unleashed-firmware/lib/lfrfid/protocols/protocol_em4100.c

427 lines
13 KiB
C

#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <toolbox/manchester_decoder.h>
#include "lfrfid_protocols.h"
typedef uint64_t EM4100DecodedData;
typedef uint64_t EM4100Epilogue;
#define EM_HEADER_POS (55)
#define EM_HEADER_MASK (0x1FFLLU << EM_HEADER_POS)
#define EM_FIRST_ROW_POS (50)
#define EM_ROW_COUNT (10)
#define EM_COLUMN_COUNT (4)
#define EM_BITS_PER_ROW_COUNT (EM_COLUMN_COUNT + 1)
#define EM_COLUMN_POS (4)
#define EM_STOP_POS (0)
#define EM_STOP_MASK (0x1LLU << EM_STOP_POS)
#define EM_HEADER_AND_STOP_MASK (EM_HEADER_MASK | EM_STOP_MASK)
#define EM_HEADER_AND_STOP_DATA (EM_HEADER_MASK)
#define EM4100_DECODED_DATA_SIZE (5)
#define EM4100_ENCODED_DATA_SIZE (sizeof(EM4100DecodedData))
#define EM_READ_SHORT_TIME_BASE (256)
#define EM_READ_LONG_TIME_BASE (512)
#define EM_READ_JITTER_TIME_BASE (100)
#define EM_ENCODED_DATA_HEADER (0xFF80000000000000ULL)
typedef struct {
uint8_t data[EM4100_DECODED_DATA_SIZE];
EM4100DecodedData encoded_data;
EM4100Epilogue encoded_epilogue;
uint8_t encoded_data_index;
bool encoded_polarity;
ManchesterState decoder_manchester_state;
uint8_t clock_per_bit;
} ProtocolEM4100;
uint16_t protocol_em4100_get_time_divisor(ProtocolEM4100* proto) {
switch(proto->clock_per_bit) {
case 64:
return 1;
case 32:
return 2;
case 16:
return 4;
default:
return 1;
}
}
uint32_t protocol_em4100_get_t5577_bitrate(ProtocolEM4100* proto) {
switch(proto->clock_per_bit) {
case 64:
return LFRFID_T5577_BITRATE_RF_64;
case 32:
return LFRFID_T5577_BITRATE_RF_32;
case 16:
return LFRFID_T5577_BITRATE_RF_16;
default:
return LFRFID_T5577_BITRATE_RF_64;
}
}
uint16_t protocol_em4100_get_short_time_low(ProtocolEM4100* proto) {
return EM_READ_SHORT_TIME_BASE / protocol_em4100_get_time_divisor(proto) -
EM_READ_JITTER_TIME_BASE / protocol_em4100_get_time_divisor(proto);
}
uint16_t protocol_em4100_get_short_time_high(ProtocolEM4100* proto) {
return EM_READ_SHORT_TIME_BASE / protocol_em4100_get_time_divisor(proto) +
EM_READ_JITTER_TIME_BASE / protocol_em4100_get_time_divisor(proto);
}
uint16_t protocol_em4100_get_long_time_low(ProtocolEM4100* proto) {
return EM_READ_LONG_TIME_BASE / protocol_em4100_get_time_divisor(proto) -
EM_READ_JITTER_TIME_BASE / protocol_em4100_get_time_divisor(proto);
}
uint16_t protocol_em4100_get_long_time_high(ProtocolEM4100* proto) {
return EM_READ_LONG_TIME_BASE / protocol_em4100_get_time_divisor(proto) +
EM_READ_JITTER_TIME_BASE / protocol_em4100_get_time_divisor(proto);
}
ProtocolEM4100* protocol_em4100_alloc(void) {
ProtocolEM4100* proto = malloc(sizeof(ProtocolEM4100));
proto->clock_per_bit = 64;
return (void*)proto;
};
ProtocolEM4100* protocol_em4100_16_alloc(void) {
ProtocolEM4100* proto = malloc(sizeof(ProtocolEM4100));
proto->clock_per_bit = 16;
return (void*)proto;
};
ProtocolEM4100* protocol_em4100_32_alloc(void) {
ProtocolEM4100* proto = malloc(sizeof(ProtocolEM4100));
proto->clock_per_bit = 32;
return (void*)proto;
};
void protocol_em4100_free(ProtocolEM4100* proto) {
free(proto);
};
uint8_t* protocol_em4100_get_data(ProtocolEM4100* proto) {
return proto->data;
};
static void em4100_decode(
const uint8_t* encoded_data,
const uint8_t encoded_data_size,
uint8_t* decoded_data,
const uint8_t decoded_data_size) {
furi_check(decoded_data_size >= EM4100_DECODED_DATA_SIZE);
furi_check(encoded_data_size >= EM4100_ENCODED_DATA_SIZE);
uint8_t decoded_data_index = 0;
EM4100DecodedData card_data = *((EM4100DecodedData*)(encoded_data));
// clean result
memset(decoded_data, 0, decoded_data_size);
// header
for(uint8_t i = 0; i < 9; i++) {
card_data = card_data << 1;
}
// nibbles
uint8_t value = 0;
for(uint8_t r = 0; r < EM_ROW_COUNT; r++) {
uint8_t nibble = 0;
for(uint8_t i = 0; i < 5; i++) {
if(i < 4) nibble = (nibble << 1) | (card_data & (1LLU << 63) ? 1 : 0);
