wind_speed):
color_codes = [
(3, 241), # 82
(6, 242), # 118
(9, 243), # 154
(12, 246), # 190
(15, 250), # 226
(19, 253), # 220
(23, 214),
(27, 208),
(31, 202),
(-1, 196)
]
for this_wind_speed, this_color_code in color_codes:
if wind_speed <= this_wind_speed:
return this_color_code
return color_codes[-1][1]
answer = ""
answer_line2 = ""
for j, degree in enumerate(data):
degree = int(degree)
if degree:
2020-04-03 19:49:51 +00:00
wind_direction = constants.WIND_DIRECTION[((degree+22)%360)//45]
else:
wind_direction = ""
color_code = "38;5;%s" % _color_code_for_wind_speed(int(color_data[j]))
answer += " %s " % colorize(wind_direction, color_code)
# wind_speed
wind_speed = int(color_data[j])
wind_speed_str = colorize(str(wind_speed), color_code)
if wind_speed < 10:
wind_speed_str = " " + wind_speed_str + " "
elif wind_speed < 100:
wind_speed_str = " " + wind_speed_str
answer_line2 += wind_speed_str
answer += "\n"
answer += answer_line2 + "\n"
return answer
# }}}
# panel implementation {{{
def add_frame(output, width, config):
"""
Add frame arond `output` that has width `width`
"""
empty_line = " "*width
output = "\n".join(u""+(x or empty_line)+u"" for x in output.splitlines()) + "\n"
weather_report = \
translations.CAPTION[config["lang"]] \
+ " " \
+ (config["override_location"] or config["location"])
caption = u"" + " " + weather_report + " " + u""
output = u"" + caption + u""*(width-len(caption)) + u"\n" \
+ output + \
u"" + u""*width + u"\n"
return output
def generate_panel(data_parsed, geo_data, config):
"""
"""
max_width = 72
precip_mm_query = "[.data.weather[] | .hourly[]] | .[].precipMM"
precip_chance_query = "[.data.weather[] | .hourly[]] | .[].chanceofrain"
feels_like_query = "[.data.weather[] | .hourly[]] | .[].FeelsLikeC"
weather_code_query = "[.data.weather[] | .hourly[]] | .[].weatherCode"
wind_direction_query = "[.data.weather[] | .hourly[]] | .[].winddirDegree"
wind_speed_query = "[.data.weather[] | .hourly[]] | .[].windspeedKmph"
output = ""
output += "\n\n"
output += draw_date(config, geo_data)
output += "\n"
output += "\n"
output += "\n"
data = jq_query(feels_like_query, data_parsed)
data_interpolated = interpolate_data(data, max_width)
output += draw_diagram(data_interpolated, 10, max_width)
output += "\n"
output += draw_time(geo_data)
data = jq_query(precip_mm_query, data_parsed)
color_data = jq_query(precip_chance_query, data_parsed)
data_interpolated = interpolate_data(data, max_width)
color_data_interpolated = interpolate_data(color_data, max_width)
output += draw_spark(data_interpolated, 5, max_width, color_data_interpolated)
output += "\n"
data = jq_query(weather_code_query, data_parsed)
output += draw_emoji(data)
data = jq_query(wind_direction_query, data_parsed)
color_data = jq_query(wind_speed_query, data_parsed)
output += draw_wind(data, color_data)
output += "\n"
output += draw_astronomical(config["location"], geo_data)
output += "\n"
output = add_frame(output, max_width, config)
return output
# }}}
# textual information {{{
def textual_information(data_parsed, geo_data, config):
"""
Add textual information about current weather and
astronomical conditions
"""
def _shorten_full_location(full_location, city_only=False):
def _count_runes(string):
return len(string.encode('utf-16-le')) // 2
words = full_location.split(",")
output = words[0]
if city_only:
return output
for word in words[1:]:
if _count_runes(output + "," + word) > 50:
return output
output += "," + word
return output
2020-04-03 19:49:40 +00:00
city = LocationInfo()
city.latitude = geo_data["latitude"]
city.longitude = geo_data["longitude"]
city.timezone = geo_data["timezone"]
output = []
timezone = city.timezone
datetime_day_start = datetime.datetime.now()\
.replace(hour=0, minute=0, second=0, microsecond=0)
2020-04-03 19:49:40 +00:00
current_sun = sun(city.observer, date=datetime_day_start)
format_line = "%c %C, %t, %h, %w, %P"
current_condition = data_parsed['data']['current_condition'][0]
query = {}
weather_line = wttr_line.render_line(format_line, current_condition, query)
output.append('Weather: %s' % weather_line)
output.append('Timezone: %s' % timezone)
2020-04-03 20:04:35 +00:00
local_tz = pytz.timezone(timezone)
local_time_of = lambda x: current_sun[x]\
.replace(tzinfo=pytz.utc)\
.astimezone(local_tz)\
.strftime("%H:%M:%S")
tmp_output = []
tmp_output.append(' Now: %%{{NOW(%s)}}' % timezone)
2020-04-03 20:04:35 +00:00
tmp_output.append('Dawn: %s' % local_time_of("dawn"))
tmp_output.append('Sunrise: %s' % local_time_of("sunrise"))
tmp_output.append(' Zenith: %s ' % local_time_of("noon"))
tmp_output.append('Sunset: %s' % local_time_of("sunset"))
tmp_output.append('Dusk: %s' % local_time_of("dusk"))
tmp_output = [
re.sub("^([A-Za-z]*:)", lambda m: colorize(m.group(1), "2"), x)
for x in tmp_output]
output.append(
"%20s" % tmp_output[0] \
+ " | %20s " % tmp_output[1] \
+ " | %20s" % tmp_output[2])
output.append(
"%20s" % tmp_output[3] \
+ " | %20s " % tmp_output[4] \
+ " | %20s" % tmp_output[5])
city_only = False
suffix = ""
if "Simferopol" in timezone:
city_only = True
suffix = ", Крым"
if config["full_address"]:
output.append('Location: %s%s [%5.4f,%5.4f]' \
% (
_shorten_full_location(config["full_address"], city_only=city_only),
suffix,
geo_data["latitude"],
geo_data["longitude"],
))
output = [
re.sub("^( *[A-Za-z]*:)", lambda m: colorize(m.group(1), "2"),
re.sub("^( +[A-Za-z]*:)", lambda m: colorize(m.group(1), "2"),
re.sub(r"(\|)", lambda m: colorize(m.group(1), "2"), x)))
for x in output]
return "".join("%s\n" % x for x in output)
# }}}
# get_geodata {{{
def get_geodata(location):
text = requests.get("http://localhost:8004/%s" % location).text
return json.loads(text)
# }}}
2019-08-28 11:55:17 +00:00
def main(location, override_location=None, data=None, full_address=None, view=None):
config = {
"lang": "en",
"locale": "en_US",
"location": location,
"override_location": override_location,
"full_address": full_address,
2019-08-28 11:55:17 +00:00
"view": view,
}
geo_data = get_geodata(location)
if data is None:
data_parsed = get_data(config)
else:
data_parsed = data
output = generate_panel(data_parsed, geo_data, config)
output += textual_information(data_parsed, geo_data, config)
return output
if __name__ == '__main__':
sys.stdout.write(main(sys.argv[1]))