mirror of
https://github.com/DarkFlippers/unleashed-firmware
synced 2024-12-30 06:33:07 +00:00
589 lines
No EOL
18 KiB
C++
589 lines
No EOL
18 KiB
C++
#include "cc1101.h"
|
|
#include <furi.h>
|
|
#include <gui/gui.h>
|
|
#include <input/input.h>
|
|
|
|
extern "C" void cli_print(const char* str);
|
|
|
|
#define RSSI_DELAY 5000 //rssi delay in micro second
|
|
#define CHAN_SPA 0.05 // channel spacing
|
|
|
|
int16_t rssi_to_dbm(uint8_t rssi_dec, uint8_t rssiOffset) {
|
|
int16_t rssi;
|
|
|
|
if(rssi_dec >= 128) {
|
|
rssi = (int16_t)((int16_t)(rssi_dec - 256) / 2) - rssiOffset;
|
|
} else {
|
|
rssi = (rssi_dec / 2) - rssiOffset;
|
|
}
|
|
|
|
return rssi;
|
|
}
|
|
|
|
typedef struct {
|
|
float base_freq;
|
|
uint8_t reg[3]; // FREQ2, FREQ1, FREQ0
|
|
uint8_t first_channel;
|
|
uint8_t last_channel;
|
|
uint8_t rssi_offset;
|
|
} Band;
|
|
|
|
typedef struct {
|
|
const Band* band;
|
|
uint16_t channel;
|
|
} FreqConfig;
|
|
|
|
void setup_freq(CC1101* cc1101, float freq) {
|
|
// cc1101->SpiWriteReg(CC1101_MCSM0, 0x08); // disalbe FS_AUTOCAL
|
|
// cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43 | 0x0C); // MAX_DVGA_GAIN to 11 for fast rssi
|
|
// cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0xB0); // max AGC WAIT_TIME; 0 filter_length
|
|
// cc1101->SetMod(GFSK); // set to GFSK for fast rssi measurement | +8 is dcfilter off
|
|
|
|
uint32_t freq_reg = freq * 1e6 / (F_OSC / 65536);
|
|
cc1101->SetFreq((freq_reg >> 16) & 0xFF, (freq_reg >> 8) & 0xFF, (freq_reg)&0xFF);
|
|
cc1101->SetChannel(0);
|
|
|
|
/*
|
|
//set test0 to 0x09
|
|
cc1101->SpiWriteReg(CC1101_TEST0, 0x09);
|
|
//set FSCAL2 to 0x2A to force VCO HIGH
|
|
cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A);
|
|
|
|
// perform a manual calibration by issuing SCAL command
|
|
cc1101->SpiStrobe(CC1101_SCAL);
|
|
*/
|
|
}
|
|
|
|
static GpioPin debug_0 = {GPIOB, GPIO_PIN_2};
|
|
|
|
int16_t rx_rssi(CC1101* cc1101, const FreqConfig* config) {
|
|
// cc1101->SpiStrobe(CC1101_SFRX);
|
|
// cc1101->SetReceive();
|
|
|
|
// uint8_t begin_size = cc1101->SpiReadStatus(CC1101_RXBYTES);
|
|
// uint8_t rx_status = cc1101->SpiReadStatus(CC1101_MARCSTATE);
|
|
|
|
// delay_us(RSSI_DELAY);
|
|
// osDelay(15);
|
|
|
|
// uint8_t end_size = cc1101->SpiReadStatus(CC1101_RXBYTES);
|
|
|
|
// 1.4.8) read PKTSTATUS register while the radio is in RX state
|
|
/*uint8_t _pkt_status = */ // cc1101->SpiReadStatus(CC1101_PKTSTATUS);
|
|
|
|
// 1.4.9) enter IDLE state by issuing a SIDLE command
|
|
// cc1101->SpiStrobe(CC1101_SIDLE);
