unleashed-firmware/firmware/targets/f5/api-hal/api-hal-subghz.c
あく e0bc80cd8b
SubGhz: increase output power and. Dolphin scene: refactor. (#411)
* SubGhz: increase output power to max
* Dolphin scene: refactor code.
2021-04-15 19:39:15 +03:00

181 lines
6.3 KiB
C

#include "api-hal-subghz.h"
#include <stm32wbxx_ll_gpio.h>
#include <api-hal-gpio.h>
#include <api-hal-spi.h>
#include <cc1101.h>
#include <stdio.h>
#include "main.h"
static const uint8_t api_hal_subghz_preset_ook_async_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x0D }, // GD0 as async serial data output/input
{ CC1101_FSCTRL1, 0x06 }, // Set IF 26m/2^10*2=2.2MHz
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
/* Async OOK Specific things */
{ CC1101_MDMCFG2, 0x30 }, // ASK/OOK, No preamble/sync
{ CC1101_PKTCTRL0, 0x32 }, // Async, no CRC, Infinite
{ CC1101_FREND0, 0x01 }, // OOK/ASK PATABLE
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_ook_async_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
static const uint8_t api_hal_subghz_preset_2fsk_packet_regs[][2] = {
/* Base setting */
{ CC1101_IOCFG0, 0x06 }, // GD0 as async serial data output/input
{ CC1101_FSCTRL1, 0x06 }, // Set IF 26m/2^10*2=2.2MHz
{ CC1101_MCSM0, 0x18 }, // Autocalibrate on idle to TRX, ~150us OSC guard time
/* End */
{ 0, 0 },
};
static const uint8_t api_hal_subghz_preset_2fsk_packet_patable[8] = {
0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
void api_hal_subghz_init() {
LL_GPIO_SetPinMode(RF_SW_0_GPIO_Port, RF_SW_0_Pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinSpeed(RF_SW_0_GPIO_Port, RF_SW_0_Pin, LL_GPIO_SPEED_FREQ_LOW);
LL_GPIO_SetPinOutputType(RF_SW_0_GPIO_Port, RF_SW_0_Pin, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinMode(RF_SW_1_GPIO_Port, RF_SW_1_Pin, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinSpeed(RF_SW_1_GPIO_Port, RF_SW_1_Pin, LL_GPIO_SPEED_FREQ_LOW);
LL_GPIO_SetPinOutputType(RF_SW_1_GPIO_Port, RF_SW_1_Pin, LL_GPIO_OUTPUT_PUSHPULL);
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
// Reset and shutdown
cc1101_reset(device);
cc1101_write_reg(device, CC1101_IOCFG0, 0x2E); // High impedance 3-state
cc1101_shutdown(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_dump_state() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
printf(
"[api_hal_subghz] cc1101 chip %d, version %d\r\n",
cc1101_get_partnumber(device),
cc1101_get_version(device)
);
api_hal_spi_device_return(device);
}
void api_hal_subghz_load_preset(ApiHalSubGhzPreset preset) {
if(preset == ApiHalSubGhzPresetOokAsync) {
api_hal_subghz_load_registers(api_hal_subghz_preset_ook_async_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_ook_async_patable);
} else if(preset == ApiHalSubGhzPreset2FskPacket) {
api_hal_subghz_load_registers(api_hal_subghz_preset_2fsk_packet_regs);
api_hal_subghz_load_patable(api_hal_subghz_preset_2fsk_packet_patable);
}
}
void api_hal_subghz_load_registers(const uint8_t data[][2]) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_reset(device);
uint32_t i = 0;
while (data[i][0]) {
cc1101_write_reg(device, data[i][0], data[i][1]);
i++;
}
api_hal_spi_device_return(device);
}
void api_hal_subghz_load_patable(const uint8_t data[8]) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_set_pa_table(device, data);
api_hal_spi_device_return(device);
}
void api_hal_subghz_write_packet(const uint8_t* data, uint8_t size) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_flush_tx(device);
cc1101_write_fifo(device, data, size);
api_hal_spi_device_return(device);
}
void api_hal_subghz_read_packet(uint8_t* data, uint8_t size) {
}
void api_hal_subghz_shutdown() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
// Reset and shutdown
cc1101_shutdown(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_reset() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_reset(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_idle() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_idle(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_rx() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_rx(device);
api_hal_spi_device_return(device);
}
void api_hal_subghz_tx() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
cc1101_switch_to_tx(device);
api_hal_spi_device_return(device);
}
float api_hal_subghz_get_rssi() {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
int32_t rssi_dec = cc1101_get_rssi(device);
api_hal_spi_device_return(device);
float rssi = rssi_dec;
if(rssi_dec >= 128) {
rssi = ((rssi - 256.0f) / 2.0f) - 74.0f;
} else {
rssi = (rssi / 2.0f) - 74.0f;
}
return rssi;
}
uint32_t api_hal_subghz_set_frequency(uint32_t value) {
const ApiHalSpiDevice* device = api_hal_spi_device_get(ApiHalSpiDeviceIdSubGhz);
// Compensate rounding
if (value % cc1101_get_frequency_step(device) > (cc1101_get_frequency_step(device) / 2)) {
value += cc1101_get_frequency_step(device);
}
uint32_t real_frequency = cc1101_set_frequency(device, value);
cc1101_calibrate(device);
api_hal_spi_device_return(device);
return real_frequency;
}
void api_hal_subghz_set_path(ApiHalSubGhzPath path) {
if (path == ApiHalSubGhzPath1) {
LL_GPIO_ResetOutputPin(RF_SW_0_GPIO_Port, RF_SW_0_Pin);
LL_GPIO_SetOutputPin(RF_SW_1_GPIO_Port, RF_SW_1_Pin);
} else if (path == ApiHalSubGhzPath2) {
LL_GPIO_SetOutputPin(RF_SW_0_GPIO_Port, RF_SW_0_Pin);
LL_GPIO_ResetOutputPin(RF_SW_1_GPIO_Port, RF_SW_1_Pin);
} else if (path == ApiHalSubGhzPath3) {
LL_GPIO_SetOutputPin(RF_SW_0_GPIO_Port, RF_SW_0_Pin);
LL_GPIO_SetOutputPin(RF_SW_1_GPIO_Port, RF_SW_1_Pin);
} else if (path == ApiHalSubGhzPathIsolate) {
LL_GPIO_ResetOutputPin(RF_SW_0_GPIO_Port, RF_SW_0_Pin);
LL_GPIO_ResetOutputPin(RF_SW_1_GPIO_Port, RF_SW_1_Pin);
} else {
}
}