card_data = card_data << 1;
}
value = (value << 4) | nibble;
if(r % 2) {
decoded_data[decoded_data_index] |= value;
decoded_data_index++;
value = 0;
}
}
}
static bool em4100_can_be_decoded(
const uint8_t* encoded_data,
const uint8_t encoded_data_size,
const uint8_t* encoded_epilogue) {
furi_check(encoded_data_size >= EM4100_ENCODED_DATA_SIZE);
const EM4100DecodedData* card_data = (EM4100DecodedData*)encoded_data;
const EM4100Epilogue* epilogue = (EM4100Epilogue*)encoded_epilogue;
// check first 9 bytes on epilogue (to prevent conflict with Electra protocol)
if((*epilogue & EM_ENCODED_DATA_HEADER) != EM_ENCODED_DATA_HEADER) return false;
// check header and stop bit
if((*card_data & EM_HEADER_AND_STOP_MASK) != EM_HEADER_AND_STOP_DATA) return false;
// check row parity
for(uint8_t i = 0; i < EM_ROW_COUNT; i++) {
uint8_t parity_sum = 0;
for(uint8_t j = 0; j < EM_BITS_PER_ROW_COUNT; j++) {
parity_sum += (*card_data >> (EM_FIRST_ROW_POS - i * EM_BITS_PER_ROW_COUNT + j)) & 1;
}
if((parity_sum % 2)) {
return false;
}
}
// check columns parity
for(uint8_t i = 0; i < EM_COLUMN_COUNT; i++) {
uint8_t parity_sum = 0;
for(uint8_t j = 0; j < EM_ROW_COUNT + 1; j++) {
parity_sum += (*card_data >> (EM_COLUMN_POS - i + j * EM_BITS_PER_ROW_COUNT)) & 1;
}
if((parity_sum % 2)) {
return false;
}
}
return true;
}
void protocol_em4100_decoder_start(ProtocolEM4100* proto) {
memset(proto->data, 0, EM4100_DECODED_DATA_SIZE);
proto->encoded_data = 0;
manchester_advance(
proto->decoder_manchester_state,
ManchesterEventReset,
&proto->decoder_manchester_state,
NULL);
};
bool protocol_em4100_decoder_feed(ProtocolEM4100* proto, bool level, uint32_t duration) {
bool result = false;
ManchesterEvent event = ManchesterEventReset;
if(duration > protocol_em4100_get_short_time_low(proto) &&
duration < protocol_em4100_get_short_time_high(proto)) {
if(!level) {
event = ManchesterEventShortHigh;
} else {
event = ManchesterEventShortLow;
}
} else if(
duration > protocol_em4100_get_long_time_low(proto) &&
duration < protocol_em4100_get_long_time_high(proto)) {
if(!level) {
event = ManchesterEventLongHigh;
} else {
event = ManchesterEventLongLow;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
proto->decoder_manchester_state, event, &proto->decoder_manchester_state, &data);
if(data_ok) {
bool carry = proto->encoded_epilogue >> 63 & 0b1;
proto->encoded_data = (proto->encoded_data << 1) | carry;
proto->encoded_epilogue = (proto->encoded_epilogue << 1) | data;
if(em4100_can_be_decoded(
(uint8_t*)&proto->encoded_data,
sizeof(EM4100DecodedData),
(uint8_t*)&proto->encoded_epilogue)) {
em4100_decode(
(uint8_t*)&proto->encoded_data,
sizeof(EM4100DecodedData),
proto->data,
EM4100_DECODED_DATA_SIZE);
result = true;
}
}
}
return result;
};
static void em4100_write_nibble(bool low_nibble, uint8_t data, EM4100DecodedData* encoded_data) {
uint8_t parity_sum = 0;
uint8_t start = 0;
if(!low_nibble) start = 4;
for(int8_t i = (start + 3); i >= start; i--) {
parity_sum += (data >> i) & 1;
*encoded_data = (*encoded_data << 1) | ((data >> i) & 1);
}
*encoded_data = (*encoded_data << 1) | ((parity_sum % 2) & 1);
}
bool protocol_em4100_encoder_start(ProtocolEM4100* proto) {
// header
proto->encoded_data = 0b111111111;
// data
for(uint8_t i = 0; i < EM4100_DECODED_DATA_SIZE; i++) {
em4100_write_nibble(false, proto->data[i], &proto->encoded_data);
em4100_write_nibble(true, proto->data[i], &proto->encoded_data);
}
// column parity and stop bit
uint8_t parity_sum;
for(uint8_t c = 0; c < EM_COLUMN_COUNT; c++) {
parity_sum = 0;
for(uint8_t i = 1; i <= EM_ROW_COUNT; i++) {
uint8_t parity_bit = (proto->encoded_data >> (i * EM_BITS_PER_ROW_COUNT - 1)) & 1;
parity_sum += parity_bit;
}
proto->encoded_data = (proto->encoded_data << 1) | ((parity_sum % 2) & 1);
}
// stop bit
proto->encoded_data = (proto->encoded_data << 1) | 0;
proto->encoded_data_index = 0;
