unleashed-firmware/lib/lfrfid/protocols/protocol_fdx_a.c
Leptopt1los dd988ba449
bit_lib and nfc_util refactor (#3383)
* nfc_util functions for processing bytes moved into bit_lib
* bitlib test update
* bit_lib moved from lfrfid to standalone lib
* Added bit functions for any supported data types
* Error fix and api add
* Added test for 64
* Added doc
* Testcase for 64 rewrited
* Realization error fix
* API version bump
* sync api version, fix after-merge old libs usage
* fix build errors
* build fix
* fbt format

Co-authored-by: assasinfil <nfa57643@gmail.com>
Co-authored-by: gornekich <n.gorbadey@gmail.com>
Co-authored-by: あく <alleteam@gmail.com>
2024-02-14 11:41:42 +07:00

252 lines
No EOL
8 KiB
C

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/fsk_demod.h>
#include <lfrfid/tools/fsk_osc.h>
#include "lfrfid_protocols.h"
#include <bit_lib/bit_lib.h>
#define JITTER_TIME (20)
#define MIN_TIME (64 - JITTER_TIME)
#define MAX_TIME (80 + JITTER_TIME)
#define FDXA_DATA_SIZE 10
#define FDXA_PREAMBLE_SIZE 2
#define FDXA_ENCODED_DATA_SIZE (FDXA_PREAMBLE_SIZE + FDXA_DATA_SIZE + FDXA_PREAMBLE_SIZE)
#define FDXA_ENCODED_BIT_SIZE ((FDXA_PREAMBLE_SIZE + FDXA_DATA_SIZE) * 8)
#define FDXA_DECODED_DATA_SIZE (5)
#define FDXA_DECODED_BIT_SIZE ((FDXA_ENCODED_BIT_SIZE - FDXA_PREAMBLE_SIZE * 8) / 2)
#define FDXA_PREAMBLE_0 0x55
#define FDXA_PREAMBLE_1 0x1D
typedef struct {
FSKDemod* fsk_demod;
} ProtocolFDXADecoder;
typedef struct {
FSKOsc* fsk_osc;
uint8_t encoded_index;
uint32_t pulse;
} ProtocolFDXAEncoder;
typedef struct {
ProtocolFDXADecoder decoder;
ProtocolFDXAEncoder encoder;
uint8_t encoded_data[FDXA_ENCODED_DATA_SIZE];
uint8_t data[FDXA_DECODED_DATA_SIZE];
size_t protocol_size;
} ProtocolFDXA;
ProtocolFDXA* protocol_fdx_a_alloc(void) {
ProtocolFDXA* protocol = malloc(sizeof(ProtocolFDXA));
protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5);
protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50);
return protocol;
};
void protocol_fdx_a_free(ProtocolFDXA* protocol) {
fsk_demod_free(protocol->decoder.fsk_demod);
fsk_osc_free(protocol->encoder.fsk_osc);
free(protocol);
};
uint8_t* protocol_fdx_a_get_data(ProtocolFDXA* protocol) {
return protocol->data;
};
void protocol_fdx_a_decoder_start(ProtocolFDXA* protocol) {
memset(protocol->encoded_data, 0, FDXA_ENCODED_DATA_SIZE);
};
static bool protocol_fdx_a_decode(const uint8_t* from, uint8_t* to) {
size_t bit_index = 0;
for(size_t i = FDXA_PREAMBLE_SIZE; i < (FDXA_PREAMBLE_SIZE + FDXA_DATA_SIZE); i++) {
for(size_t n = 0; n < 4; n++) {
uint8_t bit_pair = (from[i] >> (6 - (n * 2))) & 0b11;
if(bit_pair == 0b01) {
bit_lib_set_bit(to, bit_index, 0);
} else if(bit_pair == 0b10) {
bit_lib_set_bit(to, bit_index, 1);
} else {
return false;
}
bit_index++;
}
}
return true;
}
static void protocol_fdx_a_fix_parity(ProtocolFDXA* protocol) {
for(size_t i = 0; i < FDXA_DECODED_DATA_SIZE; i++) {
if(bit_lib_test_parity_32(protocol->data[i], BitLibParityOdd)) {
protocol->data[i] ^= (1 << 7);
}
}
}
static bool protocol_fdx_a_can_be_decoded(const uint8_t* data) {
// check preamble
if(data[0] != FDXA_PREAMBLE_0 || data[1] != FDXA_PREAMBLE_1 || data[12] != FDXA_PREAMBLE_0 ||
data[13] != FDXA_PREAMBLE_1) {
return false;
}
// check for manchester encoding
uint8_t decoded_data[FDXA_DECODED_DATA_SIZE];
if(!protocol_fdx_a_decode(data, decoded_data)) return false;
uint8_t parity_sum = 0;
for(size_t i = 0; i < FDXA_DECODED_DATA_SIZE; i++) {
parity_sum += bit_lib_test_parity_32(decoded_data[i], BitLibParityOdd);
decoded_data[i] &= 0x7F;
}
return (parity_sum == 0);
}
bool protocol_fdx_a_decoder_feed(ProtocolFDXA* protocol, bool level, uint32_t duration) {