|
|
|
|
// //read rssi value and converto to dBm form
|
|
uint8_t rssi_dec = (uint8_t)cc1101->SpiReadStatus(CC1101_RSSI);
|
|
int16_t rssi_dBm = rssi_to_dbm(rssi_dec, config->band->rssi_offset);
|
|
|
|
/*
|
|
char buf[256];
|
|
sprintf(buf, "status: %d -> %d, rssi: %d\n", rx_status, cc1101->SpiReadStatus(CC1101_MARCSTATE), rssi_dBm);
|
|
cli_print(buf);
|
|
sprintf(buf, "begin: %d, end: %d\n", begin_size, end_size);
|
|
cli_print(buf);
|
|
*/
|
|
|
|
// uint8_t rx_data[64];
|
|
// uint8_t fifo_length = end_size - begin_size;
|
|
|
|
/*
|
|
if(fifo_length < 64) {
|
|
// cc1101->SpiReadBurstReg(CC1101_RXFIFO, rx_data, fifo_length);
|
|
|
|
*
|
|
printf("FIFO:");
|
|
for(uint8_t i = 0; i < fifo_length; i++) {
|
|
for(uint8_t bit = 0; bit < 8; bit++) {
|
|
printf("%s", (rx_data[i] & (1 << bit)) > 0 ? "1" : "0");
|
|
}
|
|
printf(" ");
|
|
}
|
|
printf("\n");
|
|
*
|
|
|
|
for(uint8_t i = 0; i < fifo_length; i++) {
|
|
for(uint8_t bit = 0; bit < 8; bit++) {
|
|
gpio_write((GpioPin*)&debug_0, (rx_data[i] & (1 << bit)) > 0);
|
|
delay_us(5);
|
|
}
|
|
}
|
|
} else {
|
|
cli_print("fifo size over\n");
|
|
}
|
|
*/
|
|
|
|
return rssi_dBm;
|
|
}
|
|
|
|
/*
|
|
void flp_config(CC1101* cc1101) {
|
|
cc1101->SpiWriteReg(
|
|
CC1101_MCSM0, 0x18); // calibrate when going from IDLE to RX or TX ; 149 - 155 μs timeout
|
|
// MCSM0.FS_AUTOCAL[1:0] = 1
|
|
|
|
cc1101->SpiWriteReg(CC1101_AGCCTRL2, 0x43);
|
|
cc1101->SpiWriteReg(CC1101_AGCCTRL1, 0x49);
|
|
cc1101->SpiWriteReg(CC1101_AGCCTRL0, 0x91);
|
|
|
|
//freq synthesizer calibration
|
|
cc1101->SpiWriteReg(CC1101_FSCAL3, 0xEA);
|
|
cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A);
|
|
cc1101->SpiWriteReg(CC1101_FSCAL1, 0x00);
|
|
cc1101->SpiWriteReg(CC1101_FSCAL0, 0x1F);
|
|
|
|
// async data out
|
|
cc1101->SpiSetRegValue(CC1101_IOCFG0, 13, 5, 0); // GDO0 Output Pin Configuration
|
|
cc1101->SpiSetRegValue(CC1101_IOCFG0, 13, 5, 0); // WAT
|
|
|
|
// FIFOTHR.ADC_RETENTION = 1
|
|
cc1101->SpiSetRegValue(CC1101_FIFOTHR, 1, 6, 6);
|
|
|
|
// PKTCTRL1.APPEND_STATUS = 0
|
|
cc1101->SpiSetRegValue(CC1101_PKTCTRL1, 0, 2, 2);
|
|
|
|
// PKTCTRL0.WHITE_DATA = 0
|
|
cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 0, 6, 6);
|
|
|
|
// PKTCTRL0.LENGTH_CONFIG = 2 // Infinite packet length mode
|
|
cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 2, 1, 0);
|
|
|
|
// PKTCTRL0.CRC_EN = 0
|
|
cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 0, 2, 2);
|
|
|
|
// PKTCTRL0.PKT_FORMAT = 3
|
|
cc1101->SpiSetRegValue(CC1101_PKTCTRL0, 3, 5, 4);