proto->encoded_polarity = true;
return true;
};
LevelDuration protocol_em4100_encoder_yield(ProtocolEM4100* proto) {
bool level = (proto->encoded_data >> (63 - proto->encoded_data_index)) & 1;
uint32_t duration = proto->clock_per_bit / 2;
if(proto->encoded_polarity) {
proto->encoded_polarity = false;
} else {
level = !level;
proto->encoded_polarity = true;
proto->encoded_data_index++;
if(proto->encoded_data_index >= 64) {
proto->encoded_data_index = 0;
}
}
return level_duration_make(level, duration);
};
bool protocol_em4100_write_data(ProtocolEM4100* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
// Correct protocol data by redecoding
protocol_em4100_encoder_start(protocol);
em4100_decode(
(uint8_t*)&protocol->encoded_data,
sizeof(EM4100DecodedData),
protocol->data,
EM4100_DECODED_DATA_SIZE);
protocol_em4100_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] =
(LFRFID_T5577_MODULATION_MANCHESTER | protocol_em4100_get_t5577_bitrate(protocol) |
(2 << LFRFID_T5577_MAXBLOCK_SHIFT));
request->t5577.block[1] = protocol->encoded_data >> 32;
request->t5577.block[2] = protocol->encoded_data;
request->t5577.blocks_to_write = 3;
result = true;
}
return result;
};
void protocol_em4100_render_data(ProtocolEM4100* protocol, FuriString* result) {
uint8_t* data = protocol->data;
furi_string_printf(
result,
"FC: %03u\n"
"Card: %05hu (RF/%hhu)",
data[2],
(uint16_t)((data[3] << 8) | (data[4])),
protocol->clock_per_bit);
};
const ProtocolBase protocol_em4100 = {
.name = "EM4100",
.manufacturer = "EM-Micro",
.data_size = EM4100_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK | LFRFIDFeaturePSK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_em4100_alloc,
.free = (ProtocolFree)protocol_em4100_free,
.get_data = (ProtocolGetData)protocol_em4100_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_em4100_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_em4100_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_em4100_encoder_start,
.yield = (ProtocolEncoderYield)protocol_em4100_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_em4100_render_data,
.render_brief_data = (ProtocolRenderData)protocol_em4100_render_data,
.write_data = (ProtocolWriteData)protocol_em4100_write_data,
};
const ProtocolBase protocol_em4100_32 = {
.name = "EM4100/32",
.manufacturer = "EM-Micro",
.data_size = EM4100_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK | LFRFIDFeaturePSK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_em4100_32_alloc,
.free = (ProtocolFree)protocol_em4100_free,
.get_data = (ProtocolGetData)protocol_em4100_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_em4100_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_em4100_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_em4100_encoder_start,
.yield = (ProtocolEncoderYield)protocol_em4100_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_em4100_render_data,
.render_brief_data = (ProtocolRenderData)protocol_em4100_render_data,
.write_data = (ProtocolWriteData)protocol_em4100_write_data,
};
const ProtocolBase protocol_em4100_16 = {
.name = "EM4100/16",
.manufacturer = "EM-Micro",
.data_size = EM4100_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK | LFRFIDFeaturePSK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_em4100_16_alloc,
.free = (ProtocolFree)protocol_em4100_free,
.get_data = (ProtocolGetData)protocol_em4100_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_em4100_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_em4100_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_em4100_encoder_start,
.yield = (ProtocolEncoderYield)protocol_em4100_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_em4100_render_data,
.render_brief_data = (ProtocolRenderData)protocol_em4100_render_data,
.write_data = (ProtocolWriteData)protocol_em4100_write_data,
};