bool value;
uint32_t count;
bool result = false;
fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count);
if(count > 0) {
for(size_t i = 0; i < count; i++) {
bit_lib_push_bit(protocol->encoded_data, FDXA_ENCODED_DATA_SIZE, value);
if(protocol_fdx_a_can_be_decoded(protocol->encoded_data)) {
protocol_fdx_a_decode(protocol->encoded_data, protocol->data);
result = true;
}
}
}
return result;
};
static void protocol_fdx_a_encode(ProtocolFDXA* protocol) {
protocol->encoded_data[0] = FDXA_PREAMBLE_0;
protocol->encoded_data[1] = FDXA_PREAMBLE_1;
size_t bit_index = 0;
for(size_t i = 0; i < FDXA_DECODED_BIT_SIZE; i++) {
bool bit = bit_lib_get_bit(protocol->data, i);
if(bit) {
bit_lib_set_bit(protocol->encoded_data, 16 + bit_index, 1);
bit_lib_set_bit(protocol->encoded_data, 16 + bit_index + 1, 0);
} else {
bit_lib_set_bit(protocol->encoded_data, 16 + bit_index, 0);
bit_lib_set_bit(protocol->encoded_data, 16 + bit_index + 1, 1);
}
bit_index += 2;
}
}
bool protocol_fdx_a_encoder_start(ProtocolFDXA* protocol) {
protocol->encoder.encoded_index = 0;
protocol->encoder.pulse = 0;
protocol_fdx_a_encode(protocol);
return true;
};
LevelDuration protocol_fdx_a_encoder_yield(ProtocolFDXA* protocol) {
bool level = 0;
uint32_t duration = 0;
// if pulse is zero, we need to output high, otherwise we need to output low
if(protocol->encoder.pulse == 0) {
// get bit
uint8_t bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoder.encoded_index);
// get pulse from oscillator
bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration);
if(advance) {
bit_lib_increment_index(protocol->encoder.encoded_index, FDXA_ENCODED_BIT_SIZE);
}
// duration diveded by 2 because we need to output high and low
duration = duration / 2;
protocol->encoder.pulse = duration;
level = true;
} else {
// output low half and reset pulse
duration = protocol->encoder.pulse;
protocol->encoder.pulse = 0;
level = false;
}
return level_duration_make(level, duration);
};
bool protocol_fdx_a_write_data(ProtocolFDXA* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
// Correct protocol data by redecoding
protocol_fdx_a_fix_parity(protocol);
protocol_fdx_a_encoder_start(protocol);
protocol_fdx_a_decode(protocol->encoded_data, protocol->data);
protocol_fdx_a_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 |
(3 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32);
request->t5577.blocks_to_write = 4;
result = true;
}
return result;
};
void protocol_fdx_a_render_data(ProtocolFDXA* protocol, FuriString* result) {
uint8_t data[FDXA_DECODED_DATA_SIZE];
memcpy(data, protocol->data, FDXA_DECODED_DATA_SIZE);
uint8_t parity_sum = 0;
for(size_t i = 0; i < FDXA_DECODED_DATA_SIZE; i++) {
parity_sum += bit_lib_test_parity_32(data[i], BitLibParityOdd);
data[i] &= 0x7F;
}
furi_string_printf(
result,
"ID: %02X%02X%02X%02X%02X\r\n"
"Parity: %s",
data[0],
data[1],
data[2],
data[3],
data[4],
parity_sum == 0 ? "+" : "-");
};
const ProtocolBase protocol_fdx_a = {
.name = "FDX-A",
.manufacturer = "FECAVA",
.data_size = FDXA_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_fdx_a_alloc,
.free = (ProtocolFree)protocol_fdx_a_free,
.get_data = (ProtocolGetData)protocol_fdx_a_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_fdx_a_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_fdx_a_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_fdx_a_encoder_start,
.yield = (ProtocolEncoderYield)protocol_fdx_a_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_fdx_a_render_data,
.render_brief_data = (ProtocolRenderData)protocol_fdx_a_render_data,
.write_data = (ProtocolWriteData)protocol_fdx_a_write_data,
};