|
|
|
|
// bandwidth 50-100 kHz
|
|
if(!cc1101->setRxBandwidth(75.0)) {
|
|
printf("wrong rx bw\n");
|
|
}
|
|
|
|
// datarate ~30 kbps
|
|
if(!cc1101->setBitRate(100.)) {
|
|
printf("wrong bitrate\n");
|
|
}
|
|
|
|
// mod
|
|
// MDMCFG2.MOD_FORMAT = 3 (3: OOK, 0: 2-FSK)
|
|
cc1101->SpiSetRegValue(CC1101_MDMCFG2, 3, 6, 4);
|
|
// MDMCFG2.SYNC_MODE = 0
|
|
cc1101->SpiSetRegValue(CC1101_MDMCFG2, 0, 2, 0);
|
|
}
|
|
*/
|
|
|
|
void tx_config(CC1101* cc1101) {
|
|
// cc1101->SpiWriteReg(CC1101_IOCFG2,0x0B); //GDO2 Output Pin Configuration
|
|
// cc1101->SpiWriteReg(CC1101_IOCFG0,0x0C); //GDO0 Output Pin Configuration
|
|
cc1101->SpiSetRegValue(CC1101_IOCFG0, 13, 5, 0); // GDO0 Output Pin Configuration
|
|
|
|
cc1101->SpiWriteReg(CC1101_FIFOTHR, 0x47); //RX FIFO and TX FIFO Thresholds
|
|
cc1101->SpiWriteReg(CC1101_PKTCTRL0, 0x32); //Packet Automation Control
|
|
cc1101->SpiWriteReg(CC1101_FSCTRL1, 0x06); //Frequency Synthesizer Control
|
|
cc1101->SpiWriteReg(CC1101_FREQ2, 0x10); //Frequency Control Word, High Byte
|
|
cc1101->SpiWriteReg(CC1101_FREQ1, 0xB0); //Frequency Control Word, Middle Byte
|
|
cc1101->SpiWriteReg(CC1101_FREQ0, 0x71); //Frequency Control Word, Low Byte
|
|
cc1101->SpiWriteReg(CC1101_MDMCFG4, 0x6A); //Modem Configuration
|
|
cc1101->SpiWriteReg(CC1101_MDMCFG3, 0x2E); //Modem Configuration
|
|
cc1101->SpiWriteReg(CC1101_MDMCFG2, 0x30); //Modem Configuration
|
|
cc1101->SpiWriteReg(CC1101_DEVIATN, 0x15); //Modem Deviation Setting
|
|
cc1101->SpiWriteReg(CC1101_MCSM0, 0x18); //Main Radio Control State Machine Configuration
|
|
cc1101->SpiWriteReg(CC1101_FOCCFG, 0x16); //Frequency Offset Compensation Configuration
|
|
cc1101->SpiWriteReg(CC1101_WORCTRL, 0xFB); //Wake On Radio Control
|
|
cc1101->SpiWriteReg(CC1101_FREND0, 0x11); //Front End TX Configuration
|
|
cc1101->SpiWriteReg(CC1101_FSCAL3, 0xE9); //Frequency Synthesizer Calibration
|
|
cc1101->SpiWriteReg(CC1101_FSCAL2, 0x2A); //Frequency Synthesizer Calibration
|
|
cc1101->SpiWriteReg(CC1101_FSCAL1, 0x00); //Frequency Synthesizer Calibration
|
|
cc1101->SpiWriteReg(CC1101_FSCAL0, 0x1F); //Frequency Synthesizer Calibration
|
|
|
|
/*
|
|
cc1101->SpiWriteReg(CC1101_TEST2, 0x81); //Various Test Settings
|
|
cc1101->SpiWriteReg(CC1101_TEST1, 0x35); //Various Test Settings
|
|
cc1101->SpiWriteReg(CC1101_TEST0, 0x09); //Various Test Settings
|
|
*/
|
|
}
|
|
|
|
// f = (f_osc/65536) * (FREQ + CHAN * (256 + CH_SP_M) * 2^(CH_SP_E - 2))
|
|
// FREQ = f / (f_osc/65536)
|
|
// CHAN = 0
|
|
// TODO: CHAN number not implemented!
