unleashed-firmware/firmware/targets/f6/api-hal/api-hal-irda.c
あく e8211226f3
[FL-1496] SubGhz: Library, Cli, Application (#543)
* ApiHal: set frequency and path in one go. Drivers: proper frequency registers calculation for CC1101. Update subghz cli to match new api.
* SubGhz: preparation for parsers porting, tim2 sharing
* ApiHal: add interrupts API, move all TIM2 related things there.
* SubGhz: refactor protocol lib and add keeloq.
* SubGhz: proper init_set for keeloq manafacture key
* SubGhz: port more protocols to lib
* SubGhz: load keeloq manufacture keys from sd card (if any).
* SubGhz: format output from protocols.
* SubGhz: use default frequency in subghz_rx cli command.
* SubGhz: keeloq key types
* Fix compillation error when internal storage disabled
* SubGhz: minor cleanup
* SubGhz: properly handle timeout and reset signal in subghz_rx
* SubGhz: Worker, Capture View. Furi: emulate thread join.
* SubGhz: free strings on keeloq key load end
* SubGhz: update protocols reporting API, app refactoring and capture view, update API HAL usage.
* SubGhz: update dump formatting
* ApiHal: backport subghz preset to F5
* ApiHal: backport subghz frequency range to F5
2021-06-30 00:19:20 +03:00

147 lines
4.4 KiB
C

#include "api-hal-interrupt.h"
#include "api-hal-irda.h"
#include <stm32wbxx_ll_tim.h>
#include <stm32wbxx_ll_gpio.h>
#include <stdio.h>
#include <furi.h>
#include "main.h"
#include "api-hal-pwm.h"
static struct{
TimerISRCallback callback;
void *ctx;
} timer_irda;
typedef enum{
TimerIRQSourceCCI1,
TimerIRQSourceCCI2,
} TimerIRQSource;
static void api_hal_irda_handle_capture(TimerIRQSource source)
{
uint32_t duration = 0;
bool level = 0;
switch (source) {
case TimerIRQSourceCCI1:
duration = LL_TIM_OC_GetCompareCH1(TIM2);
LL_TIM_SetCounter(TIM2, 0);
level = 1;
break;
case TimerIRQSourceCCI2:
duration = LL_TIM_OC_GetCompareCH2(TIM2);
LL_TIM_SetCounter(TIM2, 0);
level = 0;
break;
default:
furi_check(0);
}
if (timer_irda.callback)
timer_irda.callback(timer_irda.ctx, level, duration);
}
static void api_hal_irda_isr() {
if(LL_TIM_IsActiveFlag_CC1(TIM2) == 1) {
LL_TIM_ClearFlag_CC1(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC1S)) {
// input capture
api_hal_irda_handle_capture(TimerIRQSourceCCI1);
} else {
// output compare
// HAL_TIM_OC_DelayElapsedCallback(htim);
// HAL_TIM_PWM_PulseFinishedCallback(htim);
}
}
if(LL_TIM_IsActiveFlag_CC2(TIM2) == 1) {
LL_TIM_ClearFlag_CC2(TIM2);
if(READ_BIT(TIM2->CCMR1, TIM_CCMR1_CC2S)) {
// input capture
api_hal_irda_handle_capture(TimerIRQSourceCCI2);
} else {
// output compare
// HAL_TIM_OC_DelayElapsedCallback(htim);
// HAL_TIM_PWM_PulseFinishedCallback(htim);
}
}
}
void api_hal_irda_rx_irq_init(void)
{
LL_TIM_InitTypeDef TIM_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_TIM2);
LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA);
/**TIM2 GPIO Configuration
PA0 ------> TIM2_CH1
*/
GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_1;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 0xFFFFFFFF;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_EnableARRPreload(TIM2);
LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET);
LL_TIM_DisableMasterSlaveMode(TIM2);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_DIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING);
LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_INDIRECTTI);
LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1);
LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV1);
LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING);
LL_TIM_EnableIT_CC1(TIM2);
LL_TIM_EnableIT_CC2(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_SetCounter(TIM2, 0);
LL_TIM_EnableCounter(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, api_hal_irda_isr);
NVIC_SetPriority(TIM2_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(),5, 0));
NVIC_EnableIRQ(TIM2_IRQn);
}
void api_hal_irda_rx_irq_deinit(void) {
LL_TIM_DeInit(TIM2);
api_hal_interrupt_set_timer_isr(TIM2, NULL);
}
bool api_hal_irda_rx_irq_is_busy(void) {
return (LL_TIM_IsEnabledIT_CC1(TIM2) || LL_TIM_IsEnabledIT_CC2(TIM2));
}
void api_hal_irda_rx_irq_set_callback(TimerISRCallback callback, void *ctx) {
furi_check(callback);
timer_irda.callback = callback;
timer_irda.ctx = ctx;
}
void api_hal_irda_pwm_set(float value, float freq) {
hal_pwmn_set(value, freq, &IRDA_TX_TIM, IRDA_TX_CH);
}
void api_hal_irda_pwm_stop() {
hal_pwmn_stop(&IRDA_TX_TIM, IRDA_TX_CH);
}