|
|
// TODO: reg values not affetcts
|
|
|
|
const Band bands[] = {
|
|
{300., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{315., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{348., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{386., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{433.92, {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{438.9, {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{464., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{779., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{868., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{915., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
{928., {0x00, 0x00, 0x00}, 0, 255, 74},
|
|
};
|
|
|
|
const FreqConfig FREQ_LIST[] = {
|
|
{&bands[0], 0},
|
|
{&bands[1], 0},
|
|
{&bands[2], 0},
|
|
{&bands[3], 0},
|
|
{&bands[4], 0},
|
|
{&bands[5], 0},
|
|
{&bands[6], 0},
|
|
{&bands[7], 0},
|
|
{&bands[8], 0},
|
|
{&bands[9], 0},
|
|
{&bands[10], 0},
|
|
};
|
|
|
|
extern "C" void cc1101_isr() {
|
|
gpio_write((GpioPin*)&debug_0, gpio_read(&cc1101_g0_gpio));
|
|
}
|
|
|
|
typedef enum {
|
|
EventTypeTick,
|
|
EventTypeKey,
|
|
} EventType;
|
|
|
|
typedef struct {
|
|
union {
|
|
InputEvent input;
|
|
} value;
|
|
EventType type;
|
|
} AppEvent;
|
|
|
|
typedef enum { ModeRx, ModeTx } Mode;
|
|
|
|
typedef struct {
|
|
int16_t dbm;
|
|
uint8_t reg;
|
|
} TxLevel;
|
|
|
|
const TxLevel TX_LEVELS[] = {
|
|
{-10, 0},
|
|
{-5, 0},
|
|
{0, 0},
|
|
{5, 0},
|
|
};
|
|
|
|
typedef struct {
|
|
Mode mode;
|
|
size_t active_freq_idx;
|
|
float active_freq;
|
|
int16_t last_rssi;
|
|
size_t tx_level;
|
|
bool need_cc1101_conf;
|
|
} State;
|
|
|
|
static void render_callback(Canvas* canvas, void* ctx) {
|
|
State* state = (State*)acquire_mutex((ValueMutex*)ctx, 25);
|
|
|
|
if(!state) return;
|
|
|
|
canvas_clear(canvas);
|
|
canvas_set_color(canvas, ColorBlack);
|
|
canvas_set_font(canvas, FontPrimary);
|
|
canvas_draw_str(canvas, 2, 12, "cc1101 workaround");
|
|
|
|
{
|
|
char buf[24];
|
|
sprintf(
|
|
buf,
|
|
"freq: %ld.%02ld MHz",
|
|
(uint32_t)state->active_freq,
|
|
(uint32_t)(state->active_freq * 100.) % 100);
|
|
|
|
canvas_set_font(canvas, FontSecondary);
|
|
canvas_draw_str(canvas, 2, 25, buf);
|
|
}
|
|
|
|
{
|
|
canvas_set_font(canvas, FontSecondary);
|
|
|
|
if(state->need_cc1101_conf) {
|
|
canvas_draw_str(canvas, 2, 36, "mode: configuring...");
|
|
} else if(state->mode == ModeRx) {
|
|
canvas_draw_str(canvas, 2, 36, "mode: RX");
|
|
} else if(state->mode == ModeTx) {
|
|
canvas_draw_str(canvas, 2, 36, "mode: TX");
|
|
} else {
|
|
canvas_draw_str(canvas, 2, 36, "mode: unknown");
|
|
}
|
|
}
|
|
|
|
{
|
|
if(!state->need_cc1101_conf && state->mode == ModeRx) {
|
|
char buf[24];
|
|
sprintf(buf, "RSSI: %d dBm", state->last_rssi);
|
|
|
|
canvas_set_font(canvas, FontSecondary);
|
|
canvas_draw_str(canvas, 2, 48, buf);
|
|
}
|
|
}
|
|
|
|
{
|
|
char buf[24];
|
|
sprintf(buf, "tx level: %d dBm", TX_LEVELS[state->tx_level].dbm);
|
|
|
|
canvas_set_font(canvas, FontSecondary);
|
|
canvas_draw_str(canvas, 2, 63, buf);
|
|
}
|
|
|
|
release_mutex((ValueMutex*)ctx, state);
|
|
}
|
|
|
|
static void input_callback(InputEvent* input_event, void* ctx) {
|
|
osMessageQueueId_t event_queue = ctx;
|
|
|
|
AppEvent event;
|
|
event.type = EventTypeKey;
|
|
event.value.input = *input_event;
|
|
osMessageQueuePut(event_queue, &event, 0, 0);
|
|
}
|
|
|
|
extern "C" void cc1101_workaround(void* p) {
|
|
osMessageQueueId_t event_queue = osMessageQueueNew(1, sizeof(AppEvent), NULL);
|
|
furi_check(event_queue);
|
|
|
|
State _state;
|
|
_state.mode = ModeRx;
|
|
_state.active_freq_idx = 4;
|
|
|
|
FreqConfig conf = FREQ_LIST[_state.active_freq_idx];
|
|
_state.active_freq = conf.band->base_freq + CHAN_SPA * conf.channel;
|
|
|
|
_state.need_cc1101_conf = true;
|
|
_state.last_rssi = 0;
|
|
_state.tx_level = 0;
|
|
|
|
ValueMutex state_mutex;
|
|
if(!init_mutex(&state_mutex, &_state, sizeof(State))) {
|
|
printf("[cc1101] cannot create mutex\n");
|
|
furiac_exit(NULL);
|
|
}
|
|
|
|
Widget* widget = widget_alloc();
|
|
|
|
widget_draw_callback_set(widget, render_callback, &state_mutex);
|
|
widget_input_callback_set(widget, input_callback, event_queue);
|
|
|
|
// Open GUI and register widget
|
|
Gui* gui = (Gui*)furi_record_open("gui");
|
|
if(gui == NULL) {
|
|
printf("[cc1101] gui is not available\n");
|
|
furiac_exit(NULL);
|
|
}
|
|
gui_add_widget(gui, widget, GuiLayerFullscreen);
|
|
|
|
gpio_init(&debug_0, GpioModeOutputPushPull);
|
|
gpio_write((GpioPin*)&debug_0, false);
|
|
|
|
printf("[cc1101] creating device\n");
|
|
GpioPin cs_pin = {CC1101_CS_GPIO_Port, CC1101_CS_Pin};
|
|
|
|
gpio_init(&cc1101_g0_gpio, GpioModeInput);
|
|
|
|
// TODO open record
|
|
GpioPin* cs_pin_record = &cs_pin;
|
|
CC1101 cc1101(cs_pin_record);
|
|
printf("[cc1101] init device\n");
|
|
|
|
uint8_t address = cc1101.Init();
|
|
if(address > 0) {
|
|
printf("[cc1101] init done: %d\n", address);
|
|
} else {
|
|
printf("[cc1101] init fail\n");
|
|
furiac_exit(NULL);
|
|
}
|
|
|
|
cc1101.SpiStrobe(CC1101_SIDLE);
|
|
|
|
// flp_config(&cc1101);
|
|
tx_config(&cc1101);
|
|
// setup_freq(&cc1101, &FREQ_LIST[4]);
|
|
// enable_cc1101_irq();
|
|
|
|
printf("init ok\n");
|
|
|
|
// TODO open record
|
|
GpioPin* led_record = (GpioPin*)&led_gpio[1];
|
|
|
|
// configure pin
|
|
gpio_init(led_record, GpioModeOutputOpenDrain);
|
|
|
|
const int16_t RSSI_THRESHOLD = -60;
|
|
|
|
// setup_freq(&cc1101, &FREQ_LIST[1]);
|
|
|
|
cc1101.SetReceive();
|
|
|
|
AppEvent event;
|
|
while(1) {
|
|
osStatus_t event_status = osMessageQueueGet(event_queue, &event, NULL, 100);
|
|
State* state = (State*)acquire_mutex_block(&state_mutex);
|
|
|
|
if(event_status == osOK) {
|
|
if(event.type == EventTypeKey) {
|
|
if(event.value.input.state && event.value.input.input == InputBack) {
|
|
printf("[cc1101] bye!\n");
|
|
cli_print("[cc1101] bye!\n");
|
|
|
|
cc1101.SpiStrobe(CC1101_SIDLE);
|
|
cc1101.SpiStrobe(CC1101_SPWD);
|
|
cli_print("[cc1101] go to power down\n");
|
|
|
|
// TODO remove all widgets create by app
|
|
widget_enabled_set(widget, false);
|
|
furiac_exit(NULL);
|
|
}
|
|
|
|
if(event.value.input.state && event.value.input.input == InputDown) {
|
|
if(state->active_freq_idx > 0) {
|
|
state->active_freq_idx--;
|
|
}
|
|
|
|
FreqConfig conf = FREQ_LIST[state->active_freq_idx];
|
|
state->active_freq = conf.band->base_freq + CHAN_SPA * conf.channel;
|
|
state->need_cc1101_conf = true;
|
|
}
|
|
|
|
if(event.value.input.state && event.value.input.input == InputUp) {
|
|
if(state->active_freq_idx < (sizeof(FREQ_LIST) / sizeof(FREQ_LIST[0]) - 1)) {
|
|
state->active_freq_idx++;
|
|
}
|
|
|
|
FreqConfig conf = FREQ_LIST[state->active_freq_idx];
|
|
state->active_freq = conf.band->base_freq + CHAN_SPA * conf.channel;
|
|
state->need_cc1101_conf = true;
|
|
}
|
|
|
|
if(event.value.input.state && event.value.input.input == InputRight) {
|
|
/*
|
|
if(state->tx_level < (sizeof(TX_LEVELS) / sizeof(TX_LEVELS[0]) - 1)) {
|
|
state->tx_level++;
|
|
} else {
|
|
state->tx_level = 0;
|
|
}
|
|
*/
|
|
|
|
state->active_freq += 0.25;
|
|
state->need_cc1101_conf = true;
|
|
}
|
|
|
|
if(event.value.input.state && event.value.input.input == InputLeft) {
|
|
/*
|
|
if(state->tx_level < (sizeof(TX_LEVELS) / sizeof(TX_LEVELS[0]) - 1)) {
|
|
state->tx_level++;
|
|
} else {
|
|
state->tx_level = 0;
|
|
}
|
|
*/
|
|
|
|
state->active_freq -= 0.25;
|
|
state->need_cc1101_conf = true;
|
|
}
|
|
|
|
if(event.value.input.input == InputOk) {
|
|
state->mode = event.value.input.state ? ModeTx : ModeRx;
|
|
state->need_cc1101_conf = true;
|
|
}
|
|
}
|
|
} else {
|
|
}
|
|
|
|
if(state->need_cc1101_conf) {
|
|
if(state->mode == ModeRx) {
|
|
cc1101.SpiStrobe(CC1101_SIDLE);
|
|
gpio_init(&cc1101_g0_gpio, GpioModeInput);
|
|
|
|
setup_freq(&cc1101, state->active_freq);
|
|
cc1101.SetReceive();
|
|
|
|
state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq_idx]);
|
|
} else if(state->mode == ModeTx) {
|
|
cc1101.SpiStrobe(CC1101_SIDLE);
|
|
|
|
setup_freq(&cc1101, state->active_freq);
|
|
cc1101.SetTransmit();
|
|
gpio_init(&cc1101_g0_gpio, GpioModeOutputPushPull);
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
}
|
|
|
|
state->need_cc1101_conf = false;
|
|
}
|
|
|
|
if(!state->need_cc1101_conf && state->mode == ModeRx) {
|
|
// TOOD what about rssi offset
|
|
state->last_rssi = rx_rssi(&cc1101, &FREQ_LIST[state->active_freq_idx]);
|
|
|
|
gpio_write(led_record, state->last_rssi < RSSI_THRESHOLD);
|
|
} else if(!state->need_cc1101_conf && state->mode == ModeTx) {
|
|
/*
|
|
const uint8_t data = 0xA5;
|
|
|
|
for(uint8_t i = 0; i < 8; i++) {
|
|
gpio_write(&cc1101_g0_gpio, (data & (1 << i)) > 0);
|
|
osDelay(1);
|
|
}
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
*/
|
|
|
|
/*
|
|
// BELL UDB-Q022-0000
|
|
const uint16_t HALF_PERIOD = 500;
|
|
|
|
for(uint8_t n = 0; n < 4; n++) {
|
|
for(uint8_t i = 0; i < 4; i++) {
|
|
gpio_write(&cc1101_g0_gpio, true);
|
|
delay_us(3 * HALF_PERIOD);
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
delay_us(HALF_PERIOD);
|
|
}
|
|
|
|
for(uint8_t i = 0; i < 40; i++) {
|
|
gpio_write(&cc1101_g0_gpio, true);
|
|
delay_us(HALF_PERIOD);
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
delay_us(HALF_PERIOD);
|
|
}
|
|
}
|
|
*/
|
|
|
|
// BELL ERA C61, static code
|
|
const uint16_t ONE_ON = 150;
|
|
const uint16_t ONE_OFF = 400;
|
|
const uint16_t ZERO_ON = 420;
|
|
const uint16_t ZERO_OFF = 130;
|
|
|
|
const bool SEQ[] = {true, true, false, false, true, false, true, false, true,
|
|
false, true, true, true, false, true, false, true, true,
|
|
true, true, true, false, true, false, true};
|
|
|
|
for(uint8_t n = 0; n < 10; n++) {
|
|
for(uint8_t i = 0; i < sizeof(SEQ) / sizeof(SEQ[0]); i++) {
|
|
if(SEQ[i]) {
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
delay_us(ONE_ON);
|
|
gpio_write(&cc1101_g0_gpio, true);
|
|
delay_us(ONE_OFF);
|
|
} else {
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
delay_us(ZERO_ON);
|
|
gpio_write(&cc1101_g0_gpio, true);
|
|
delay_us(ZERO_OFF);
|
|
}
|
|
}
|
|
|
|
osDelay(4);
|
|
}
|
|
|
|
gpio_write(&cc1101_g0_gpio, false);
|
|
}
|
|
|
|
release_mutex(&state_mutex, state);
|
|
widget_update(widget);
|
|
}
|
|
} |